“Be Thankful for What You Are Now, and Keep Fighting for What You Want to Be Tomorrow.” Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Australia: State of the Environment 1996: Chapter 4
Chapter 4 . Biodiversity ‘Still Flying’ from the painting of a Wandering Albatross by Richard Prepared by Weatherly. Denis Saunders (Chair), CSIRO Division of Wildlife and Ecology Andrew Beattie, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Susannah Eliott (Research Assistant/Science Writer), Centre for Science Communication, University of Technology, Sydney Marilyn Fox, School of Geography, University of New South Wales Burke Hill, CSIRO Division of Fisheries Bob Pressey, New South Wales National Parks and Wildlife Service Duncan Veal, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Jackie Venning, State of Environment Reporting, South Australian Department of Environment and Natural Resources Mathew Maliel (State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (Facilitator) Charlie Zammit (former State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (former Facilitator) 4-1 . Australia: State of the Environment 1996 . Contents Introduction. 4-4 Pressure . 4-7 Human populations . 4-9 Urban development . 4-9 Tourism and recreation . 4-9 Harvesting resources and land use. 4-10 Fisheries . 4-10 Forestry . 4-11 Pastoralism. 4-12 Agriculture . 4-12 Introduced species . 4-16 Vertebrates . 4-16 Invertebrates. 4-17 Plants. 4-18 Micro-organisms. 4-20 Native species out of place . 4-20 Pollution . 4-21 Mining . 4-22 Climate change . 4-22 State . 4-23 The state of ecosystem diversity . 4-23 Biogeographic regionalisations for Australia . 4-23 Ecosystem diversity. 4-26 The state of species diversity. 4-30 Number and distribution of species . 4-31 Status of species . -
Little Sandy Desert 1 (LSD1 – Rudall Subregion)
Little Sand Desert 1 Little Sandy Desert 1 (LSD1 – Rudall subregion) PETER KENDRICK NOVEMBER 2001 Subregional description and biodiversity across the desert and into a major salt lake within the Little Sandy Desert (the other is Savory Creek). values Only the upper half of the course of the Rudall River is within LSD1. • Description and area Small permanent rockhole wetlands associated with ranges and uplands. Locally significant water Sparse shrub-steppe over Triodia basedowii on stony hills, sources, with high biological and cultural with River Gum communities and bunch grasslands on significance. • alluvial deposits in and associated with ranges. The Small artificial surface water sources constructed climate is Arid with summer rainfall. The Rudall along the Canning Stock Route (far eastern part of Complex, Throssell Group and Lamil Group of the LSD1). Many in disrepair, but there is an active Patterson Orogen. Proterozoic hill country of Throssell, program of refurbishment underway, and many are Mount Sears, Broadhurst and Harbutt Ranges. Includes open again. Sometimes a locally significant source of headwaters and course of Rudall River. Extensive areas of water. tussock grass are associated with footslopes. River Gum communities along drainage. Extensive Triodia Refugia: • hummock grasslands on hills and surrounding plains. The The only refuge listed by Morton et al. (1995) area of the subregion is 1, 078, 070 ha. within LSD1 is the Rudall River. They note that it may provide a seasonal refuge to wildlife. Dominant land use • The hills of the McKay, Harbutt, Fingoon and Broadhurst Ranges present some areas that are protected from fire. Dominant land uses in the subregion are Conservation (xiii), Unallocated Crown land (xi), (x), Mining leases High Species and Ecosystem Diversity: (vii), and Urban (i) (Parnngurr Aboriginal Community There is a high number of arid zone reptiles, particularly near Cotton Creek in Rudall River National Park) (see skink lizards (genera Ctenotus and Lerista). -
A Review of Lake Frome & Strzelecki Regional Reserves 1991-2001
A Review of Lake Frome and Strzelecki Regional Reserves 1991 – 2001 s & ark W P il l d a l i f n e o i t a N South Australia A Review of Lake Frome and Strzelecki Regional Reserves 1991 – 2001 Strzelecki Regional Reserves Lake Frome This review has been prepared and adopted in pursuance to section 34A of the National Parks and Wildlife Act 1972. Published by the Department for Environment and Heritage Adelaide, South Australia July 2002 © Department for Environment and Heritage ISBN: 0 7590 1038 2 Prepared by Outback Region National Parks & Wildlife SA Department for Environment and Heritage Front cover photographs: Lake Frome coastline, Lake Frome Regional Reserve, supplied by R Playfair and reproduced with permission. Montecollina Bore, Strzelecki Regional Reserve, supplied by C. Crafter and reproduced with permission. Department for Environment and Heritage TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................................................iii LIST OF TABLES..................................................................................................................................................iii LIST OF ACRONYMS and ABBREVIATIONS...................................................................................................iv ACKNOWLEDGMENTS ......................................................................................................................................iv FOREWORD .......................................................................................................................................................... -
Lenape Valley Regional High School THIS ASSIGNMENT WILL BE DUE in FULL AP World History Summer Assignment 2015 by FRIDAY, SEPTEMBER 13TH, 2019
Lenape Valley Regional High School THIS ASSIGNMENT WILL BE DUE IN FULL AP World History Summer Assignment 2015 BY FRIDAY, SEPTEMBER 13TH, 2019. Mr. Peter J. De Kleine, MA LAC EXTENUATING CIRCUMSTANCES WILL BE Department of Social Studies DISCUSSED INDIVIDUALLY. [email protected] Before anything else – Get a 5 Inch 3 Ring Binder for your materials. You will need it. Almost 14 billion years ago, as we know it, history began. From nothingness began a journey of creativity and complexity that would lead us to today. As human beings we are (at least we should be) continually seeking answers to the universe in which we are embedded. Some people focus on specific details, others focus on the ideas, but it can be argued that those who study history focus on the entire story of this journey. This course will test your ability to think, reason, and respond at a much higher level than CP or Advanced Courses. A great majority of this course is designed to prepare you for writing analytically so you may tackle the AP World History Exam in May of 2020. That being said, one might ask, “Why do we have to do a summer assignment?” I will be honest; I used to ask the same question and reason that it was my summer to do with as I wanted. Simply put, Lenape Valley Regional High School begins school toward the end of August, most school systems in the United States begin their school year early to mid-August. However, the AP Exam is on the same day for all students across the United States. -
Strategic Proposal SUPPLEMENTARY REPORT PUBLIC ENVIRONMENTAL REVIEW STRATEGIC PROPOSAL
BHP Billiton Iron Ore Pilbara Public Environmental Review Strategic Proposal SUPPLEMENTARY REPORT PUBLIC ENVIRONMENTAL REVIEW STRATEGIC PROPOSAL Document Control ACTION NAME POSITION DATE Prepared by: F. Hill Faskel Document Manager 21.09.2016 Team Leader Reviewed by: B. Skarratt 27.09.2016 Strategic Environmental Assessment Manager Environment, Analysis and Endorsed by: R. Thorpe 29.09.2016 Improvement Head of Environment, Analysis and Approved by: G. Price 30.09.2016 Improvement Revised by: F. Hill Faskel Document Manager 21.12.2016 DISCLAIMER This Supplementary Report has been prepared for submission to the Western Australian Environmental Protection Authority in response to public comments received during the review period of the Pilbara Public Environmental Review Strategic Proposal (PERSP). This Supplementary Report is to support the information contained in the PERSP for the purpose of the Minister for Environment making a determination regarding whether to approve BHP Billiton Iron Ore’s Proposal under the Western Australian Environmental Protection Act 1986. This Supplementary Report and the PERSP have been developed for this purpose only, and no one other than the Environmental Protection Authority or the Minister should rely on the information contained in these documents to make any decision. In preparing the Supplementary Report and PERSP, BHP Billiton Iron Ore has relied on information provided by specialist consultants, government agencies and other third parties available during preparation. The Supplementary Report and -
New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene
atmosphere Article New Record of Dust Input and Provenance during Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene Margot Courtillat 1,2,* , Maximilian Hallenberger 3 , Maria-Angela Bassetti 1,2, Dominique Aubert 1,2 , Catherine Jeandel 4, Lars Reuning 5 , Chelsea Korpanty 6 , Pierre Moissette 7,8 , Stéphanie Mounic 9 and Mariem Saavedra-Pellitero 10,11 1 Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France; [email protected] (M.-A.B.); [email protected] (D.A.) 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France 3 Energy & Mineral Resources Group, Geological Institute Wüllnerstr. 2, RWTH Aachen University, 52052 Aachen, Germany; [email protected] 4 Observatoire Midi-Pyrénées, LEGOS (Université de Toulouse, CNRS/CNES/IRD/UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 5 Institute of Geosciences, CAU Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; [email protected] 6 MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany; [email protected] 7 Department of Historical Geology & Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] -
Lake Disappointment Potash Project
Lake Disappointment Potash Project Hydrogeological Assessment of the Impact of Process Water Abstraction from the Northern Bore Field An H2 Level Assessment for 2 GL/year with a Numerical Model Prepared by: Strategic Water Management Prepared For: Reward Minerals Ltd June 2018 Rookie Solutions Pty Ltd Trading As: Strategic Water Management ACN 605 020 255 ABN 81 605 020 255 79 Wellington Street, Mosman Park, Western Australia 6012 Telephone: 0402 893 976 E-mail: [email protected] No warranty or guarantee, whether expressed or implied, is made with respect to the data findings, observations and conclusions contained in this report. The entire report was provided in digital form with the original bound copy. Use of the digital file is entirely at the risk of the user and no liability is accepted for damage caused by use of the digital file. The Client has unlimited access to the information in this report but some of the data is the property of Strategic Water Management or is under copyright licence agreement so the report may not be provided to a third party or cited without written permission. Strategic Water Management accepts no liability or responsibility whatsoever for and in the respect of any use or reliance on this report by any third party. Document Status Rev Author Reviewed By Approved for Issue No. Name Signature Date 0 R. Kinnell R. Nixon R Kinnell 27/09/2017 1 R. Kinnell R. Nixon R Kinnell 15/06/2018 Table of Contents Introduction 1 Location 2 Existing Groundwater Use 4 Geography and Drainage 6 Climate and -
The Vegetation of the Western Australian Deserts
©Reinhold-Tüxen-Gesellschaft (http://www.reinhold-tuexen-gesellschaft.de/) Ber. d. Reinh.-Tüxen-Ges. 18, 219-228. Hannover 2006 The Vegetation of the Western Australian Deserts - Erika and Sandro Pignatti, Rom - Abstract The internal area of W. Australia has arid climate and conditions for plant growth are particularly difficult. The surface of this huge, almost uninhabited territory consists of four landscape systems: the Great Sandy Desert, the Little Sandy Desert, the Great Victoria Desert, the Gibson Desert. The four deserts extend between 21-26° of south- ern latitude, linking to the central Australian deserts and the Nullarbor Plain in the South. Meteorological stations are only in settlements of the surrounding semi-desert areas (Wiluna, Meekatharra, Cue, Warburton), and all show around 200-250 mm year- ly rainfall; in the centre of the deserts rainfall is still much lower, and indicated as “erratic and unreliable”; some areas may lack rain for several years. Despite of the par- ticularly severe ecological conditions, most of the surface is covered by vegetation (at least a discontinuous one) and during expeditions in 2001 and 2002 over 700 species were collected and more than 350 phytosociological relevés were carried out.Two main habitat types can be recognized: Mulga – scattered growth of treelets (Acacia aneura, generally about 3-4 m height), with open understorey (Senna, Eremophila, Solanum) and herbs usually covering less than 20 % of the surface; in the Gibson Desert mulga occurs mainly on hard rock sub- strate (granite, laterite). Because of the discontinuous plant cover, fire can spread only over limited areas. Spinifex – Quite a compact cover of perennial grasses (several species of Triodia, with sharply pointed leaves in dense tussocks 3-5 dm high, panicles up to 1 m and high- er) in monospecific populations covering 60-80 % of the surface; in the sandy deserts, on siliceous sand. -
Diverse Sources of Aeolian Sediment Revealed in an Arid Landscape in Southeastern Iran Using a Modified Bayesian Un-Mixing Model
University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2019-12 Diverse sources of aeolian sediment revealed in an arid landscape in southeastern Iran using a modified Bayesian un-mixing model Gholami, H http://hdl.handle.net/10026.1/15152 10.1016/j.aeolia.2019.100547 Aeolian Research Elsevier All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. 1 Diverse sources of aeolian sediment revealed in an arid landscape in 2 southeastern Iran using a Bayesian un-mixing model 3 Abstract 4 Identifying and quantifying source contributions of aeolian sediment is critical to mitigate 5 local and regional effects of wind erosion in the arid and semi-arid regions of the world. Sediment 6 fingerprinting techniques have great potential in quantifying the source contribution of sediments. 7 The purpose of this study is to demonstrate the effectiveness of fingerprinting methods in 8 determining the sources of the aeolian sands of a small erg with varied and complex potential 9 sources upwind. A two-stage statistical processes including a Kruskal-Wallis H-test and a stepwise 10 discriminant function analysis (DFA) were applied to select optimum composite fingerprints to 11 discriminate the potential sources of the aeolian sands from the Jazmurian plain located in Kerman 12 Province, southeastern Iran. -
01 Fitzsimmons the Timing of
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy ARTICLE IN PRESS Quaternary Science Reviews 26 (2007) 2598–2616 The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia Kathryn E. Fitzsimmonsa,b,Ã, Edward J. Rhodesb,c,d, John W. Mageea,b, Timothy T. Barrowse aDepartment of Earth and Marine Sciences, The Australian National University, Canberra, ACT 0200, Australia bCooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), The Australian National University, Canberra, ACT 0200, Australia cResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia dResearch School of Pacific and Asian Studies, The Australian National University, Canberra, ACT 0200, Australia eDepartment of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia Received 15 January 2007; received in revised form 28 May 2007; accepted 12 June 2007 Abstract Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood. -
Little Sandy Desert
Biological survey of the south-western Little Sandy Desert NATIONAL RESERVE SYSTEM PROJECT N706 FINAL REPORT – JUNE 2002 EDITED BY STEPHEN VAN LEEUWEN SCIENCE DIVISION DEPARTMENT OF CONSERVATION AND LAND MANAGEMENT Biological survey of the south-western Little Sandy Desert NATIONAL RESERVE SYSTEM PROJECT N706 FINAL REPORT – JUNE 2002 EDITED BY STEPHEN VAN LEEUWEN SCIENCE DIVISION DEPARTMENT OF CONSERVATION AND LAND MANAGEMENT Research and the collation of information presented in this report was undertaken with funding provided by the Biodiversity Group of Environment Australia. The project was undertaken for the National Reserves System Program (Project N706). The views and opinions expressed in this report are those of the author and do not reflect those of the Commonwealth Government, the Minister for the Environment and Heritage or the Director of National Parks. The report may be cited as Biological survey of the south-western Little Sandy Desert.. Copies of this report may be borrowed from the library: Parks Australia Environment Australia GPO Box 787 CANBERRA ACT 2601 AUSTRALIA or Dr Stephen van Leeuwen Science and Information Division Conservation and Land Management PO Box 835 KARRATHA WA 6714 AUSTRALIA Biological Survey of the south-western Little Sandy Desert NRS Project N706 Final Report – June 2002 TABLE OF CONTENTS TABLE OF CONTENTS .......................................................................................................................................... iii EXECUTIVE SUMMARY ....................................................................................................................................... -
EARTH SCIENCES RESEARCH JOURNAL Sand Dunes of the Gaza Strip (Southwestern Palestine): Morphology, Textural Characteristics
EARTH SCIENCES RESEARCH JOURNAL Eart Sci. Res. J. Vol. 18, No. 2 (December, 2014): 131 - 142 SEDIMENTOLOGY Sand dunes of the Gaza Strip (southwestern Palestine): morphology, textural characteristics and associated environmental impacts Khalid F. Ubeid 1 Alhasan S. Albatta 2 1 Department of Geology, Faculty of Science, Al Azhar University – Gaza, P.O. Box 1277, Gaza, Palestine. Email: [email protected] 2 Department of Coastal and Marine Environment, General Directorate of Environmental Resources, Palestinian Environment Quality Authority “EQA” – Gaza. Email: [email protected] ABSTRACT Key words: Beach dunes, desert dunes, grain size distribution, Gaza Strip, Palestine. Sand dunes are wide spread in the Gaza Strip and are present in its northern, central and southern regions. Thirty sand samples were collected at seven locations along the middle region of the Strip. The coordinates for each sampling site were positioned using GPS and processed with ArcGIS software. Mechanical and chemical properties were examined to determine the textural characteristics and carbonate contents of the dune sands. The mean grain size is fine to medium, and the sands range from moderate- to well-sorting. The skewness is fine to very fine, and the kurtosis ranges from mesokurtic to very leptokurtic. Additionally, the results show that the carbonate content ranges from 1.5% to 5%. The high permeability, good porosity, and low carbonate content of the sand dunes in the Gaza Strip have led to more groundwater pollution via leachates percolating from the solid waste landfills and basins from wastewater treatments constructed above the sand dunes. Sand quarries have also changed the natural landscape of the Gaza Strip.