By JOEL ROSKIN Su

Total Page:16

File Type:pdf, Size:1020Kb

By JOEL ROSKIN Su THE TIMING AND THE ENVIRONMENTAL AND PALAEOCLIMATIC SIGNIFICANCE OF THE LATE QUATERNARY DUNE ENCROACHMENTS INTO THE NORTHWESTERN NEGEV DESERT Thesis submitted in partial fulfillment of the requirements for the degree of "DOCTOR OF PHILOSOPHY" By JOEL ROSKIN Submitted to the Senate of Ben-Gurion University of the Negev November, 2011 Beer-Sheva THE TIMING AND THE ENVIRONMENTAL AND PALAEOCLIMATIC SIGNIFICANCE OF THE LATE QUATERNARY DUNE ENCROACHMENTS INTO THE NORTHWESTERN NEGEV DESERT Thesis submitted in partial fulfillment of the requirements for the degree of "DOCTOR OF PHILOSOPHY" By By JOEL ROSKIN Submitted to the Senate of Ben-Gurion University of the Negev Approved by the advisors (on May 1st 2012): Prof. Haim Tsoar Prof. Dan G. Blumberg Dr. Naomi Porat Approved by the Dean of the Kreitman School of Advanced Graduate Studies ________________________ November, 2011 Beer-Sheva This work was carried out under the supervision of: Professors Haim Tsoar and Dan G. Blumberg, The Department of Geography and Environmental Development and Dr. Naomi Porat, The Geological Survey of Israel, Jerusalem This work is dedicated to my late father, (Dr.) Michael Roskin (1940 – 2005) Preface I must admit that I never thought I would be interested in aeolian geomorphology. Although I was curious about land forms from an early age, I was more attracted to fluvial geomorphology, flashfloods, and mountain terrain, as a stream fisherman, an avid hiker of Israel, and an (ex)-Jerusalemite. My early academic interests evolved and revolved around understanding how the landscape of Israel developed in order to enrich the Israel hiking guides I was writing with precise geographical and geological information. My undergraduate seminar paper on lag time in Judean Desert flashfloods advised by the late Prof. Asher Schick, seemed a promo for a master’s in fluvial geomorphology. Some of my past experiences probably contributed towards my interest in sands. I have wonderful childhood and adolescent memories of staying with my late grandparents, Bubie (Pauline) and Zadie (Nathan) Roskin z"l, who around 1970, made their country house in the Indiana sand dunes their permanent home. The house, which lay only a mile south of Lake Michigan on a dead-end road and was later named Roskin Road, is nestled in a depression between vegetated "back" dunes. Lying in bed in the morning, I would often watch the sand sliding down the cut dune slopes towards the porch. In the winter these slopes were great for sledding. During the initial stages of this study, shortly before his death, my late father, (Dr.) Michael Roskin to whom I dedicate this thesis, recalled his own experiences of playing softball in dune blowouts in the 1950's, around what was locally known as "Big Tom" dune. In the past couple of decades, the National Park Service has reclaimed these lands, thereby enlarging the Indiana Dunes State Park. The dunes have been re-vegetatetd with grasses, shrubs, and trees, thus changing an environment that three generations of my family once recreated on. What could be more exciting than when during my course on Aeolian Geomorphology for my geology M.Sc degree at Ben-Gurion University in the Negev (BGU) in 1995, Professor Haim Tsoar, as part of a drill on dune landforms, handed out an aerial photograph of these dune blowouts that included my grandparent's home amongst these dunes? Some years later, when trying to understand the geomorphology and spatial patterns of the Negev dunes as part of my work as a terrain analyst, Prof. Tsoar, without being aware of my interest suggested I tackle the study of the Negev dunefield development for my Ph.D. I am very grateful to him for giving me that direction, for sharing his experience, and for his professional guidance throughout the long research process. Even today, aeolian activity and relevant palaeoclimate research has not attracted the attention it deserves. For example, despite the extremely climate-change sensitive sand dunes covering i tens of thousands of square kilometers of the Great Plains, the United State Geological Survey (USGS) does not (yet) perceive dune activity as a potential hazard. Palaeoclimate research, even of aeolian sediments, has tended strongly towards wet-dry and cold-hot paradigms and not past windiness. Today, it seems that technology is more capable of dealing with climate change problems that cause heat stress or water scarcity than coping with strong winds, excessive windiness, and of course problems due to combined windiness and dustiness. The brief 1930's Dust Bowl "window" affirms this, and regional dust hazards such as the volcanic dustfall in the western U.S. following the Mt. St. Helen eruption in 1981 may be an analogue of aeolian dust hazards. This thesis, I believe, will help to further our understanding of the environments which are conducive to aeolian sand and dune mobilization as well as periods of sand and dune stabilization. ii Acknowledgements I offer my thanks, above all, to the Creator of the Universe for giving me the interest, a suitable and supporting environment, and the resources, health and mazal (luck) to start and complete this study. Human researchers spend the best of their days trying to understand what amounts to one "grain" of the infinitely immense world that the Creator has constructed; "In his hands are the deep places of earth and strength of the hills is his also" (Psalms, 95:4). I dedicate this thesis to my dear late father (Dr.) Michael Roskin, may he rest in peace, who passed away during the early stages of my Ph.D. I cannot describe the love, support, ideas, tips, and advice that I received from my Dad in these few lines. My dear mother, Lessa, may she enjoy many, many more years of sharpness in mind and health in body and fruitful activities, has always taken a keen interest in my progress. Her unvarying willingness to support and help in so many ways has been crucial to this project’s success. In a sense, a PhD candidate researcher in Quaternary geology needs to be research project manager, data analyst, technician, and blue-collar worker all rolled into one. His advisors are the board of directors. His family and often friends are his fans. To complete the field and laboratory work, he needs a substantial group of supportive people and professionals. If one element goes awry, it can seriously affect the whole research. Not every Ph.D. candidate has three advisors. And they certainly don’t have the team or board that I had, in which each advisor willingly gave of his or her unique professional expertise, patience, and support to my Ph.D. I therefore offer my grateful thanks to Prof. Haim Tsoar, who set this project on its path and talked to me about it first, and for his kind support and invaluable expertise in aeolian geomorphology. To Prof. Dan (Danny) G. Blumberg, who despite being promoted to key positions at BGU during my Ph.D. always still found time to chat, advise, suggest, support, and solve problems. To Dr. Naomi Porat, Head of the Luminescence Laboratory at the Geological Survey of Israel in Jerusalem, who joined the board following Haim and Danny’s request and became a key figure. Naomi led me through the luminescence laboratory work and analysis and facilitated the production of an unprecedented amount of OSL ages. I am beyond words to acknowledge Naomi’s knowledge, advice, guidance, and most helpful supervision of my scientific thinking and writing. It is not advisable to go into the field single-handed and therefore I thank Yair Amiel and Hagi Etinger for the 4X4 criss-crossing reconnaissance rides through the northwestern Negev dunefield, and my able research assistants Daniel Zamler and Ofer Rozenstein, whose efforts facilitated the success of fieldwork that raised novel technical issues. My thanks too to my many family members and friends who assisted me as one-time field helpers, including Asaf Maimon, Aviya Roskin, Eitam Roskin, Dr. Eli Argaman, Eitan Aharoni, Erel Goldenberg, Avital Goldner, iii Ori Gopas, Shimrit Maman, and Dr. Hai Cohen. And my warm thanks to the geologists and Negev researchers, Dr. Ram Ben-David and Dr. Ezra Zilberman, for taking a day to examine the field finds, advise and answer questions. I sincerely thank Zehava Siegal for her interest and for sharing data and Professor Arnon Karnieli and Professor Noam Levin for their encouragement and advice, especially during the earlier parts of the research. Thanks too to Prof. Yosef Ashkenazi for discussion on palaeoclimate. I greatly appreciate the assistance provided by Dr. Uri Basson (GEOSENSE) with the ground- penetrating-radar (GPR) survey, and his interest, time, and patience in interpreting the complex results. Thanked are Rimon Wenkart for sharing his dunefield data and Dr. Rivka Amit and Dr. Onn Crouvi for offering me free access and guidance on the Malvern Mastersizer at the GSI. Warm thanks too to helpful graduate students of the EPIF and the administrative staff of the Department of Geography and Environmental Development at BGU, Rachel Zimmerman and Sigalit Gurevitch for their helpfulness in answering questions, solving problems and dealing with the bureaucracy. Thanks to Yehoshua Ratzon, the department’s technical wizard, for the start-up of the Drillmite and other drilling tools and technical advice, and Roni Bluestein, who besides drawing several maps also gave me solid advice. My warm thanks to Dr. Dan R. Muhs (USGS–Denver), a prominent aeolian scientist and great person, for being a very active and friendly Bi-National Science Foundation (BSF) research partner in the field, both in Israel and in aeolian USA, and for his very helpful data, analysis, and comments. I also greatly appreciate the support of Yohanan Ra'anan, a past head of the SC terrain branch (2000-2005), for pushing towards official permission of the Ph.D.
Recommended publications
  • A Review of Lake Frome & Strzelecki Regional Reserves 1991-2001
    A Review of Lake Frome and Strzelecki Regional Reserves 1991 – 2001 s & ark W P il l d a l i f n e o i t a N South Australia A Review of Lake Frome and Strzelecki Regional Reserves 1991 – 2001 Strzelecki Regional Reserves Lake Frome This review has been prepared and adopted in pursuance to section 34A of the National Parks and Wildlife Act 1972. Published by the Department for Environment and Heritage Adelaide, South Australia July 2002 © Department for Environment and Heritage ISBN: 0 7590 1038 2 Prepared by Outback Region National Parks & Wildlife SA Department for Environment and Heritage Front cover photographs: Lake Frome coastline, Lake Frome Regional Reserve, supplied by R Playfair and reproduced with permission. Montecollina Bore, Strzelecki Regional Reserve, supplied by C. Crafter and reproduced with permission. Department for Environment and Heritage TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................................................iii LIST OF TABLES..................................................................................................................................................iii LIST OF ACRONYMS and ABBREVIATIONS...................................................................................................iv ACKNOWLEDGMENTS ......................................................................................................................................iv FOREWORD ..........................................................................................................................................................
    [Show full text]
  • New Record of Dust Input and Provenance During Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene
    atmosphere Article New Record of Dust Input and Provenance during Glacial Periods in Western Australia Shelf (IODP Expedition 356, Site U1461) from the Middle to Late Pleistocene Margot Courtillat 1,2,* , Maximilian Hallenberger 3 , Maria-Angela Bassetti 1,2, Dominique Aubert 1,2 , Catherine Jeandel 4, Lars Reuning 5 , Chelsea Korpanty 6 , Pierre Moissette 7,8 , Stéphanie Mounic 9 and Mariem Saavedra-Pellitero 10,11 1 Centre de Formation et de Recherche sur les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France; [email protected] (M.-A.B.); [email protected] (D.A.) 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, CEDEX, F-66860 Perpignan, France 3 Energy & Mineral Resources Group, Geological Institute Wüllnerstr. 2, RWTH Aachen University, 52052 Aachen, Germany; [email protected] 4 Observatoire Midi-Pyrénées, LEGOS (Université de Toulouse, CNRS/CNES/IRD/UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected] 5 Institute of Geosciences, CAU Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; [email protected] 6 MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany; [email protected] 7 Department of Historical Geology & Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected]
    [Show full text]
  • Diverse Sources of Aeolian Sediment Revealed in an Arid Landscape in Southeastern Iran Using a Modified Bayesian Un-Mixing Model
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2019-12 Diverse sources of aeolian sediment revealed in an arid landscape in southeastern Iran using a modified Bayesian un-mixing model Gholami, H http://hdl.handle.net/10026.1/15152 10.1016/j.aeolia.2019.100547 Aeolian Research Elsevier All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. 1 Diverse sources of aeolian sediment revealed in an arid landscape in 2 southeastern Iran using a Bayesian un-mixing model 3 Abstract 4 Identifying and quantifying source contributions of aeolian sediment is critical to mitigate 5 local and regional effects of wind erosion in the arid and semi-arid regions of the world. Sediment 6 fingerprinting techniques have great potential in quantifying the source contribution of sediments. 7 The purpose of this study is to demonstrate the effectiveness of fingerprinting methods in 8 determining the sources of the aeolian sands of a small erg with varied and complex potential 9 sources upwind. A two-stage statistical processes including a Kruskal-Wallis H-test and a stepwise 10 discriminant function analysis (DFA) were applied to select optimum composite fingerprints to 11 discriminate the potential sources of the aeolian sands from the Jazmurian plain located in Kerman 12 Province, southeastern Iran.
    [Show full text]
  • 01 Fitzsimmons the Timing of
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy ARTICLE IN PRESS Quaternary Science Reviews 26 (2007) 2598–2616 The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia Kathryn E. Fitzsimmonsa,b,Ã, Edward J. Rhodesb,c,d, John W. Mageea,b, Timothy T. Barrowse aDepartment of Earth and Marine Sciences, The Australian National University, Canberra, ACT 0200, Australia bCooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), The Australian National University, Canberra, ACT 0200, Australia cResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia dResearch School of Pacific and Asian Studies, The Australian National University, Canberra, ACT 0200, Australia eDepartment of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia Received 15 January 2007; received in revised form 28 May 2007; accepted 12 June 2007 Abstract Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood.
    [Show full text]
  • EARTH SCIENCES RESEARCH JOURNAL Sand Dunes of the Gaza Strip (Southwestern Palestine): Morphology, Textural Characteristics
    EARTH SCIENCES RESEARCH JOURNAL Eart Sci. Res. J. Vol. 18, No. 2 (December, 2014): 131 - 142 SEDIMENTOLOGY Sand dunes of the Gaza Strip (southwestern Palestine): morphology, textural characteristics and associated environmental impacts Khalid F. Ubeid 1 Alhasan S. Albatta 2 1 Department of Geology, Faculty of Science, Al Azhar University – Gaza, P.O. Box 1277, Gaza, Palestine. Email: [email protected] 2 Department of Coastal and Marine Environment, General Directorate of Environmental Resources, Palestinian Environment Quality Authority “EQA” – Gaza. Email: [email protected] ABSTRACT Key words: Beach dunes, desert dunes, grain size distribution, Gaza Strip, Palestine. Sand dunes are wide spread in the Gaza Strip and are present in its northern, central and southern regions. Thirty sand samples were collected at seven locations along the middle region of the Strip. The coordinates for each sampling site were positioned using GPS and processed with ArcGIS software. Mechanical and chemical properties were examined to determine the textural characteristics and carbonate contents of the dune sands. The mean grain size is fine to medium, and the sands range from moderate- to well-sorting. The skewness is fine to very fine, and the kurtosis ranges from mesokurtic to very leptokurtic. Additionally, the results show that the carbonate content ranges from 1.5% to 5%. The high permeability, good porosity, and low carbonate content of the sand dunes in the Gaza Strip have led to more groundwater pollution via leachates percolating from the solid waste landfills and basins from wastewater treatments constructed above the sand dunes. Sand quarries have also changed the natural landscape of the Gaza Strip.
    [Show full text]
  • SIR 2021-5017: Landscape Evolution in Eastern Chuckwalla Valley
    Prepared in cooperation with the Bureau of Land Management Landscape Evolution in Eastern Chuckwalla Valley, Riverside County, California Scientific Investigations Report 2021–5017 U.S. Department of the Interior U.S. Geological Survey Cover. U.S. Geological Survey photograph of wind-rippled sand and sand verbena in eastern Chuckwalla Valley, Riverside County, California. Landscape Evolution in Eastern Chuckwalla Valley, Riverside County, California By Amy E. East, Harrison J. Gray, Margaret Hiza Redsteer, and Matthew Ballmer Prepared in cooperation with the Bureau of Land Management Scientific Investigations Report 2021–5017 U.S. Department of the Interior U.S. Geological Survey U.S. Geological Survey, Reston, Virginia: 2021 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: East, A.E., Gray, H.J., Redsteer, M.H., and Ballmer, M., 2021, Landscape evolution in eastern Chuckwalla Valley, Riverside County, California: U.S. Geological Survey Scientific Investigations Report 2021–5017, 46 p., https://doi.org/10.3133/sir20215017.
    [Show full text]
  • Hummock Grasslands
    NVIS Fact sheet MVG 20 – Hummock grasslands Australia’s native vegetation is a rich and fundamental Overview element of our natural heritage. It binds and nourishes our ancient soils; shelters and sustains wildlife, protects Typically, vegetation areas classified under MVG 20 – streams, wetlands, estuaries, and coastlines; and absorbs Hummock grasslands: carbon dioxide while emitting oxygen. The National • are characterised by an open groundcover of spiny Vegetation Information System (NVIS) has been developed hummocks formed by grasses in the genus Triodia and maintained by all Australian governments to provide • are a uniquely Australian evergreen perennial growth a national picture that captures and explains the broad form and grow as mounds up to one m tall. Also known diversity of our native vegetation. as spinifex or porcupine grasses, they should not be confused with Spinifex spp. of coastal areas This is part of a series of fact sheets which the Australian Government developed based on NVIS Version 4.2 data to • are separated by matrixes that are mostly bare, except for provide detailed descriptions of the major vegetation groups scattered shrubs, but may be populated with ephemeral (MVGs) and other MVG types. The series is comprised of herbs and grasses after substantial rain events a fact sheet for each of the 25 MVGs to inform their use by • comprise spinifex species that vary in their time of planners and policy makers. An additional eight MVGs are flowering, they tend to flower en masse during regular available outlining other MVG types. masting events apparently triggered by antecedent rain • have scattered acacias or eucalypts that often emerge For more information on these fact sheets, including above the prominent hummock layer, while areas of its limitations and caveats related to its use, please see: hummock grass devoid of emergent trees or shrubs are ‘Introduction to the Major Vegetation Group (MVG) relatively limited fact sheets’.
    [Show full text]
  • Sand Dune Mobility Under Climate Change in the Kalahari and Australian Deserts
    Noname manuscript No. (will be inserted by the editor) Sand dune mobility under climate change in the Kalahari and Australian Deserts Yosef Ashkenazy · Hezi Yizhaq · Haim Tsoar Received: date / Accepted: date Abstract Vegetation cover on sand dunes mainly depends on wind power (drift potential— DP) and precipitation. When this cover decreases below a minimal percentage, dunes will start moving. It is therefore necessary to study the effects of DP and precipitation on contemporary dune activity in order to predict likely future dune mobility in the coming decades. We concentrate on the future activity of currently fixed dune fields of the Kalahari and the Australian deserts. These sand seas include the largest areas of stabilized dunes in the world and changes in their mobility have significant eco- nomic implications. Global maps of DP are introduced, based on real and reanalysis data. Analysis of two global circulation models (GFDL and CGCM3.1) provide future predictions under the SRES-A1B IPCC scenario, which is a moderate global warming scenario. According to the GFDL model, both the Australian and Kalahari basin dunes will apparently remain stable towards the end of the 21st century because the DP will stay small, while the rate of precipitation is expected to remain much above the min- imal threshold necessary for vegetative growth which lead to dune stabilization. The CGCM model predicts insignificant changes in DPs and shows that precipitation rate is above 500 mm/yr for almost the entire Kalahari basin. The central-northern part of Australia is predicted to have larger DPs and greater precipitation than the southern part.
    [Show full text]
  • Rasbdb Subject Keywords
    Leigh Marymor, Compiler KEYWORD GUIDE A joint project of the Museum of Northern Arizona and the Bay Area Rock Art Research Association KEYWORD GUIDE Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 1 September 15, 2020 KEYWORD GUIDE Mortars, cupules, and pecked curvilinear nucleated forms. Canyon Trail Park, San Francisco Bay Area, California, USA. Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 2 September 15, 2020 KEYWORD GUIDE Aerial Photography .......................................... 9 Archival storage ............................................... 9 Table of Contents Augmented Reality .......................................... 9 Bias ................................................................... 9 INTRODUCTION: .................................................. 7 Casts ................................................................. 9 Classification .................................................... 9 SUBJECT KEYWORDS: ........................................... 8 Digital Sound Recording................................... 9 CULTURAL CONTEXT ..............................................8 Digital Storage ................................................. 9 CULTURAL RESOURCE MANAGEMENT ..................8 Drawing.......................................................... 10 Cultural Tourism ...............................................8 Historic Documentation ................................. 10 Community Involvement ...................................8 Laser Scanning
    [Show full text]
  • The Spatial and Temporal Geomorphology and Surficial Sedimentology of the Gurra Gurra Crescentic Dunes, Strzelecki Desert, South Australia
    Ð('3 'qB, *í The Spatial and Temporal Geomorphology and Surficial Sedimentology of the Gurra Gurra Crescentic Dunes, Strzelecki Desert, South Australia Mark A. Bishop M.sc. (Metb.) A dissertation submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy, Department of Geology and Geophysics, University of Adelaide, 1 997 Table of Contents Contents Page Contents Abstract v Declaration vi Acknowledgements vii Figures viii Tables x 1 lntroduction to Aeolian Geomorphology 1.1 lntroduction 1 1.2 Regional Geo-setting of the Stzelecki Desert 4 1.3 CainozoicStratigraPhY 4 1.4 Climate and Meteorology of the Australian Dunefields I 1.5 ResearchObjectives 16 1.6 Research HyPotheses 17 1.7 DissertationOutline r9 2 Terrestrial and Extra-Terrestrial Dune Studies 2.1 A Historical Perspective of Desert Dune Studies 22 2.2 Aeolian Landforms: Morphologies and Origins 23 2.3 Physics of Dune Processes 26 2.3.1 Wind - Bed lnteractions 26 2-3.2 Effects ol Surface Roughness on Entrainment 27 2.3.3 Dune Dynamics 30 2.3.4 Threshold Velocity and the Effect of Slope 32 2.4 Crescentic Dunes 33 2.4.1 Morphology and Morphometry 33 2.4.2 Origin 38 2.4.3 Two-Dimensional MotphologY 39 2.4.3.1 ìMndward Toe 39 2.4.3.2 Stoss Slope 40 2.4.3.4 Crest and Brink 40 2.4.3.5 Lee Slope: Flow Separation and the Lee Eddy 42 2.4.3.6 Lee Slope: Grainfall and Avalanching 43 2.4-4 Three-Dimensional MorPhologY 44 2.4.4-',| Age, Form and Process 44 2.4.4.2 Barchanoid and Transverse Dune Form and Process 46 2.4.4.3 lntegrated Transversé and Linear Dune Form and Process
    [Show full text]
  • Ketabton.Com (C) Ketabton.Com: the Digital Library
    Ketabton.com (c) ketabton.com: The Digital Library LiDAR Remote Sensing and Applications (c) ketabton.com: The Digital Library Remote Sensing Applications Series Editor Qihao Weng Indiana State University Terre Haute, Indiana, U.S.A. LiDAR Remote Sensing and Applications, Pinliang Dong, Qi Chen Urban Remote Sensing, Second Edition, edited by Qihao Weng, Dale Quattrochi, and Paolo E. Gamba Hyperspectral Remote Sensing: Fundamentals and Practices, Ruiliang Pu Integrating Scale in Remote Sensing and GIS, Dale A. Quattrochi, Elizabeth A. Wentz, Nina Siu-Ngan Lam, and Charles W. Emerson Remote Sensing for Sustainability, Qihao Weng Remote Sensing Applications for the Urban Environment, George Z. Xian Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas, Hui Lin, Yuanzhi Zhang, and Qihao Weng Global Urban Monitoring and Assessment through Earth Observation, edited by Qihao Weng Remote Sensing of Natural Resources, edited by Guangxing Wang and Qihao Weng Remote Sensing of Land Use and Land Cover: Principles and Applications, Chandra P. Giri Remote Sensing of Protected Lands, edited by Yeqiao Wang Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, edited by Qihao Weng Remote Sensing of Coastal Environments, edited by Yeqiao Wang Remote Sensing of Global Croplands for Food Security, edited by Prasad S. Thenkabail, John G. Lyon, Hugh Turral, and Chandashekhar M. Biradar Global Mapping of Human Settlement: Experiences, Data Sets, and Prospects, edited by Paolo Gamba and Martin Herold Hyperspectral Remote Sensing: Principles and Applications, Marcus Borengasser, William S. Hungate, and Russell Watkins Remote Sensing of Impervious Surfaces, edited by Qihao Weng Multispectral Image Analysis Using the Object-Oriented Paradigm, Kumar Navulur (c) ketabton.com: The Digital Library Remote Sensing Applications Series Editor Qihao Weng LiDAR Remote Sensing Indiana State University Terre Haute, Indiana, U.S.A.
    [Show full text]
  • The History of Aridity in Australia: Chronological Developments
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 1-1-2005 The history of aridity in Australia: chronological developments Ed Rhodes Australian National University John Chappell Australian National University Toshiyuki Fujioka Australian National University Kat Fitzsimmons Australian National University John Magee Australian National University See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Rhodes, Ed; Chappell, John; Fujioka, Toshiyuki; Fitzsimmons, Kat; Magee, John; Aubert, Max; and Hewitt, Dolan: The history of aridity in Australia: chronological developments 2005, 265-268. https://ro.uow.edu.au/scipapers/4241 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The history of aridity in Australia: chronological developments Abstract Desert dune-fields are quintessential features of arid landscapes. During arid phases in the recent geological past, such as the global last glacial maximum (LGM) at around 20,000 years ago, many parts of Australia experienced significant sand movement, with sand migrating down-wind and forming linear dunes. Sand entrainment and deposition is controlled by vegetative surface stabilisation, wind speed and direction, which in turn are controlled by regional climate and local factors including ground-water levels. Climate also affects sand supply, through its effects on erosion in the source areas and transport to the dune-building areas. Keywords aridity, developments, chronological, australia, history Disciplines Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences Publication Details Rhodes, E.
    [Show full text]