ARTICLE in PRESS MODEL 5 CATENA-01102; No of Pages 15

Total Page:16

File Type:pdf, Size:1020Kb

ARTICLE in PRESS MODEL 5 CATENA-01102; No of Pages 15 ARTICLE IN PRESS MODEL 5 CATENA-01102; No of Pages 15 Catena xx (2006) xxx–xxx www.elsevier.com/locate/catena Dune whitening and inter-dune freshwater ponds in NE Brazil ⁎ Noam Levin a, , Haim Tsoar a, Luis P. Maia b, Vanda Claudino Sales c, Hans Herrmann d a Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel b Instituto de Ciências do Mar- LABOMAR, Av. Abolicão, 3207, Meireles, Fortaleza, Ceará, Brazil c Department of Geography, Federal University of Ceará, Brazil d The Swiss Federal Institute of Technology Zurich, Computational Physics, ETH-Hönggerberg, Institut für Baustoffe (IFB), HIF E12, Schafmattstr. 6, 8093 Zürich, Switzerland Received 5 April 2006; received in revised form 13 June 2006; accepted 23 June 2006 Abstract The changes in color of sand dunes from white to yellow or red is often interpreted to signify their age or their source materials. In this study we demonstrate the effect seasonal inter-dune freshwater ponds have on the bleaching of the color of sand dunes by iron reduction in the anaerobic conditions they create. By combining spectral measurements of field samples of dune sand together with the analysis of satellite images covering three dune fields in NE Brazil (Lençóis Maranhenses, Jericoacoara and Canoa Quebrada) we demonstrate its existence in the field. In areas where ponds cover 41% of the dune field (as in Lençóis Maranhenses) an almost total bleaching in the color of the sand occurs after which the dunes remain white with no relation to distance from the coastline. In areas with less ponds (e.g. Jericoacoara or Canoa Quebrada) dune whitening is less active, and there are areas where dune rubification occurs. As this process may have occurred in other dune fields during past climate conditions that may have been different from current ones, interpretations of dunes age based on their color should be handled with care. © 2006 Elsevier B.V. All rights reserved. Keywords: Coastal dunes; Ponds; Iron oxides; Rubification; Reduction; Remote sensing 1. Introduction et al., 1973). During the weathering of a primary rock to a soil the iron, predominantly bound in silicates in the reduced state, 1.1. Dune reddening will be released through a combined hydrolytic and oxidative reaction in which atmospheric oxygen takes up the electron There is abundant evidence that many dune sands become (Schwertmann and Taylor, 1977). Due to the extremely low reddened with time. That process is promoted by warm solubility of Fe3+ oxides in the normal pH range of soils, the temperatures, oxidizing conditions and periodic presence of iron released will be precipitated as oxide or hydroxide. moisture (Norris, 1969). Thus the percentage of iron oxides in Williams and Yaalon (1977) have demonstrated reddening in sand dunes may indicate their age, source materials, and sand dunes under laboratory weathering conditions. Their transport paths, as demonstrated for both desert dunes (White research showed that organic matter is not necessary to initiate et al., 1997, 2001) or coastal dunes (Levin et al., 2005; Ben- the process. In Terra Rossa and Rendzina soils (Rhodoxeralfs Dor et al., 2006), in which the sand becomes more yellow or and Xerochrepts, respectively, according to the US Soil red with distance from the coastline. This process is known as Taxonomy) differences in iron oxide mineralogy (red hematite rubification, which is defined as a pedogenesis stage in which vs. yellow goethite) were interpreted by Singer et al. (1998) to iron is released from primary minerals to form free iron oxides be due to differences in the pedoclimate. that coat quartz particles in soils with a thin reddish film (Buol 1.2. Dune whitening ⁎ Corresponding author. Fax: +972 2 6434820. Whereas the reddening of sandy soils and sand dunes is E-mail address: [email protected] (N. Levin). well studied, the opposite process, in which iron is reduced 0341-8162/$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.catena.2006.06.006 Please cite this article as: Noam Levin, et al, Dune whitening and inter-dune freshwater ponds in NE Brazil, Catena (2006), doi:10.1016/j. catena.2006.06.006. ARTICLE IN PRESS 2 N. Levin et al. / Catena xx (2006) xxx–xxx Fig. 1. Location map of the field sites. (a) Location of the study area in NE Brazil with respect to South America; (b) the location of the three field sites within the states of Cearã and Maranhão; (c) Canoa Quebrada dunes field site. In the background: a Landsat satellite image from 9/8/1989. The locations of sand samples are marked in orange; (d) Jericoacoara dunes field site. In the background: a Landsat satellite image from 23/8/1992. The locations of sand samples are marked in orange; (e) Lençóis Maranhenses dunes field site. In the background: a Landsat satellite image from 23/5/2000. The locations of sand samples are marked in orange. and the color of sand becomes whiter, has received far less organisms may utilize Fe3+ as final electron receptors to attention. Experimentally, sand abrasion has been shown to accomplish their oxidative decomposition of organic remove only a minor percentage of the iron from grain surface matter. The Fe3+ is thereby reduced to Fe2+, which, being coatings (Bullard et al., 2004; Bullard and White, 2005). generally more soluble, accelerates the dissolution of the Roden et al. (2000) have demonstrated microbial caused oxide (Schwertmann and Taylor, 1977). In wetland soils it reductive dissolution of 95% of synthetic crystalline Fe3+ has been shown that redox depletions occupy N60% of the (goethite) oxide-coated sand in continuous flow column horizon at 15–30 cm depths in soils that were saturated for reactors within 6 months. This was visibly evidenced by 21 days or longer at least 9 years out of 10 (Vepraskas et extensive bleaching of color from the sand in the columns. al., 2004). The reversibility of the oxidation–reduction of iron Whereas the bleaching of sand as it is carried by longshore therefore plays an important role in its behavior in soils. currents is well known (Emery and Neev, 1960), evidence In saturated soil oxygen becomes deficient and micro- from field studies regarding the reduction of ferric iron in Fig. 2. Photographs of the different dune generations found in the study area: (a) Red cliffs of the Barreiras formation, Canoa Quebrada, Ceará, Brazil (photo by N.L.); (b) Red palaeodune sand surface covered by an active white sand dune, Jericoacoara, Ceará, Brazil (photo by N.L.); (c) Stabilized parabolic dunes, east of Fortaleza, Ceará, Brazil (photo by H.T.); (d) Aeolionite, west of Fortaleza, Ceará, Brazil (photo by N.L.); (e) Barchan dunes, Jericoacoara, Ceará, Brazil (photo by N.L.); (f) Dunes and ponds, Lençóis Maranhenses, Maranhao, Brazil (photo by Reginaldo Lima Verde); (g, h) Mega-ripples in the dune field of Canoa Quebrada (photobyH.T.). Please cite this article as: Noam Levin, et al, Dune whitening and inter-dune freshwater ponds in NE Brazil, Catena (2006), doi:10.1016/j. catena.2006.06.006. ARTICLE IN PRESS N. Levin et al. / Catena xx (2006) xxx–xxx 3 Please cite this article as: Noam Levin, et al, Dune whitening and inter-dune freshwater ponds in NE Brazil, Catena (2006), doi:10.1016/j. catena.2006.06.006. ARTICLE IN PRESS 4 N. Levin et al. / Catena xx (2006) xxx–xxx Table 1 Wind power parameters of drift potential (DP), resultant drift potential (RDP), and wind directionality (RDP/DP) following Fryberger (1979) ID on map Location and measurement DP RDP RDP/DP RDD Percent of time above threshold period (deg.) for moving sand 1 São Luis a 1972–1990 138.4 106 0.77 67.3 16.2 2 Aranaú b 2003 2173 2110 0.97 96 76 3 Pecém b 1995–99 692.2 659.5 0.95 99.2 59 4 Parajuru b 2003 282.3 257.6 0.91 89.8 49.8 5 Natal a 1973–1990 97.7 81.5 0.83 113.8 15.1 6 Recife a 1973–1993 81.9 45.7 0.56 108 7.2 7 Maceió a 1972–1990 34.4 23.1 0.67 84.1 5.5 Locations are ordered along the coast from the north-west (São Luis) towards the south-east (Maceió), and are shown in Fig. 1a. a Taken from International Station Meteorological Climate. Federal Climate Complex, Ashville, Dept. of the Navy/Dept. of Commerce/Dept. of the Air Force. b Data supplied by L.P.M. freshwater commonly indicate only partial reduction (e.g. 1.4. Study aims Lovley and Phillips, 1986; PiPujol and Buurman, 1997). No study has reported yet the bleaching of active dune 1.3. Remote sensing of iron oxides sands due to iron reduction. Our study aims were therefore to present the existence of such a mechanism in the coastal Based on the free iron oxides that redden soil particles, and dunes and freshwater ponds system located in the inter-dune using spectral color indices or linear mixing models, Madeira area in NE Brazil. By combining spectroscopy of sand et al. (1997) and White et al. (1997, 2001) showed that it is samples and satellite-borne remote sensing, we aim to show possible to account for iron oxide status using the Landsat that the presence of temporary freshwater ponds is Thematic Mapper data (only six bands in the VIS–NIR–SWIR responsible for this process. region) over lateritic soils in Brazil, and sand dunes at the Our hypotheses were the following: Namib, and at the Northern Rub'Al Khali (United Arab Emirates), respectively. Field spectroscopy was used by (1) In areas without ponds the process of rubification will Bullard and White (2002) to quantify iron oxide coatings on be evident with downwind distance from the coastline.
Recommended publications
  • A Review of Lake Frome & Strzelecki Regional Reserves 1991-2001
    A Review of Lake Frome and Strzelecki Regional Reserves 1991 – 2001 s & ark W P il l d a l i f n e o i t a N South Australia A Review of Lake Frome and Strzelecki Regional Reserves 1991 – 2001 Strzelecki Regional Reserves Lake Frome This review has been prepared and adopted in pursuance to section 34A of the National Parks and Wildlife Act 1972. Published by the Department for Environment and Heritage Adelaide, South Australia July 2002 © Department for Environment and Heritage ISBN: 0 7590 1038 2 Prepared by Outback Region National Parks & Wildlife SA Department for Environment and Heritage Front cover photographs: Lake Frome coastline, Lake Frome Regional Reserve, supplied by R Playfair and reproduced with permission. Montecollina Bore, Strzelecki Regional Reserve, supplied by C. Crafter and reproduced with permission. Department for Environment and Heritage TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................................................iii LIST OF TABLES..................................................................................................................................................iii LIST OF ACRONYMS and ABBREVIATIONS...................................................................................................iv ACKNOWLEDGMENTS ......................................................................................................................................iv FOREWORD ..........................................................................................................................................................
    [Show full text]
  • New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene
    atmosphere Article New Record of Dust Input and Provenance during Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene Margot Courtillat 1,2,* , Maximilian Hallenberger 3 , Maria-Angela Bassetti 1,2, Dominique Aubert 1,2 , Catherine Jeandel 4, Lars Reuning 5 , Chelsea Korpanty 6 , Pierre Moissette 7,8 , Stéphanie Mounic 9 and Mariem Saavedra-Pellitero 10,11 1 Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France; [email protected] (M.-A.B.); [email protected] (D.A.) 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France 3 Energy & Mineral Resources Group, Geological Institute Wüllnerstr. 2, RWTH Aachen University, 52052 Aachen, Germany; [email protected] 4 Observatoire Midi-Pyrénées, LEGOS (Université de Toulouse, CNRS/CNES/IRD/UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 5 Institute of Geosciences, CAU Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; [email protected] 6 MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany; [email protected] 7 Department of Historical Geology & Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected]
    [Show full text]
  • Diverse Sources of Aeolian Sediment Revealed in an Arid Landscape in Southeastern Iran Using a Modified Bayesian Un-Mixing Model
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2019-12 Diverse sources of aeolian sediment revealed in an arid landscape in southeastern Iran using a modified Bayesian un-mixing model Gholami, H http://hdl.handle.net/10026.1/15152 10.1016/j.aeolia.2019.100547 Aeolian Research Elsevier All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. 1 Diverse sources of aeolian sediment revealed in an arid landscape in 2 southeastern Iran using a Bayesian un-mixing model 3 Abstract 4 Identifying and quantifying source contributions of aeolian sediment is critical to mitigate 5 local and regional effects of wind erosion in the arid and semi-arid regions of the world. Sediment 6 fingerprinting techniques have great potential in quantifying the source contribution of sediments. 7 The purpose of this study is to demonstrate the effectiveness of fingerprinting methods in 8 determining the sources of the aeolian sands of a small erg with varied and complex potential 9 sources upwind. A two-stage statistical processes including a Kruskal-Wallis H-test and a stepwise 10 discriminant function analysis (DFA) were applied to select optimum composite fingerprints to 11 discriminate the potential sources of the aeolian sands from the Jazmurian plain located in Kerman 12 Province, southeastern Iran.
    [Show full text]
  • 01 Fitzsimmons the Timing of
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy ARTICLE IN PRESS Quaternary Science Reviews 26 (2007) 2598–2616 The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia Kathryn E. Fitzsimmonsa,b,Ã, Edward J. Rhodesb,c,d, John W. Mageea,b, Timothy T. Barrowse aDepartment of Earth and Marine Sciences, The Australian National University, Canberra, ACT 0200, Australia bCooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), The Australian National University, Canberra, ACT 0200, Australia cResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia dResearch School of Pacific and Asian Studies, The Australian National University, Canberra, ACT 0200, Australia eDepartment of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia Received 15 January 2007; received in revised form 28 May 2007; accepted 12 June 2007 Abstract Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood.
    [Show full text]
  • EARTH SCIENCES RESEARCH JOURNAL Sand Dunes of the Gaza Strip (Southwestern Palestine): Morphology, Textural Characteristics
    EARTH SCIENCES RESEARCH JOURNAL Eart Sci. Res. J. Vol. 18, No. 2 (December, 2014): 131 - 142 SEDIMENTOLOGY Sand dunes of the Gaza Strip (southwestern Palestine): morphology, textural characteristics and associated environmental impacts Khalid F. Ubeid 1 Alhasan S. Albatta 2 1 Department of Geology, Faculty of Science, Al Azhar University – Gaza, P.O. Box 1277, Gaza, Palestine. Email: [email protected] 2 Department of Coastal and Marine Environment, General Directorate of Environmental Resources, Palestinian Environment Quality Authority “EQA” – Gaza. Email: [email protected] ABSTRACT Key words: Beach dunes, desert dunes, grain size distribution, Gaza Strip, Palestine. Sand dunes are wide spread in the Gaza Strip and are present in its northern, central and southern regions. Thirty sand samples were collected at seven locations along the middle region of the Strip. The coordinates for each sampling site were positioned using GPS and processed with ArcGIS software. Mechanical and chemical properties were examined to determine the textural characteristics and carbonate contents of the dune sands. The mean grain size is fine to medium, and the sands range from moderate- to well-sorting. The skewness is fine to very fine, and the kurtosis ranges from mesokurtic to very leptokurtic. Additionally, the results show that the carbonate content ranges from 1.5% to 5%. The high permeability, good porosity, and low carbonate content of the sand dunes in the Gaza Strip have led to more groundwater pollution via leachates percolating from the solid waste landfills and basins from wastewater treatments constructed above the sand dunes. Sand quarries have also changed the natural landscape of the Gaza Strip.
    [Show full text]
  • SIR 2021-5017: Landscape Evolution in Eastern Chuckwalla Valley
    Prepared in cooperation with the Bureau of Land Management Landscape Evolution in Eastern Chuckwalla Valley, Riverside County, California Scientific Investigations Report 2021–5017 U.S. Department of the Interior U.S. Geological Survey Cover. U.S. Geological Survey photograph of wind-rippled sand and sand verbena in eastern Chuckwalla Valley, Riverside County, California. Landscape Evolution in Eastern Chuckwalla Valley, Riverside County, California By Amy E. East, Harrison J. Gray, Margaret Hiza Redsteer, and Matthew Ballmer Prepared in cooperation with the Bureau of Land Management Scientific Investigations Report 2021–5017 U.S. Department of the Interior U.S. Geological Survey U.S. Geological Survey, Reston, Virginia: 2021 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: East, A.E., Gray, H.J., Redsteer, M.H., and Ballmer, M., 2021, Landscape evolution in eastern Chuckwalla Valley, Riverside County, California: U.S. Geological Survey Scientific Investigations Report 2021–5017, 46 p., https://doi.org/10.3133/sir20215017.
    [Show full text]
  • Hummock Grasslands
    NVIS Fact sheet MVG 20 – Hummock grasslands Australia’s native vegetation is a rich and fundamental Overview element of our natural heritage. It binds and nourishes our ancient soils; shelters and sustains wildlife, protects Typically, vegetation areas classified under MVG 20 – streams, wetlands, estuaries, and coastlines; and absorbs Hummock grasslands: carbon dioxide while emitting oxygen. The National • are characterised by an open groundcover of spiny Vegetation Information System (NVIS) has been developed hummocks formed by grasses in the genus Triodia and maintained by all Australian governments to provide • are a uniquely Australian evergreen perennial growth a national picture that captures and explains the broad form and grow as mounds up to one m tall. Also known diversity of our native vegetation. as spinifex or porcupine grasses, they should not be confused with Spinifex spp. of coastal areas This is part of a series of fact sheets which the Australian Government developed based on NVIS Version 4.2 data to • are separated by matrixes that are mostly bare, except for provide detailed descriptions of the major vegetation groups scattered shrubs, but may be populated with ephemeral (MVGs) and other MVG types. The series is comprised of herbs and grasses after substantial rain events a fact sheet for each of the 25 MVGs to inform their use by • comprise spinifex species that vary in their time of planners and policy makers. An additional eight MVGs are flowering, they tend to flower en masse during regular available outlining other MVG types. masting events apparently triggered by antecedent rain • have scattered acacias or eucalypts that often emerge For more information on these fact sheets, including above the prominent hummock layer, while areas of its limitations and caveats related to its use, please see: hummock grass devoid of emergent trees or shrubs are ‘Introduction to the Major Vegetation Group (MVG) relatively limited fact sheets’.
    [Show full text]
  • Sand Dune Mobility Under Climate Change in the Kalahari and Australian Deserts
    Noname manuscript No. (will be inserted by the editor) Sand dune mobility under climate change in the Kalahari and Australian Deserts Yosef Ashkenazy · Hezi Yizhaq · Haim Tsoar Received: date / Accepted: date Abstract Vegetation cover on sand dunes mainly depends on wind power (drift potential— DP) and precipitation. When this cover decreases below a minimal percentage, dunes will start moving. It is therefore necessary to study the effects of DP and precipitation on contemporary dune activity in order to predict likely future dune mobility in the coming decades. We concentrate on the future activity of currently fixed dune fields of the Kalahari and the Australian deserts. These sand seas include the largest areas of stabilized dunes in the world and changes in their mobility have significant eco- nomic implications. Global maps of DP are introduced, based on real and reanalysis data. Analysis of two global circulation models (GFDL and CGCM3.1) provide future predictions under the SRES-A1B IPCC scenario, which is a moderate global warming scenario. According to the GFDL model, both the Australian and Kalahari basin dunes will apparently remain stable towards the end of the 21st century because the DP will stay small, while the rate of precipitation is expected to remain much above the min- imal threshold necessary for vegetative growth which lead to dune stabilization. The CGCM model predicts insignificant changes in DPs and shows that precipitation rate is above 500 mm/yr for almost the entire Kalahari basin. The central-northern part of Australia is predicted to have larger DPs and greater precipitation than the southern part.
    [Show full text]
  • Rasbdb Subject Keywords
    Leigh Marymor, Compiler KEYWORD GUIDE A joint project of the Museum of Northern Arizona and the Bay Area Rock Art Research Association KEYWORD GUIDE Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 1 September 15, 2020 KEYWORD GUIDE Mortars, cupules, and pecked curvilinear nucleated forms. Canyon Trail Park, San Francisco Bay Area, California, USA. Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 2 September 15, 2020 KEYWORD GUIDE Aerial Photography .......................................... 9 Archival storage ............................................... 9 Table of Contents Augmented Reality .......................................... 9 Bias ................................................................... 9 INTRODUCTION: .................................................. 7 Casts ................................................................. 9 Classification .................................................... 9 SUBJECT KEYWORDS: ........................................... 8 Digital Sound Recording................................... 9 CULTURAL CONTEXT ..............................................8 Digital Storage ................................................. 9 CULTURAL RESOURCE MANAGEMENT ..................8 Drawing.......................................................... 10 Cultural Tourism ...............................................8 Historic Documentation ................................. 10 Community Involvement ...................................8 Laser Scanning
    [Show full text]
  • The Spatial and Temporal Geomorphology and Surficial Sedimentology of the Gurra Gurra Crescentic Dunes, Strzelecki Desert, South Australia
    Ð('3 'qB, *í The Spatial and Temporal Geomorphology and Surficial Sedimentology of the Gurra Gurra Crescentic Dunes, Strzelecki Desert, South Australia Mark A. Bishop M.sc. (Metb.) A dissertation submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy, Department of Geology and Geophysics, University of Adelaide, 1 997 Table of Contents Contents Page Contents Abstract v Declaration vi Acknowledgements vii Figures viii Tables x 1 lntroduction to Aeolian Geomorphology 1.1 lntroduction 1 1.2 Regional Geo-setting of the Stzelecki Desert 4 1.3 CainozoicStratigraPhY 4 1.4 Climate and Meteorology of the Australian Dunefields I 1.5 ResearchObjectives 16 1.6 Research HyPotheses 17 1.7 DissertationOutline r9 2 Terrestrial and Extra-Terrestrial Dune Studies 2.1 A Historical Perspective of Desert Dune Studies 22 2.2 Aeolian Landforms: Morphologies and Origins 23 2.3 Physics of Dune Processes 26 2.3.1 Wind - Bed lnteractions 26 2-3.2 Effects ol Surface Roughness on Entrainment 27 2.3.3 Dune Dynamics 30 2.3.4 Threshold Velocity and the Effect of Slope 32 2.4 Crescentic Dunes 33 2.4.1 Morphology and Morphometry 33 2.4.2 Origin 38 2.4.3 Two-Dimensional MotphologY 39 2.4.3.1 ìMndward Toe 39 2.4.3.2 Stoss Slope 40 2.4.3.4 Crest and Brink 40 2.4.3.5 Lee Slope: Flow Separation and the Lee Eddy 42 2.4.3.6 Lee Slope: Grainfall and Avalanching 43 2.4-4 Three-Dimensional MorPhologY 44 2.4.4-',| Age, Form and Process 44 2.4.4.2 Barchanoid and Transverse Dune Form and Process 46 2.4.4.3 lntegrated Transversé and Linear Dune Form and Process
    [Show full text]
  • Ketabton.Com (C) Ketabton.Com: the Digital Library
    Ketabton.com (c) ketabton.com: The Digital Library LiDAR Remote Sensing and Applications (c) ketabton.com: The Digital Library Remote Sensing Applications Series Editor Qihao Weng Indiana State University Terre Haute, Indiana, U.S.A. LiDAR Remote Sensing and Applications, Pinliang Dong, Qi Chen Urban Remote Sensing, Second Edition, edited by Qihao Weng, Dale Quattrochi, and Paolo E. Gamba Hyperspectral Remote Sensing: Fundamentals and Practices, Ruiliang Pu Integrating Scale in Remote Sensing and GIS, Dale A. Quattrochi, Elizabeth A. Wentz, Nina Siu-Ngan Lam, and Charles W. Emerson Remote Sensing for Sustainability, Qihao Weng Remote Sensing Applications for the Urban Environment, George Z. Xian Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas, Hui Lin, Yuanzhi Zhang, and Qihao Weng Global Urban Monitoring and Assessment through Earth Observation, edited by Qihao Weng Remote Sensing of Natural Resources, edited by Guangxing Wang and Qihao Weng Remote Sensing of Land Use and Land Cover: Principles and Applications, Chandra P. Giri Remote Sensing of Protected Lands, edited by Yeqiao Wang Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, edited by Qihao Weng Remote Sensing of Coastal Environments, edited by Yeqiao Wang Remote Sensing of Global Croplands for Food Security, edited by Prasad S. Thenkabail, John G. Lyon, Hugh Turral, and Chandashekhar M. Biradar Global Mapping of Human Settlement: Experiences, Data Sets, and Prospects, edited by Paolo Gamba and Martin Herold Hyperspectral Remote Sensing: Principles and Applications, Marcus Borengasser, William S. Hungate, and Russell Watkins Remote Sensing of Impervious Surfaces, edited by Qihao Weng Multispectral Image Analysis Using the Object-Oriented Paradigm, Kumar Navulur (c) ketabton.com: The Digital Library Remote Sensing Applications Series Editor Qihao Weng LiDAR Remote Sensing Indiana State University Terre Haute, Indiana, U.S.A.
    [Show full text]
  • The History of Aridity in Australia: Chronological Developments
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 1-1-2005 The history of aridity in Australia: chronological developments Ed Rhodes Australian National University John Chappell Australian National University Toshiyuki Fujioka Australian National University Kat Fitzsimmons Australian National University John Magee Australian National University See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Rhodes, Ed; Chappell, John; Fujioka, Toshiyuki; Fitzsimmons, Kat; Magee, John; Aubert, Max; and Hewitt, Dolan: The history of aridity in Australia: chronological developments 2005, 265-268. https://ro.uow.edu.au/scipapers/4241 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The history of aridity in Australia: chronological developments Abstract Desert dune-fields are quintessential features of arid landscapes. During arid phases in the recent geological past, such as the global last glacial maximum (LGM) at around 20,000 years ago, many parts of Australia experienced significant sand movement, with sand migrating down-wind and forming linear dunes. Sand entrainment and deposition is controlled by vegetative surface stabilisation, wind speed and direction, which in turn are controlled by regional climate and local factors including ground-water levels. Climate also affects sand supply, through its effects on erosion in the source areas and transport to the dune-building areas. Keywords aridity, developments, chronological, australia, history Disciplines Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences Publication Details Rhodes, E.
    [Show full text]