JHEP03(2021)268 Springer March 29, 2021 October 27, 2020 : January 27, 2021 February 21, 2021 : : : TeV with Revised Published Received Accepted = 13 s √ = 13 TeV collected with the ATLAS s Published for SISSA by https://doi.org/10.1007/JHEP03(2021)268 √ -quark pairs, the search benefits from a large b 3 standard deviations, compared to an expected . collision data at pp of 1 − . 3 2010.13651 0 standard deviations. . Hadron-Hadron scattering (experiments), Higgs physics A search is presented for the production of the Standard Model Higgs boson , Copyright CERN, [email protected] 0 times the Standard Model prediction. The observed significance of the Higgs . 1  3 . E-mail: Article funded by SCOAP Open Access for the benefit of the ATLAS Collaboration. ArXiv ePrint: is 1 boson signal above thesignificance background of is 1 1 Keywords: in association with a high-energyand photon. the With dominant a Higgs focusreduction boson on of multijet decay the background vector-boson into compared to fusionfrom more process inclusive the searches. analysis of Results are 132 fb reported detector at the LHC. The measured Higgs boson signal yield in this final-state signature The ATLAS collaboration Abstract: decay into bottom quarkthe pairs ATLAS at detector Search for Higgs bosona production high-energy in photon association via with vector-boson fusion with JHEP03(2021)268 mode has Hγ ], there has been 2 , 1 ], in which the addition of the 4 , 3 12 – 1 – 9 11 4 12 is forbidden in gluon-gluon fusion (ggF) by Furry’s theo- 11 20 Hγ 7 production are similar in size to the higher-order contributions from 3 5 6 system may be produced in recoil against a jet. Contributions from as- ZH 1 15 Hγ and WH ], but the 5 The exclusive final state Among the Higgs boson production modes still to be explored, the 8.1 Experimental uncertainties 8.2 Theoretical uncertainties as a clean signature for unexpected or invisible Higgsrem boson [ decays. sociated ggF. In vector-boson fusion (VBF), the photon may be radiated either from a charged weak for the Standard Model (SM) Higgs boson. received attention for itshigh-energy interesting photon reorders phenomenology the [ usualExperimental hierarchy measurements are of needed Higgs to bosonof study production the new cross SM physics predictions sections. beyond and the to probe SM for that signs affect this production mode, which also has potential 1 Introduction Following the discovery ofATLAS a and CMS new Collaborations particle at the withan Large extensive a Hadron effort Collider mass to (LHC) measure of [ its properties approximately and 125 GeV compare them by with the theoretical predictions The ATLAS collaboration 9 Fit results for Higgs10 boson Conclusion production 6 Multivariate analysis 7 Signal and background modelling 8 Systematic uncertainties 3 Data and simulated events 4 Object selection 5 Event selection Contents 1 Introduction 2 ATLAS detector JHEP03(2021)268 ]. = 6 VBF ]. µ 10 background , background 9 ) ) search by the respectively, in of 13 TeV data g bγjj ¯ b ¯ ( b bγjj 1 ¯ b σ q b − 6 q b b ¯ . → ( boson fusion. Second, H γ ) in the same dataset [ decay. The ATLAS Col- and 5 production [ σ W b ¯ σ 4 b . 7 . (0 ZH → σ g g ). VBF is the dominant produc- 4 H . j and 9 and an observed (expected) Higgs . 1 ) WH g  q ( 5 q . search by the ATLAS Collaboration with = 2 γ ]. Both the ATLAS and CMS Collaborations ) b ¯ – 2 – b 8 b ¯ , ]. A complementary VBF VBF 7 6 [ µ γ → )[ ( 1 σ − production. First, a unique feature of this production boson fusion are suppressed, due to destructive inter- H 6 . Z (0 H b q σ q Hγjj 4 . decay mode, with significances of 6 23, compatible with the combined CMS measurement of b ¯ . b 0 W →  W H 21 q . , as its cross section is twice as large as that of all other modes combined. q , improving the expected sensitivity to Higgs boson production. Third, the 1 = 1 Hγ final state, with an additional phase-space cut on the jet-jet invariant mass. To VBF decay. A previous VBF 28 made with up to 35.9 fb . Representative leading-order Feynman diagrams for Higgs boson production via vector- µ . of 13 TeV data reported a signal strength measurement, defined as the production b ¯ 0 b 1  − Nevertheless, there are several interesting effects that motivate testing the SM predic- In the time since that search was reported, extensive studies of Higgs production with- To select the VBF production mode in particular, a search has been developed in Hγjj → 73 . a more direct measurementthe of same Higgs interference also boson suppresses the productionshown dominant in through multijet figure non-resonant presence of an isolated high-energy photonfor can this be search. used to define efficient trigger algorithms decay signatures dominated by contributions from tions with a measurementmode of is that contributionsference from between matrix elements for initial- and final-state radiation. This feature allows out an associated photonstrong by evidence the for ATLAS the and VBF CMSlaboration production Collaborations mode has and have combined for now several the accumulated to measurements yield made with up0 to 79.8 fb have observed the rate relative to the SMboson cross section, signal of significance of 1 ATLAS Collaboration in an all-hadronic signature,an without observed the (expected) associated Higgs photon, boson reported signal significance of 1 the maximize the experimental sensitivity to thisH final state, the search focuses on31 the fb dominant boson fusion in association(right). with a photon (left) and the dominant non-resonant boson or from a scatteringtion quark mode that for showers into a jet ( Figure 1 JHEP03(2021)268 b ¯ It b 1 → denotes H E production 5. It consists of bγjj ¯ )], where . b z 2 p − < 9. Within the region . E | ( 4 η / ) are used in the transverse | ) z < p r, φ | + η | E = 13 TeV run is the insertable s -axis points from the IP to the centre x 0 T m across most of the detector. √ 5 ln[( . . production and subsequent = 0 y Hγ 0 and 6 . -axis. The pseudorapidity is defined in terms of the z – 3 – -axis along the beam pipe. The 7, and two copper/LAr hadronic endcap calorimeters. The . z . 2 ] at the LHC is a multipurpose particle detector with a cylin- ) 1 production. Kinematic event properties are used in a boosted φ 2). The rapidity is defined as 11 < θ/ | -axis points upwards. Cylindrical coordinates ( γjj + (∆ y η | ) 2 b ]. The first-level trigger accepts events from the 40 MHz bunch cross- ¯ ) b η ln tan( 14 − (∆ → ( = p ], an additional pixel layer close to the interaction point. Z η ≡ is the component of the momentum along the beam direction. Angular distance is measured being the azimuthal angle around the 13 as R , z φ p θ 12 8 to correct for energy loss in material upstream of the calorimeters. Hadronic 2, electromagnetic calorimetry is provided by barrel and endcap high-granularity . . 1 3 The muon spectrometer consists of fast detectors for triggeringA and two-level trigger high-precision system selects events for offline analysis. Events that match prede- The calorimeter system covers the pseudorapidity range The inner tracking detector covers the pseudorapidity range This paper reports the result of a search for < ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in < 1 | | η η the centre of the detectorof and the the LHC ring,plane, and with the polar angle energy and in units of ∆ fined trigger signatures are selectedhardware. by the A first-level subset trigger of system those implementedhigh-level events in trigger are custom [ selected by softwareings algorithms at implemented a in rate the belowevents 100 to kHz, disk and at the about high-level 1 trigger kHz. reduces the rate in order to record modules optimized for electromagnetic and hadronic measurements, respectively. chambers for tracking inThe a field integral magnetic of field the toroids generated ranges by between superconducting 2 air-core toroids. lead/liquid-argon (LAr) calorimeters,| with an additionalcalorimetry thin is provided LAr by presampler therel steel/scintillator-tile covering structures calorimeter, segmented within into threesolid bar- angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter silicon pixel, silicon microstrip,2 and T transition axial magnetic radiation field. trackingB-layer detectors One [ significant immersed upgrade in for a the | drical geometry that coversconsists nearly of an the inner entire trackingtromagnetic detector solid and surrounded hadronic angle by calorimeters, a around and thinsuperconducting a the superconducting muon toroidal collision spectrometer solenoid, magnets. incorporating elec- point. three large defined relative to theboson SM candidate mass prediction, distribution is in extracted multiple event from categories. a simultaneous2 fit to the ATLAS detector Higgs The ATLAS experiment [ decay, with a focus on2 the dataset. phase space In dominated thisand by phase resonant the space, VBF the process,decision main using tree the backgrounds (BDT) full are to Run non-resonant classifya signal and series background of events, and increasingly the BDT signal-rich output event defines categories. The Higgs boson production rate, JHEP03(2021)268 ] ], v2 22 15 . bγjj ¯ 1 Her- b signal − Herwig Hγ Powheg-Box aMC@NLO v2.3.3 , was simulated at aMC@NLO v.2.3.3 b ¯ 5 b 5 final state, excluding ], and passed to signal events were gen- aMC@NLO v2.6.2 [ boson, a photon, and two 16 5 bγjj ¯ 8.210 for parton showering Z b Hγjj ], using the CT10 PDF set [ MadGraph 21 MadGraph – Pythia 19 MadGraph ]. Minimum-bias events were simulated v2 [ ]. A large sample of non-resonant 26 [ 25 with process are estimated from S α – 4 – ¯ tH t -jets from the decay of a EvtGen b bosons, at LO with production is less than 0.5% of the total after event 8.230. . For this sample, a parameterized jet energy response ]. Z Powheg-Box 7 29 or VH 4 [ H Pythia Geant ] for parton showering and fragmentation with the AZNLO tuned pa- ]. This sample of events can effectively be regarded as VBF 23 8.210 generator with the NNPDF2.3LO PDF set and the A3 parameter 18 , ]. Contributions from the 17 8.210, in separate samples for strong (QCD) and electroweak (EWK) pro- 8.212 [ 24 ] based on -jets, two other jets, and a photon. Even though the contribution from these b Pythia 28 ]. A number of these events, varying in accord with the luminosity profile of the 27 7.1 for parton showering and hadronization using parameter values from the Pythia Pythia Certain simulation configurations are common to all samples. The decays of bottom Background events containing two Simulated events are used for signal modelling, BDT training, and determining the ATLAS detector to the generateddetector events [ was then modelled using a full simulation of the and charm hadrons were performed by using the tune [ recorded data, were overlaid on thefrom hard-scatter both interactions to the model same pile-up bunch contributions crossing and neighbouring bunch crossings. The response of the description with the NNPDF2.3LObackground PDF events was set also [ producedelling without studies parton described showering in forfunction section the is background used mod- to smear the jet transverse energy distribution to match the data. least two events is modelled with aBDT. functional form, This a training sample of samplediagrams simulated was containing events on-shell is produced used by tousing generating train the the the PDF4LHC15 setand of PDFs hadronization. and interfaced The to A14 set of tuned parameters was used for the underlying-event simulation interfaced with additional jets were generated at leadingand order (LO) with cesses. The dominant source of background events is non-resonant QCD production of at because the contribution from selection. Higgs bosonnext-to-next-to-leading production order from with ggF, withand Higgs decay into rameter set [ functional form used to describeerated the at background shape. next-to-leading order The using (NLO) the in PDF4LHC15 partonwig distribution function (PDF) setdefault tunes [ [ This search uses LHCcollected proton-proton with collision the data ATLAS detectoranalysis-specific at from triggers a available, 2015 centre-of-mass corresponds to energy to 2018. an of integrated This 13 TeV luminosity full of Run 132 2 fb dataset, with the 3 Data and simulated events JHEP03(2021)268 - b , is γ T -jets b is the E iso T E 5 GeV. . 120 GeV and events for < ¯ t ]. These clusters t T -dependent size up p 30 e T p -jets (jets containing be less than 3 b ] with a radius parameter R 32 , ] tags 31 35 4 around the photon candidate, where . ]. The jet energies are further corrected 34 = 0 balance between jets and reference objects, ]. The calorimeter-based isolation requires T R 38 p – 5 – -jet and light-flavour-jet efficiencies of 25% and c 175 around the photon cluster’s centroid is excluded. . 0 -tagging algorithm [ ]. × 5, and b . 37 2 – . For electron candidates, both track- and calorimeter-based 125 . γ T < 35 E | jet reconstruction algorithm [ η and is based on the tracks within a cone of | t ] is applied to jets with transverse momenta × k e T 33 p , as inputs to a BDT. The requirement on the BDT output corre- 022 η -tagging efficiency of 77%, as measured in simulated . ]. For photon candidates, the calorimeter isolation variable b 38 and ]. These jet energies are calibrated with MC-derived correction factors, region of size 0 T 34 p 20 GeV and φ 2 around the electron candidate [ -dependent calibrations to ensure consistent jet energy measurements in the . 4. To suppress jets originating from pile-up vertices, a likelihood-based jet bosons, photons, or high-energy jets. . η ]. Clusters without any matching track or conversion vertex are identified as ∆ events [ > 45 GeV + 0 . 5. A pile-up subtraction algorithm further reduces pile-up contributions to the Z ¯ t . 38 × = 0 2 t T 2 = 0 η p R < Photon and electron reconstruction begins with clusters of calorimeter energy de- The MV2c10 multivariate Jets are reconstructed from three-dimensional positive-energy topological clusters of < R | iso T η isolation is required.transverse The momenum track-based isolation requirementto is ∆ a functionthat of the the sum electron of cluster transverse energies within the same ∆ sum of the transverse energiesand of hadronic topological calorimeters clusters in reconstructed athe cone in ∆ of the size electromagnetic ∆ The isolation requirement, which depends explicitlyE on the photon transverse energy re-fitted to account for bremsstrahlung,information for are each identified photon as or electron electrons.inants candidate for is identification, Calorimeter and used and ‘tight’ to selections track construct areTo multivariate applied discrim- suppress to hadronic both the background, photons furtherulated and electrons. isolation requirements are optimized with sim- 0.9%, respectively. Scale factorssimulated events are and applied data to [ account for efficiency differencesposits between [ unconverted photons, while clusters withone a matching or conversion two vertex reconstructed tracks from are identified as converted photons. Clusters with a matching track, hadrons) within the tracker acceptance.dimensional impact It uses parameter log-likelihood distributions,and ratios the secondary from jet two- and and tertiarysponds three- to vertex a information, per-jet with including central and forward regions ofusing data-derived the calibrations experiment based [ on the such as are inputs toof the anti- vertex tagger (JVT) [ | jet energies [ The event selection builds on standardand ATLAS leptons. reconstruction algorithms The for leptons jets,vetoing — photons, events electrons with and leptons muons to — preserve are orthogonality identified with only other forcalorimeter ATLAS the measurements. energy purpose deposits of calibrated to the electromagnetic scale [ 4 Object selection JHEP03(2021)268 , - bb jj b 37 . m m 2 track T p ]. < 6 40 GeV 4 of any | P . > η 7 | . production. T 0 = 0 p < -tagged at the > R b Hγ ]. They equalize µ T 52 47 or muons with . 9 p . 2 requirement. Events < and | jj η -jet invariant mass | 37 or 1 jet T m b . p 1 5 -tagging selection. The two . b 0 < | > η | µ T -tagged trigger-level jet when the p b 2 of any muon are removed if fewer . 2. Requiring this invariant mass 25 GeV and j > = 0 2 around the muon. Only ‘loose’ muons 5, are used in this selection. -jet energy corrections are applied to . T . b R p 2 5 passing the . 1 and = 0 2 j < | R 4 of any muon or electron are removed. Next, < η – 6 – . 7. They must satisfy the ‘loose’ identification | . | ) of any remaining jets are removed. Finally, jets η | µ T = 0 = 2 /p 22 GeV. The high-level trigger selects events in the R | η | 30 GeV in the regions 25 GeV is required in addition to at least four jets with > ]. > > T 40 T E T E E 9. The requirement that at least one pair of jets in the event has . 04 + 10 GeV 4 . 0 , < 25 GeV in a cone of ∆ 4 | 2 of any electron are removed, and electrons within ∆ . . . η | = 0 is the sum of track transverse momenta associated with the jet. Muons 4 of any photon are removed. . R -tagged jets are assumed to be from the Higgs boson decay; they are identified 5, with at least two jets in 2 and at least one of them must match a = min(0 = 0 . b ]. Identified muons must be isolated from other tracks, with a total summed track T b 4 p less than 1 R T R 39 p < T P | 35 GeV and p 25 GeV are vetoed to avoid overlap with other Higgs boson event selections in ATLAS. η | Additional selection requirements are placed on events that pass the trigger selection. The first-level trigger selection requires an isolated electromagnetic calorimeter ob- Overlap between identified photons, leptons, and jets is removed with the following Muons are reconstructed by combining inner detector tracks, where available, and 1 and > > b -tagging trigger algorithm was used to ensure that at least one jet was b T T -tagging trigger algorithm is used. Dedicated resolution by 10%. From thechosen remaining as jets, the the VBF jet jets; pairto they with are be the identified greater as highest than invariantcontaining 800 mass GeV identified is and ensures isolated full electrons efficiency with p for the trigger highest- as b tagged jets to improve theirthe energy response measurement (scale to and jetscorrect resolution) with [ for semileptonic resolution or effects. hadronic decays This of correction heavy-flavour improves hadrons the and di- 77% efficiency working point [ At least one photonmust match with the trigger photon.and Events must have at least four jets satisfying specific VBF-enhanced phase space,reconstructed photon defined with by theE following requirements.an An invariant isolated mass greater thana 700 GeV targets the VBF phase space. For most of Run 2, The event selection criteriaditional are event-level based requirements on toThese the select criteria object are events similar reconstruction compatible to algorithms, with the with event VBF selection ad- requirementsject in previous — searches the [ photon — with within ∆ 5 Event selection procedure. First, photonsjets within within ∆ ∆ remaining jets are removed. Then,than jets three within tracks ∆ are associatedwhere with the jet orwithin if ∆ both muon spectrometer tracks upcriteria to [ track within the coverage of the inner detector, JHEP03(2021)268 to 5) . bb 9 2 . 4 m < 37 | . < η 2 | | , -jet system η b | < | η | < 25 GeV > ; 52 of the di- | . signature. L1 and HLT T γ p T T ; ~p 35 GeV and p

γjj γ T ) -jet and the photon; 2 > p + b j ¯ b 2 b y 37 or 1 2 T . j + 2 j + -jet and the photon; 1 y 1 5 E T 2 b → . j ~p j T ( y 5 2 − < p . | H 1 4 . + − j < η + | 1 y | 1 γ < j 1 η y j T 47) or muons ( | | T

. p ~p η 2 | -jet) with + + < b 2 | 2 b T 2) = b η 1 p | T , , j ~p ≥ + 1 – 7 – 30 GeV and 22 GeV 25 GeV 1 + b T p 1 γ, j 40 GeV and > > > b 40 GeV and T T T T 25 GeV > ~p | E E E > > T p T T = 3 jets and p p spectrum. The following variables, ordered by decreasing ≥ distribution, making it more difficult to parameterize with centrality( bb bb 60 GeV m balance T m p > 800 GeV 700 GeV ) -jets with ], are used for the BDT training: b > > 2), the rapidity of the photon relative to the VBF jet rapidities, ¯ b b ( 2 jets with 2 1 photon with 4 jets (or 1 photon with 1 photon with 41 , j jj jj background events. T 1 No electrons ( p m ≥ ≥ m ≥ ≥ ≥ ≥ γ, j requirements in the trigger algorithms and offline event selection can in- ), the angular distance between the subleading ), the angular distance between the leading bγjj ¯ T b , the transverse momentum balance for selected final-state objects, defined as p , γ , γ ), the pseudorapidity difference between the two VBF jets; 2 1 L1 HLT b b jj , the invariant mass of the two VBF jets; ( ( ( . Trigger and offline event selection criteria for the jj R R η balance T defined as m p ) to be greater than 60 GeV, a value that was optimized in the large MC sample of Offline ∆ centrality( ∆ ∆ b ¯ The full list of trigger algorithm and offline event selection requirements, before the The jet b 5. 6. 3. 4. 1. 2. ( Trigger T classification power [ 6 Multivariate analysis An event-level BDT classifiesset events of as kinematic being variableschosen signal-like selected to or to ensure background-like, the optimizeprevent based distortions BDT the on of output separation. a the discriminant The shows low input correlation variables with are with p non-resonant event-level BDT classification, is summarized in table refer to the first-level trigger and the high-level trigger, respectively. troduce concavity in the an analytic function. The concavity is removed by requiring the Table 1 JHEP03(2021)268 jj )], η , γ 2 b balance T 100 ( p × jj jj QCD γ γ R H Z Stat. Unc. ∆ , ) jj γ b , γ 1 b -jets plane in the ( jj EWK b γ Z Data Non-reson. b R . It helps discriminate Higgs b ¯ -jet system and the VBF b . b -1 min[∆ , 2 γ -jet and the leading VBF jet. jj )+ b b η b background sample are used for → = 13TeV, 132 fb s VBF H( Mass sidebands ATLAS bγjj ¯ b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0 1.1 1.3 1.2 0.9 0.8 0.7

8000 6000 4000 2000

14000 12000 10000 Pred. Data/SM Events / 0.04 / Events and 2 ]. To improve agreement between the LO non- – 8 – jj 41 η ∆ system; 100 × sidebands after kinematic reweighting of the non-resonant jj jj QCD γ γ H Z Stat. Unc. ]. bb 140 GeV). They are based on data-to-MC ratios of the bjj ¯ b 42 m > jj γ b bb m jj EWK γ Z Data Non-reson. b -1 (right) in the two γ )+ simulation and data, analytic correction functions are fit in the mass side- signal sample and the non-resonant ), the azimuthal angle difference between the di- b 1), the angular distance between the leading 100 GeV and b → , j < , resulting in corrections that are typically less than 10%. The distributions 1 b, jj ¯ balance T , the cosine of the angle between the VBF jets plane and b bγjj ¯ = 13TeV, 132 fb b bb s ( p b θ Hγjj ( VBF H( Mass sidebands ATLAS . Comparisons of data and simulated event distributions of the BDT input variables ∆ , the transverse momentum of the VBF jets system; R φ m jj T 0 1 2 3 4 5 6 7 8 9 1 0 background. The data are shown as black points, and the background contributions are balance T jet system; p centre-of-mass frame of the 1.1 1.3 1.2 0.9 0.8 0.7

p

cos ∆ ∆ The 9000 8000 7000 6000 5000 4000 3000 2000 1000

Data/SM Pred. Data/SM This angular variable is sensitive to the spin of the particle decaying into Events / 0.3 / Events 8. 9. 7. 2 10. bγjj ¯ of the other uncorrelatedComparisons input variables of are the not data significantlyvariables, affected after and the by MC the reweighting procedure, distributions reweighting. are for shown the in figure two mostboson powerful production from classification gluon splitting [ bands ( distributions for several relevant observables andThe are overall used normalization to reweight is the alsoprocedure simulated corrected events. is to match applied the sequentiallyand data to in the the mass distributions sidebands. of This ∆ the BDT training in theresonant TMVA package [ stacked in coloured histograms.by The the Higgs dashed boson signal redprediction, contribution where line. is the uncertainty scaled The band up corresponds bottom and to represented panel the in statistical uncertainty each only. plot shows the ratio of the data to the SM Figure 2 (left) and b JHEP03(2021)268 bγjj ¯ b and single-top ¯ tγ t jj γ b -tagged jet pairs and pro- b signal and non-resonant jj γ H Non-reson. b contributions — are parameter- final-state signature are divided . Hγjj . The non-resonant background is 3 bγjj ¯ bγjj ¯ b b W γjj BDT Output Discriminant 0 0.2 0.4 0.6 0.8 1 LowBDT MediumBDT HighBDT – 9 – 0.2 − γ )+ 0.4 b and non-resonant − b Simulation → 0.6 production, with small contributions from − Zγjj -tagged jet pairs. The resonant background is dominated by b = 13 TeV 0.8 s bγjj ¯ − ATLAS VBF H( b . 2 1 − 0.1

0.12 0.08 0.06 0.04 0.02 Fraction of Events of Fraction , with a negligible contribution from . BDT output discriminant distributions for the γjj ) b ¯ b To extract the Higgs boson production rate from fits to data, the signal and dominant The BDT output discriminant is used to define three signal categories: HighBDT, → ( backgrounds — the resonant ized with analytic functionssmall derived from contributions from simulated events other orfunctions. backgrounds data are sideband included regions. in the The non-resonant background cesses with non-resonant Z dominated by multijet events. The expectedare contributions collected from in the table dominant signal and background processes 7 Signal and background modelling The main sources of backgroundinto contributing to processes the with the decay of a massive gauge boson into MediumBDT, and LowBDT. Thetially boundaries from of HighBDT the tosignificance three LowBDT across categories categories. by maximizing are The BDT the definedsamples output combined within sequen- distributions for VBF the the three Higgs signal categories and boson background are signal shown in figure Figure 3 background samples. The distributionsand from red the hatched signal histograms, and respectively.event background The categories, samples vertical defined are dashed by shown lines as the represent blue BDT the output boundaries discriminant. of the JHEP03(2021)268 Zγjj [GeV] bb 140 GeV. ], param- m < 43 0.15 0.13 0.01 0.11 0.52 HighBDT MediumBDT LowBDT jj sample bb γ 17 17 1) Z ,        and non-resonant 48 < m . Zγjj γ 140 GeV. Several different )+ b < 0.17 18.33 0.33 0.19 0.03 0.05 0.14 5.37 1.1 1.65 b 1.8 GeV 2.8 GeV 0.7 GeV 0.5 GeV 2.3 GeV Simulation ± 2.1 GeV ± ± ± ± 33 322 33 348 ± → bb 48) (0 . 0        , = 13 TeV s < m 40 60 80 100 120 140 Sigma = 10.8 Sigma = 12.1 Mean = 92.1 Mean = 92.7 Mean = 92.0 ATLAS Sigma = 9.9 VBF H( 15 . 0 0.01 0.04 0.03 0.02

0.045 0.035 0.025 0.015 0.005 Normalized to unit area unit to Normalized . Among the possible functions, the Bukin 4 events (right) in the three BDT categories, along – 10 – 0.12 21.07 0.41 1.08 0.14 0.19 0.14 8.91 1.7 7.2 15) (0 42 1507 42 1545 Zγjj . 0 [GeV] ,        bb m 22 . 31 71 . . 0 0.75 HighBDT MediumBDT LowBDT jj sample γ − 11 distribution is modelled with a Bukin function [ H 2834 bb m events (left) and bγjj ¯ b Hγjj γ )+ b 2.8 GeV 3.0 GeV 4.6 GeV b 2.1 GeV 2.3 GeV 3.5 GeV ± ± ± ± ± ± Simulation VH → EWK 8.50 QCD 15.9 = 13 TeV s Mean = 123.8 Mean = 122.7 Mean = 121.9 Sigma = 11.2 Sigma = 13.9 Sigma = 16.8 ATLAS VBF H( . Comparison of the Bukin function parameterizations, normalized to unit area, of the 40 60 80 100 120 140 160 180 200 ¯ tH . Data and expected yields for the Higgs boson signal, resonant Category LowBDT MediumBDT HighBDT BDT Output ( VBF+ ggF 1 t Zγjj Zγjj Non-resonant Expected Yield 2872 Data 2964 1522 318 0 background processes, in the three categories defined by the BDT output discriminant. The 0.01

0.02 0.03 0.04 The model for the non-resonant background is tested and largely determined using The Higgs boson signal

distributions for 0.005 0.015 0.025 0.035 0.045 Normalized to unit area unit to Normalized bb bγjj ¯ background is also described within the each same of Bukin the function three using BDT independent categories. parameters the data sidebands outside theclasses mass of window fitting 100 GeV functions were tested, including polynomial, Bernstein polynomial and eterized using the simulateddefined samples by the independently BDT in output, eachfunction as showed shown of the in the best figure fit threethis quality, event as function, gauged categories by the fit residuals residuals across follow the a mass normal range. distribution With about zero. The resonant Figure 4 m with the mean and sigma values for the three fitted functions. Table 2 b event yields are calculatedThe from yields simulated are samples shown intematic with the uncertainties, statistical mass which uncertainties range depend only on 100 because GeV fits experimental to and data, theoretical are sys- an order of magnitude smaller. JHEP03(2021)268 - T p bγjj ¯ value b 2 χ -test is used F ], obtained us- 44 ). The uncertainties in the fit, such as the uncertainty 3 bb . A total of 8 JER and 30 JES m bb reconstruction are the jet energy m background, as its normalization is bb background events. The polynomial m Zγ bγjj ¯ b – 11 – is treated as signal. Zγjj ], and the effect on the mass spectrum is determined by boson normalizations’ in table ] for the primary luminosity measurements. This uncertainty 34 Z 45 fits in each category separately. In general, the impact of the signal bb m . The systematic uncertainties for the background and signal contributions are normalizations (‘ 9 together with the statistical uncertainties calculated using the methods described Zγ background relate to the fitted shapes (‘Bkg. fit shapes’) and normalizations (‘Bkg. 3 The dominant jet-related uncertainties for the Other uncertainties are related to factors in the full bγjj ¯ is applied to all contributions estimated from simulated samplesscale alone. (JES) and jetbalancing energy methods resolution in (JER)shifting data uncertainties. or [ These smearing are the jet determined energies by before calculating fit normalizations’). 8.1 Experimental uncertainties The uncertainty in the combined 2015–2018ing integrated the luminosity is LUCID-2 1.7% detector [ [ shape uncertainties on thethe final experimental Higgs systematic uncertainties. boson measurement is smaller thanin the the impact of b background estimate, which isgated derived through from the event the selection dataThey and modify the only. the BDT shape classification The and to uncertaintiesever, nominal the normalization are template they of distributions. propa- modify the Higgs onlyderived boson the from signal shape process. the of How- the resonant and fitting methods —ties such in as the thetable event spurious-signal reconstruction uncertainties or —in and cross-section section from calculations. uncertain- divided They into are experimental summarized andbackground in theoretical predictions uncertainties. that are They based affect on simulation; only they the do signal not and affect the non-resonant 8 Systematic uncertainties Systematic uncertainties in the Higgs boson production rate arise from choices of modelling as a confirmation check,as assessing the the order significanceThe of spurious-signal of the uncertainty, evaluated decreases separately background-only in inof polynomial each the the BDT fit region fitted reduced as to spurious thebackground, signal the maximum is and included data the as sidebands a MC systematicis statistical is uncertainty treated uncertainty in increased. in of the the signal the yield. same non-resonant way The when spurious signal signal’, is estimatedin by the performing large signal-plus-background simulated fitsfunction, sample with over of two terms the non-resonant (first-order) for fullfor the the HighBDT mass MediumBDT region and or range LowBDT three regions, termsand has (second-order) the is smallest therefore bias chosen among for the tested the functions background template in the fit. The standard power-law functions. The potential bias arising from the fitting procedure, termed ‘spurious JHEP03(2021)268 - 7 b Hγjj -quark events, b ¯ t t Herwig -tagging efficien- b events compared to . 3 Hγjj -jets in the event. b ]. The event weight is calculated ]. Uncertainties in the 37 16 – 35 is defined relative to the VBF contribution ]. pdfas set. The impact on signal normalization VBF 18 – 12 – µ mc nlo is defined relative to the total SM prediction for branching ratio uncertainty follows the recommendation H -tagging jets, covering the trigger-level b µ b ¯ b → H -tagging scale factors for the two b ]. The measurement is only weakly sensitive to the photon energy; 38 -tagging efficiency data-to-simulation scale factors, are implemented as b ]. Cross-section uncertainties due to the choice of renormalization and factorization 46 Additional uncertainties are related to the photon energy measurement and recon- The uncertainties related to boson decays into hadrons, and multijet data [ determined from the signal-plus-background modelcertainties, and implemented the as constraints for nuisanceeffects systematic of parameters. un- the systematic Thepriors. uncertainties nuisance Each prior’s and parameters definition are constrains control itsits parameterized nuisance the associated parameter by to uncertainty. the Gaussian nominal or value within log-normal The Higgs boson signal strength production, and the VBF signalonly. strength They are extractedjet from invariant an mass unbinned distribution extendedis in maximum-likelihood defined all fit as to three the a BDT di- product classification categories. of global The Poisson likelihood distributions with event-by-event probabilities parton shower are estimated byand varying the comparing ‘HardScaleFactor’ the parameter resulting by acceptances factors [ of two 9 Fit results for Higgs boson production scales are estimated byindependently. varying The the largest choice variation of inthe uncertainty. both each Similar BDT uncertainties scales are classification up calculated categorythe for and the eigenvectors is set of down used of the by PDF to PDF4LHC15 variations factors defined define is by evaluated of at two the reconstructionis level after derived the following event the selection, and PDF4LHC an recommendation overall [ uncertainty The theoretical uncertainties onrates the are SM calculations relevant of inthe the the SM total expectation. determination Higgs of The bosonof the production the relative LHC rate Higgs of Crossmass [ Section Working Group, including the uncertainty in the shower shape variations and isolationand calculations. muon selections Systematic are uncertainties from negligible electron and are therefore ignored. 8.2 Theoretical uncertainties W from the product of the struction efficiency [ therefore a simplified two-parameter modelenergy is scale used and to resolution. capture the The effect efficiency variations of considered variations are in due the to electromagnetic tainty in the JVT isof estimated by these varying jet the uncertainties tagger are efficiency summarized within in its uncertainties. the ‘Jet’ All cies line and of the offline table variations of the event-weight scale factors. They are determined from data using uncertainty parameters are considered in calculating the effects. The systematic uncer- JHEP03(2021)268 jj γ , with jj jj+H [GeV] γ γ 5 H bb jj+Z jj m γ γ jj b b γ Z = 1.3) H µ jj ( jj γ γ Z Data Non-reson. b Non-reson. b H -1 jj γ γ )+ background fits. The combined b jj jj+H [GeV] γ b γ H bb → jj+Z jj m γ γ jj bγjj ¯ b b γ Z b = 13 TeV, 132 fb = 13 TeV, 132 s ATLAS VBF H( MediumBDT Region parameters allows for different rela- = 1.3) 60 80 100 120 140 160 180 200 220 240 H µ 1 1 0 2 3 3 2 0 − jj ( jj − −

γ background in each bin, calculated using a γ 700 600 500 400 300 200 100

Z Data Non-reson. b Non-reson. b H

Significance Entries/10 GeV Entries/10 Zγjj background are allowed to float during the bγjj ¯ b -1 – 13 – bγjj ¯ b jj γ distributions in data are shown in figure γ boson, and background components superimposed. )+ and non-resonant b jj jj+H [GeV] γ b bb γ Z H bb → m jj+Z jj m γ γ jj b b γ Zγjj Z contribution strength is fit as three separate parameters, = 13 TeV, 132 fb s ATLAS VBF H( LowBDT Region = 1.3) 60 80 100 120 140 160 180 200 220 240 H 45. The bottom panel in each plot presents the significance of the µ 1 1 0 2 3 3 2 0 / − jj ( jj − −

2 γ γ 800 600 400 200

. Z Data Non-reson. b Non-reson. b H

1600 1400 1200 1000 Zγjj Significance Entries/10 GeV Entries/10 -1 distributions in the three event categories, overlaid with contributions from the γ )+ ]. bb b b m 47 . → H = 13 TeV, 132 fb = 13 TeV, 132 µ s ATLAS VBF H( HighBDT Region . The 60 80 100 120 140 160 180 200 220 240 1 1 0 2 3 3 2 0

− 80 60 40 20 − − signal as well as the resonant

200 180 160 140 120 100

Significance The results of the fits to the The Higgs boson signal strength is the single parameter of interest, common to all Entries/10 GeV Entries/10 per degree of freedom is 45 2 reflecting their common derivationadding and simulated signal calibration. to theno Signal-injection expected bias background, tests, in confirmed performed the linearity by of the fit with contributions from the Higgs boson, uncorrelated across the categories.tive Using contributions three of QCDparameters and describing EWK the processes non-resonant infit the to three obtain categories. theexperimental The best and uncorrelated theoretical independent uncertainties description are of correlated the across background categories in during each the category. fit, The Higgs boson signal relativePoisson to model the [ non-resonant three categories, while the Figure 5 Hγjj χ JHEP03(2021)268 nor- 1 and . Z 0. The . 1 1 is within   H 5 3 . . µ requirement. 1 , jj 2 . m 1  80 22 52 14 21 08 03 20 11 04 04 99 32 ) up ...... 9 . H are both 1 µ ( σ = 1 VBF Z µ ]. The dominant uncertainty µ 6 . Impacts from individual contri- 78 +0 19 +0 51 +0 15 +0 24 +0 01 +0 01 +0 06 +0 02 +0 99 +1 01 +0 96 +0 25 +0 ...... ) down 3 0 0 0 0 0 0 0 0 0 0 0 0 0 normalization factors are constrained H − − − − − − − − − − − − − µ ( Z σ in the HighBDT, MediumBDT, and LowBDT – 14 – 0 3 . . 8 +7 − can assume values close to 0. 8 . H µ and the VBF signal strength H µ , and 3 5 4 . . 2 +2 − signal strength have a correlation of 15% in the HighBDT category 8 . 3 boson normalizations H , -tagging µ 1 Data statistical Bkg. fit shapes Bkg. fit normalizations Z Spurious signal Theoretical Photon Jet b Auxiliary Total statistical Total systematic . 1 Statistical Source of absolute uncertainty Systematic Total  7 . normalization factors obtained from the fit are Z in the HighBDT, MediumBDT, and LowBDT categories, respectively. The = 0 . The effect of the uncertainties on the signal strength. The dominant contributions are 2 6 . . 1 H +1 − This measurement is consistent with previous results [ The µ 3 . 1 the profile likelihood calculation, ground fit uncertainties andfrom those the and spurious-signal other uncertainty.butions uncertainties are are The shown estimated relative in asuncertainties contributions table with the each difference nuisance parameter in floatingsome quadrature and of fixed. between the systematic The the asymmetry uncertainties Higgs observed is in signal due to strength the limited measurement sensitivity: during but are uncorrelated in theto other categories. be non-negative, If the the rounding change errors. to the combined Higgs boson signal strength in the result is the statistical uncertainty of the limited data sample, followed by the back- are categories, respectively. − malization and the The inclusive signal strength similarity of the results isproduction due modes to in the the nearly VBF-enhanced negligibleIf phase contribution space, the from defined other inclusive by Higgs signal the boson high strength is fit as three separate parameters of interest, the results Table 3 from the statistical uncertainty ofuncertainty. the dataset, The background fit statistical uncertainties,their uncertainty and the is nominal spurious-signal calculated values. bygroup. fixing Individual The the uncertainties background small arefactors fit uncertainties are then parameters grouped from combined under to pile-up to ‘Auxiliary’ effects, uncertainty. give luminosity the measurements, total and within trigger each scale JHEP03(2021)268 bb B m bγjj ¯ back- b Hγjj and S collected normaliza- bγjj ¯ 1 b − , as calculated Zγjj S/B . The events in each 0. This corresponds . 6 1  3 . [GeV] bb in each category, where = 1 m = 1.3) H µ H S/B µ jj ( jj γ γ Data Bkg. Uncertainty Z H background yield, respectively, calculated bγjj ¯ -1 b + γ – 15 – )+ signature, with a focus on the phase space typical b Zγjj b → γjj ) b ¯ b = 13 TeV, 132 fb s ATLAS VBF H( Boson S/B Weighted by Higgs → ( distribution, after subtracting the fitted non-resonant 1 1 50 100 150 200 250 3 2 0 2 H 5 4 bb −

m Weighted Events / 10 GeV (Bkg.-subtracted) GeV 10 / Events Weighted 8 comes from the larger dataset, the updated BDT, and more precise . = 13 TeV, corresponding to an integrated luminosity of 132 fb 1 s  √ 3 . are also shown, scaled by the fitted Higgs boson signal strength and the . The combined = 2 background contribution has been subtracted, is shown in figure The combined mass distribution for the three BDT categories, after the non-resonant H Zγjj µ bγjj ¯ boson signal strength relativeto to an the observed SM signal predictionsignificance of is significance 1.0 of standard 1.3of deviations. standard The deviations, improvement over comparedMonte the Carlo to previous modelling. measurement an expected A search hashigh-energy been photon conducted in the forof the vector-boson SM fusion. Higgscollisions boson at The produced search used inwith the the association ATLAS full detector. with LHCdistribution A a is BDT Run is fit 2 used to dataset to extract separate the of events Higgs proton-proton into boson categories, signal and production the rate. The measured Higgs window around the Higgs boson signal peak. 10 Conclusion b BDT category have beenfrom weighted the by fitted the signal signal-to-background and ratio background contributions in the 68% confidence-interval mass are the fitted Higgs bosonin signal the yield mass and window containingand 68% of the Higgs bosontion factors signal. in The the expected three BDT contributionsbackground categories. of is The represented statistical by uncertainty the ofby the hatched the fitted band. error non-resonant bars The on statistical the uncertainty on data data points. is represented Figure 6 ground, summed over the three BDT categories weighted by JHEP03(2021)268 ]. SPIRE IN ][ (2012) 1 716 arXiv:1207.7235 [ ˇ S, Slovenia; DST/NRF, South Africa; Phys. Lett. B , (2012) 30 ]. – 16 – 48 716 ), which permits any use, distribution and reproduction in ]. Phys. Lett. B , Observation of a new particle in the search for the Standard Model SPIRE IN Observation of a New Boson at a Mass of 125 GeV with the CMS ][ CC-BY 4.0 This article is distributed under the terms of the Creative Commons collaboration, collaboration, arXiv:1207.7214 CMS Experiment at the LHC ATLAS Higgs boson with the[ ATLAS detector at the LHC The crucial computing support from all WLCG partners is acknowledged gratefully, We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus- [1] [2] Open Access. Attribution License ( any medium, provided the original author(s) and source are credited. References in particular from(Denmark, CERN, Norway, Sweden), the CC-IN2P3 (France), KIT/GridKA ATLAS(Italy), (Germany), Tier-1 INFN-CNAF NL-T1 (Netherlands), facilities PIC (Spain), atthe ASGC Tier-2 TRIUMF facilities (Taiwan), RAL worldwide (Canada), and (UK) large andof non-WLCG NDGF BNL resource computing providers. (USA), resources Major are contributors listed in ref. [ NSRF, Greece; BSF-NSF andgramme GIF, Generalitat Israel; de Catalunya LaValenciana, and Caixa PROMETEO Spain; Banking and G¨oranGustafssons Foundation, GenT Stiftelse, CERCAhulme Programmes Trust, Pro- Sweden; Generalitat United Kingdom. The Royal Society and Lever- received support from BCKDF, CANARIE,Beijing Compute Canada, Municipal CRC Science and & IVADO,zon Canada; Technology 2020 Commission, and China; Marielodowska-Curie COST, Actions, Sk Labex, European ERC, Investissements Union; ERDF, d’Avenir Investissements Hori- Idex d’Avenir andmany; ANR, Herakleitos, Thales France; DFG and Aristeia and programmes AvH co-financed Foundation, by Ger- EU-ESF and the Greek Portugal; MNE/IFA, Romania; JINR;MESTD, MES Serbia; of MSSR, Russia Slovakia; andMICINN, ARRS NRC Spain; and KI, SRC MIZ Russian andBern Federation; Wallenberg and Foundation, Sweden; Geneva, Switzerland; SERI, MOST, SNSFDOE and Taiwan; and NSF, TAEK, United Cantons Turkey; States STFC, of of United America. Kingdom; In addition, individual groups and members have and NSFC, China; COLCIENCIAS, Colombia;Republic; MSMT CR, DNRF MPO CR and andSRNSFG, VSC DNSRC, Georgia; CR, Denmark; Czech BMBF, IN2P3-CNRS HGFKong and SAR, and China; CEA-DRF/IRFU, ISF MPG, and France; Germany; BenoziyoCNRST, Center, Morocco; GSRT, Israel; Greece; INFN, NWO, Italy; Netherlands; RGC MEXT RCN, and and JSPS, Norway; Hong Japan; MNiSW and NCN, Poland; FCT, We thank CERN for thefrom very our successful institutions operation without of whom the ATLAS LHC, could as not well be astralia; the operated support efficiently. BMWFW staff andFAPESP, Brazil; FWF, NSERC, Austria; NRC ANAS, and Azerbaijan; CFI, Canada; SSTC, CERN; Belarus; ANID, CNPq Chile; and CAS, MOST Acknowledgments JHEP03(2021)268 , 121 ]. , ]. ]. (2014) 2008 , (2016) 07 SPIRE decay (2021) 178 (2016) 196 SPIRE SPIRE 43 IN Phys. Rev. D b ¯ IN IN b Nucl. Phys. B , ][ 81 76 ][ , ][ Eur. Phys. J. C JHEP → ]. , , , (1937) 125 Higgs Boson H Phys. Rev. Lett. (2008) 639 51 , SPIRE J. Phys. G 58 IN , ][ Eur. Phys. J. C Eur. Phys. J. C Phys. Rev. , , arXiv:1809.10733 arXiv:0709.2092 , arXiv:1601.03635 [ [ [ TeV collected with the ATLAS production in the ]. = 13 Eur. Phys. J. C ZH Asking for an extra photon in Higgs , s ]. SPIRE ]. √ (2019) 421 (2007) 070 IN arXiv:1909.02845 and (2016) 003 [ ]. ]. ][ 79 collisions with the ATLAS detector 11 SPIRE 07 ]. SPIRE (2010). IN WH – 17 – pp IN ][ SPIRE SPIRE ][ ]. Matching NLO QCD computations with Parton Shower JHEP IN IN SPIRE JHEP , ][ , ][ IN ]. ][ SPIRE (2020) 012002 = 13 TeV ]. ]. TeV with the ATLAS detector IN ]. s Production and Integration of the ATLAS Insertable B-Layer ][ 13 Eur. Phys. J. C √ SPIRE ]. 101 , arXiv:1803.00844 IN [ SPIRE SPIRE Performance of the ATLAS Trigger System in 2015 Measurements of The ATLAS Experiment at the CERN Large Hadron Collider ATLAS Insertable B-Layer Technical Design Report Combined measurements of Higgs boson production and decay using Search for Higgs bosons produced via vector-boson fusion and decaying ][ SPIRE hep-ph/0409146 PDF4LHC recommendations for LHC Run II IN IN TeV [ IN Combined measurements of Higgs boson couplings in proton–proton Observation of Higgs boson decay to bottom quarks SPIRE ][ ][ arXiv:1807.08639 ][ IN [ [ T05008 = 13 The automated computation of tree-level and next-to-leading order HERWIG++ Physics and Manual HERWIG 7.0/HERWIG++ 3.0 release note hep-ph/0702119 arXiv:1808.08242 arXiv:1611.09661 s collisions at collaboration, [ [ [ of proton-proton collision data at 13 A Symmetry Theorem in the Positron Theory √ Phys. Rev. D 1 pp , (2004) 040 − A New method for combining NLO QCD with shower Monte Carlo algorithms S08003 collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, ]. fb arXiv:1510.03865 3 11 [ collaboration, collaboration, 80 JINST arXiv:1405.0301 (2007) 64 [ (2017) 317 (2018) 052003 SPIRE arXiv:1512.01178 arXiv:0803.0883 arXiv:2007.02873 IN [ up to ATLAS ATLAS [ JHEP simulations: the POWHEG method 023001 [ ATLAS 77 differential cross sections, and their079 matching to parton shower simulations JINST ATLAS CERN-LHCC-2010-013, ATLAS-TDR-19 ATLAS IBL 2018 channel in CMS (2018) 121801 ATLAS experiment CMS collisions at ATLAS [ into bottom quark pairs in 98 Production in Association with a781 Photon in Vector Boson Fusion at the LHC production at the LHC and beyond E. Gabrielli, B. Mele, F. Piccinini and R. Pittau, W.H. Furry, E. Gabrielli, F. Maltoni, B. Mele, M. Moretti, F. Piccinini and R. Pittau, P. Nason, S. Frixione, P. Nason and C. Oleari, J. Butterworth et al., M. Bahr et al., J. Bellm et al., J. Alwall et al., [8] [9] [6] [7] [4] [5] [3] [19] [20] [16] [17] [18] [14] [15] [12] [13] [10] [11] JHEP03(2021)268 ]. (2008) (2015) 462 SPIRE 506 (2010) 04 IN (2012) P12006 ][ 70 , 191 (2010) 074024 72 (2010) 043 14 JHEP 82 06 , Events Using a (2013) 244 ¯ t (2018). t ]. (2018). JINST 867 JHEP (2019) 970 , SPIRE (2014) 145 ATLAS-CONF-2014-018 79 -jets in , 2019 IN Eur. Phys. J. C c , [ Eur. Phys. J. C Phys. Rev. D , 09 arXiv:1603.02934 , , [ Nucl. Instrum. Meth. A Nucl. Instrum. Meth. A , , JHEP Nucl. Phys. B Comput. Phys. Commun. , , , jet clustering algorithm -jet mistagging rates using ATLAS b t boson transverse momentum distribution in (2017) 490 k ∗ Eur. Phys. J. C ATLAS-CONF-2018-001 , , 77 ATLAS-CONF-2018-006 , Z/γ arXiv:2007.02645 TeV , A general framework for implementing NLO -tagging Efficiency of – 18 – b TeV The anti- FastJet User Manual = 13 s = 13 ]. s ]. ]. ]. √ √ ]. ]. Eur. Phys. J. C ]. ]. ]. ]. SPIRE , (2016). SPIRE SPIRE SPIRE IN GEANT4 — a simulation toolkit IN IN IN ][ SPIRE SPIRE Measurement of Calibration of light-flavour Electron and photon performance measurements with the ATLAS Jet energy scale and resolution measured in proton-proton collisions ATLAS b-jet identification performance and efficiency measurement The PYTHIA 8 A3 tune description of ATLAS minimum bias and The ATLAS Simulation Infrastructure Topological cell clustering in the ATLAS calorimeters and its Measurement of the TeV with the ATLAS detector ][ ][ ][ SPIRE SPIRE SPIRE SPIRE IN IN IN IN IN IN ]. ]. ][ ][ An introduction to PYTHIA 8.2 = 7 ][ ][ ][ ][ s Parton distributions with LHC data New parton distributions for collider physics √ SPIRE SPIRE The EvtGen particle decay simulation package IN IN TeV with the ATLAS detector collaboration, [ [ collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, events in pp collisions at = 13 arXiv:1111.6097 ¯ t t arXiv:0802.1189 arXiv:1005.4568 arXiv:1410.3012 s [ [ [ [ collisions at √ arXiv:1908.00005 arXiv:1907.05120 arXiv:1207.1303 arXiv:1406.3660 arXiv:1002.2581 arXiv:1007.2241 1896 Tagging and suppression of pileup(2014). jets with the ATLAS detector ATLAS at ATLAS performance in LHC Run 1 063 ATL-PHYS-PUB-2016-017 ATLAS 823 GEANT4 (2003) 250 [ (2001) 152 ATLAS inelastic measurements incorporating the Donnachie-Landshoff diffractive model ATLAS pp ATLAS proton-proton collision data at ATLAS detector using the 2015–2017[ LHC proton-proton collision data ATLAS with [ ATLAS Likelihood Approach with the ATLAS Detector 159 [ calculations in shower Monte[ Carlo programs: the POWHEG BOX [ M. Cacciari, G.P. Salam and G. Soyez, M. Cacciari, G.P. Salam and G. Soyez, D.J. Lange, R.D. Ball et al., H.-L. Lai et al., T. Sj¨ostrandet al., S. Alioli, P. Nason, C. Oleari and E. Re, [33] [34] [30] [31] [32] [28] [29] [26] [27] [37] [38] [35] [36] [24] [25] [22] [23] [21] JHEP03(2021)268 ]. , ]. Eur. , SPIRE IN [ SPIRE IN ]. ][ TeV using the SPIRE = 13 IN s [ √ physics/0703039 , (2016) 292 Handbook of LHC Higgs arXiv:1610.07922 76 ATL-SOFT-PUB-2020-001 , , -tagging algorithms in Run-2 b arXiv:1506.01010 [ ]. collisions at (2019). pp arXiv:0711.4449 SPIRE , collaboration, IN ][ Eur. Phys. J. C , (2015) 032008 ]. 92 – 19 – TeV SPIRE = 13 IN s Plotting the Differences Between Data and Expectation [ √ ]. arXiv:1111.2062 ATLAS-CONF-2019-021 , [ (2015). Phys. Rev. D P07017 , b SPIRE ATLAS Computing Acknowledgements Luminosity determination in Muon reconstruction performance of the ATLAS detector in Expected performance of the ATLAS b 13 IN Search for the standard model Higgs boson produced through vector boson ][ (2012) 25 TMVA — Toolkit for Multivariate Data Analysis The new LUCID-2 detector for luminosity measurement and monitoring in JINST 127 Fitting function for asymmetric peaks collaboration, collaboration, collaboration, collaboration, ]. 2018 , collaboration, SPIRE arXiv:1603.05598 IN ATLAS Phys. J. Plus ATLAS (2020). ATLAS detector at the LHC ATLAS LHC Higgs Cross SectionCross Working Sections: Group 4. Deciphering the Nature of the Higgs Sector CMS fusion and decaying to proton–proton collision data at [ ATLAS ATL-PHYS-PUB-2015-022 [ ATLAS G. Choudalakis and D. Casadei, G. Avoni et al., A.D. Bukin, A. Hocker et al., [47] [48] [45] [46] [42] [43] [44] [40] [41] [39] JHEP03(2021)268 , , , , , , , , , 6 , 36 93 92 80b , 20 23b , , , 137 , , , 140 , 172 , , , 143 80b , 80b 113 , 110 , 23b,23a 152 , , 29 15a 144 , 89 119 , , , , 46 , , , , , 72a,72b 99 9 100 59 , 18 18 , , 151 28a 83a 137 , , , M. Begalli Y. Abulaiti , A.J. Bevan , , , , 148 29 111 138a 46 121b,121a J.K. Anders 27c , 55b,55a 147 K. Augsten 42 180 159 , 134 X. Ai R.M. Bianchi 11 F. Alfonsi L. Bellagamba , , , , G. Barone S. Alderweireldt C. Becot T. Barklow H. Bachacou P. Berta , , , , , , 105 , , M. Bauce A.V. Akimov 103 137 , P.J. Bakker 119 N. Asbah 160 19 , A.E. Barton 36 , , 93 D.K. Abhayasinghe 60a 160 176 , A.A. Affolder 130 28a , , R. Astalos J. Beringer 54 C.R. Basson J.A. Aparisi Pozo 144 , , , , 181 53 163 , R. Araujo Pereira 101 S. Angelidakis A. Betti M. Benoit T. Beau 29 26 , , 142 81 , L. Adamczyk , H. Abreu 165 , 6 Y. Amaral Coutinho , J.-H. Arling , R. Bi 80a , E.M. Baldin 5 D. Barberis , 49 N.L. Belyaev , 6 174 , 114 T. Andeen , C. Alpigiani , H. Bahrasemani , M.T. Anthony , 52 G. Bella 160 , , D. Berge , Z.P. Arrubarrena Tame T. Berry 84 119 , 104 88 M. Bandieramonte 5 111 , A. Alfonsi C. Allaire 54 D. Babal 143 , E. Akilli , , K. Becker T.A. Beermann , , C. Agheorghiesei , 51 , 24 , 119 69a,69b 84 W.S. Ahmed 10 J. Barkeloo T. Adye M. Aoki 96 , , , , 68a A. Baroncelli K. Abeling 154 , 118 O.K. Baker 20,q , 79 36 , 54 S.P. Amor Dos Santos G. Bartolini , M. Battaglia 109,ak , P.A. Atmasiddha , 72a , M.J. Basso 36 S. Bethke 10 , 60a , L.J. Bergsten 64 , J. Barreiro Guimar˜aesda Costa 150 105 152 , C.R. Anelli C. Antel , , K. Assamagan F. Alonso , D.P. Benjamin 180 , M. Belfkir J.B. Beacham ˚ Akesson , N. Andari , 98 140 , 64,ah , E. Banas 61a 35e M. Bahmani , H. Arnold V.S. Bhopatkar 71a K. Belotskiy M. Beretta , M.J. Alconada Verzini 24 , , V. Araujo Ferraz , , C.P. Bee , 160 E.L. Barberio , 12c H. Abramowicz , , 148 99 S. Argyropoulos , , T. Asawatavonvanich 26 H.P. Beck , S. Adorni M.G. Alviggi , F. Anulli 36 G. Alimonti 165 , 79 , 38 133 174 , 69a,69b , C. Adam Bourdarios G. Azuelos 155 A. Aggarwal 24 , 162 F. Ahmadov C. Bakalis 109 , T. Alexopoulos 98 , – 20 – 18 , , , M-S. Barisits B. Batool T.P.A. 72a,72b , 164 F.U. Bernlochner , , 99 , H. Atmani D. Amidei , 38 R. Balasubramanian 36 , 15c , 12c,ad 121b,121a 142 32 99 27b 19 A. Abed Abud J. Balz 114 36 , R. Bartoldus , F. Barreiro 152 , V. Andrei , A. Bassalat , A. Annovi 156 , , A. Bayirli J. Assahsah B. Bergmann , F. Beisiegel , 102 133 S. Asai , , 61a 99 , J. Albert 5 , O. Arnaez 31 A. Aloisio , 46 , 155 P. Bechtle , P. Bhattarai M. Aliev 125 , L. Beresford L. Adam 68a,68b W.M. Barbe , 21 45a,45b , , N. Aranzabal Y. Benhammou , Z. Barnovska-Blenessy 169 J-F. Arguin , , P. Bagnaia , 52 , C. Alexa , C. Anastopoulos A. Ahmad 175 , 53 , , 121b,121a 157 46 10 119 18 160 23b,23a V.A. Bednyakov 49 S. Balaji N.B. Atlay O. Bessidskaia Bylund , N.L. Abraham J.T. Baines M. Akbiyik J.R. Batley D.J.A. Antrim M.N. Agaras , 79 A. Adiguzel , M.K. Ayoub , , 54 , , , T. Barillari , , C. Bernius , , 8 , , 40 , C. Amelung 89 A. Basan 85 51 64 12a 36 , 35f F. Bartels 94 171 171 N. Berger 120 , 45a,45b 134 , , K. Asai M. Alvarez Estevez J.K. Behr , K. Beloborodov 46 133 S. Ali , D.C. Abbott , , H.S. Bawa , , L. Asquith , 136 21 W.K. Balunas 170 116 24 , 154 138f,138a,ac 140 127 P.P. Allport L. Barak B. Achkar 170 , , , F. Becherer A. Andreazza 143 , , N. Benekos 73a,73b A. Armstrong 19 , , 155 A.T.H. Arce , S. Bentvelsen 168 G. Avolio R.M. Barnett , , 36 G.L. Alberghi , 35a , L. Aperio Bella A.V. Anisenkov 51 S. Akatsuka B. Ali , , , V.R. Bailey 26 J. Adelman M. Antonelli , I.A. Bertram , G. Barbour P. Bellos A.J. Beddall , L. Ambroz , , 64 , P. Bauer F. Backman 180 , , 45a,45b G. Bernardi S. Barsov 142 , C.S. Amrouche , M. Atkinson , H. Asada 66a,66b,o O.S. AbouZeid , D.S. Bhattacharya , L. Barranco Navarro , , A. Basalaev 39 I.N. Aleksandrov , S. Batlamous , , , , , , 155 7 F. Balli 48 34 127 101 46 A. Behera D. Bakshi Gupta , 172 165 128 , , B. Abbott C. Agapopoulou 57 12d 33a 29 103 161 , , 36 160 133 154 133 28a 29 16 143,* 73a,73b 178 101 159 D. Benchekroun J.R. Bensinger E. Bergeaas Kuutmann S. Berlendis A. Berthold S. Bhatta R.L. Bates F. Bauer P.H. Beauchemin A. Beddall M. Begel A. Bellerive A. Bandyopadhyay M. Barbero B.M. Barnett A.J. Barr U. Barron P. Bartos R.J. Atkin V.A. Austrup K. Bachas A.J. Bailey E. Bakos P. Balek E. Antipov M.A. Aparo C. Arcangeletti A.J. Armbruster G. Artoni E.M. Asimakopoulou E. Alunno Camelia A. Ambler S. Amoroso S.Y. Andrean A. Angerami J.A. Aguilar-Saavedra G. Aielli K. Al Khoury M. Aleksa M. Alhroob B.M.M. Allbrooke G. Aad S.H. Abidi B.S. Acharya L. Adamek Y. Afik The ATLAS collaboration JHEP03(2021)268 , , , , , , , , , , 58 , , , 93 132 128 114 , , 38 , 57 , 78 122 100 74a , , , , 8 15b , 98 , , , , 60d,60c 32 , 100 , , , 99 50 , , 17 57 , 134 36 152 , 111 , 80a , 36 , 36 78 , 119 106 , , 143 , 96 65 28b , 162 , 143 14 J. Collot 178,k , D. Cieri , 35a , , 34 K. Bjørke 137 , S. Calvet 39 , 119 X. Chen J. Cantero , 84 V. Boisvert , , 119 , 122 48 38 103 P.J. Bussey , J. Cochran 77 M. Biglietti , , 15c T. Carli T. Buanes N. Brahimi , 45a , , , A. Cattai , 53 I. Chiu 55b , J.W. Cowley T.M. Carter C.H. Chen O. Bulekov S.E. Clawson , B. Burghgrave , H. Cai , R. Bouquet 21 , , 32 , , , Y.S. Chow , 152 C.J. Birch-sykes 132 , B. Brickwedde , , S. Campana 93 38 , Z. Chadi L. Chevalier 27b , 50 56 D. Bruncko , P. Calfayan 165 E. Cheremushkina 60a 132 71a,71b 128 , A.S. Cerqueira , Z.H. Citron 102 , 36 R.M.D. Carney 41b,41a C.C. Chau , , , , E.E. Corrigan 12b 178 46 79 , 143 D. Camarero Munoz D. Calvet 69a,al 134 20 M. Boonekamp , , C. Bittrich 129 , A. Borisov , A.P. Colijn , , S.J. Chen 23b,23a G.J. Bobbink , C. Bohm , , 36 98 G. Brooijmans 94 39 , C.J. Buxo Vazquez , L. Castillo Garcia 130 100 , 69a,69b 92 68a,68b M. Cano Bret 135 A. Coccaro , W.D. Breaden Madden , , 72a,72b J. Bracinik J.J. Chwastowski 142 106 , G. Cowan , Y. Chou A. Chitan J.D. Bossio Sola , C. Chen , 172 P.J. Clark , , , D. Caforio , 130 93 , E. Buschmann 103 , 78 21 14 J.R. Catmore 139 B. Br¨uers J.D. Chapman 54 N.V. Biesuz 148 M.K. Bugge 121b,121a , S.A. Cetin , S. Bressler 99 , , , G. Carducci A.M. Burger L. Bryngemark K. Cerny , , B. Cole 172 , , , , J.W.S. Carter 66a,66c S. Biondi , D. Boumediene 36 C. Camincher , 84 90 , 99 79 , F. Conventi , 46 G. Calderini , 72a,72b S. Chen A. Cheplakov 170 36 , 172 , 133 , 89 S. Camarda F. Cirotto M. Chatterjee 57 A. Bitadze 132 , , R. Brock , 18 , 26 , L.S. Borgna J.S. Bonilla , 23b,23a , 15a M. Corradi 72a,72b B. Chen 18 92 90 , L. Carminati , 23b,23a 24 72a,72b J.E. Brau 134 , T.J.A. Cheval´erias 92 A. Clark , , , 179,j 94 A. Canesse W. Buttinger F.L. Castillo , , A.J. Bozson , S. Calvente Lopez 63 M. Bosman , M. Cobal J. Chudoba U. Blumenschein , 102 V. B¨uscher , 79,af , , F. Celli , 165 , 94 D. Costanzo , 79 , 181 W.Y. Chan 57 A.S. Chisholm 5 J. Chen , 23b , 101 , – 21 – 102 R. Brenner F. Cardillo 174,166a 12b , A. Catinaccio , C. Bini I.A. Budagov K. Bierwagen 69a,69b , , I. Brock 39 , , C.D. Burgard A. Ciocio , 119 67a 36 73a,73b , M. Bona A. Cervelli D. Cameron , P. Calafiura 15a,15d A.R. Chomont , , , , 57 H.J. Cheng 36 73a I.A. Connelly , S. Cabrera Urb´an , 12d , N. Bruscino A.G. Bogdanchikov 90 , D. Biswas A.E.C. Coimbra 114 B. Brau , , G. Carratta 18 36 , , , 27b 11 , 134 L.D. Corpe 3 62a , 14 33c T.P. Charman A. Blue K. Cheung 46 46 , , , 23b 160 7 138a,138e I.R. Boyko 74a,74b 21 26 , 173 J. Chen E. Celebi B.M. Ciungu , G.A. Chelkov 23b,23a X. Chu , Y. Coadou , R. Camacho , , , F. Costanza V. Canale , , E.V. Bouhova-Thacker 33c , , E.G. Castiglia 60a D. Boscherini , W.S. Chan L. Brenner R. Bielski E.M. Carlson 27b , 62a K. Choi 40 , , , H.M. Borecka-Bielska A. Bingul G. Chiodini , S. Burdin , 172 166a , , , J.M. Butterworth J.C. Burzynski , 137 N. Calace , P.A. Bruckman de Renstrom , F. Cerutti , 19 165 , , S. Carr´a 79 D. Britzger 71a,71b 133 57 R. Cardarelli 53 179 159 , , I.A. Cioar˘a A.G. Buckley 137 23b,23a E. Cheu , A. Caltabiano , 57 11 F. Braren 71a,71b J.P. Biswal 71a , , 120 4a , M. Bomben 29 , , D. Bogavac , , H. Cohen H.C. Cheng 57 M. Bruschi , , 91 , S.H. Connell 32 36 80b 35f C. Blocker , 150 D. Boye 145d , F. Cormier N.F. Castro G. Cabras , 46 J. Chen 83a 102 , , , , 73a,73b 23b 46 36 41b,41a 29 D.G. Charlton M.C. Chu 133 172 , , J. Chan , M.J. Costa M. Bindi L. Clissa , M.T. Camerlingo , E. Brost 121b,121a , O. Cakir R. Brener A. Camplani , 33e , , , , J. Boudreau 138a,138h , A.F. Casha , 158b 120 T.J. Burch M. Calvetti 121b,121a 140 T. Bold 46 V. Cavasinni 94 , G. Chiarelli D. Britton V. Cindro , , C.M. Buttar , D. Bortoletto A.G. Borb´ely C.D. Burton , D.A. Ciubotaru , B.T. Carlson S.V. Chekulaev 152 , , M.V. Chizhov O. Brandt , T. Bisanz , , , , , , J. Boyd 35a I. Bloch , 145d , D. Biedermann 59 14,g 103,aa , , G. Bruni 6 , 29 E. Carquin 51 21 84 Y-H. Chen , H. Chen L. Cerrito 25 , P. Buchholz 89 93 46 101 45a,45b , L.P. Caloba 68a , , , 73a,73b , 178 69a M. Capua 174 180 , 126 28a 113 57 170,53 23b 118 15c 60a 155 154 171 C. Clement R. Coelho Lopes DeP. Sa Conde Mui˜no A.M. Cooper-Sarkar F. Corriveau R. Cherkaoui El Moursli V. Chiarella Y.H. Chiu L.D. Christopher K.M. Ciesla M. Citterio A. Cerri D. Chakraborty B. Chargeishvili S. Chekanov H. Chen Y. Chen Y. Cao G. Carlino S. Caron M.P. Casado V. Castillo Gimenez V. Cavaliere A.R. Buzykaev V.M.M. Cairo G. Callea T.P. Calvet P. Camarri M. Campanelli W.K. Brooks A. Bruni Q. Buat B.A. Bullard J.T.P. Burr J.M. Butler G. Borissov K. Bouaouda A. Boveia G. Brandt K. Brendlinger D.L. Briglin T.R.V. Billoud M. Birman T. Blazek V.S. Bobrovnikov P. Bokan C.D. Booth O. Biebel JHEP03(2021)268 , , , , , , , , , , , , , 106 , 42 172 15b , 36 118 64 122 119 24 , , , 56 , 33e 60c 5 , , 17 , 148 , 47 141 , , 49 , 119 36 75a,75b , , , , , , 36 , , 178 , , , 60b 164 , 24 28a , , , 133 100 W. Ding 170 142 5 99 , 57 , , L. Fayard 72a,72b , 75a,75b P.J. Falke , S. Dahbi , , M. Faraj , 135 P. de Jong , , M. D¨uren 5 18 , F. Filthaut W.C. Fisher , 73a,73b , 53 , , 23b,23a A.M. Deiana 32 M. Feng 127 73a,73b 57 P. Farthouat I. Dawson , S.P. Denisov 47 119 , 134 , , , 4a N. Ellis 72a 91 99 P. Ferrari Z. Dolezal , 118 , , 79 50 49 M. Delmastro , A. Di Luca J. Erdmann 60b 92 A. Dudarev , 109 , , J.I. Djuvsland 7 , K. Desch , 68a,68b 170 141 , S. Dysch O. Estrada Pastor J. Damp , J. Dopke T. Ekelof , M.G. Foti , , , 162 , M. Didenko 90 114 , O. Dartsi , M. Dumancic 36 L. Flores , A. Cueto 158b 90 , 18 172 , M. Dubovsky G. Frattari 18 T. Dado T. Dreyer , 101 , 73a,73b , 71a,71b 55b , F. Fabbri , F.A. Dias 180 113 59 , J. Fischer G.T. Forcolin 36 C. Feng , 110 A. Filipˇciˇc , , 74a,74b S. Falciano F. Crescioli 151 , M. Franchini D.C. Frizzell , U. De Sanctis , 136 , , W.J. Fawcett , A. Di Ciaccio M. Fanti 101 , D.R. Davis , , 99 A. Dimitrievska N. De Groot 41b,41a J. Dolejsi , 113 A.A. Elliot 165 58 148 A. Ferrari , , , 47 , Y. Enari , 122 D. Duda 50 W.R. Cunningham , 44 72a , , 96 P. Dervan H. Duran Yildiz 141 46 , D.V. Dedovich , , 150 39 180 M. Dyndal S.M. Farrington C.M. Delitzsch , 152 72a,72b , E. Fortin , 58 G. Darbo , G. Demontigny , T. Djobava C. Escobar , 72a,72b , 134 , 101 F. Dachs C. D¨ulsen 23b,23a , 36,27b 79 , J. Dickinson K. Einsweiler M. D’Onofrio L. Dell’Asta 135 36 100 106 A. Fell , 64 B.M. Flierl , 143 , , E. Dreyer , , 101 , F. Dubinin M. Franklin 36 J.H. Foo , , A. Ezhilov 24 83a 17 , V. D’Amico 36 , F. Fiedler G. Di Gregorio , F. Fischer 15c , C. Diaconu 101 , , 180 20 151 , G. Crosetti 17 , 60d 29 36 155 105 172 M.J. Da Cunha Sargedas De Sousa A. De Salvo C. Doglioni 165 T. Davidek , J. Ferrando , , 168 , F. Derue V. Dao , , , G. Fanourakis A. Emerman , 26 E.M. Freundlich , F. Ellinghaus 43 F. Deliot 72a 61b , , , O.A. Ducu A.C. Forti 35e A. Duperrin F. Djama 151 C. Diez Pardos 166b , , G. Eigen , – 22 – , , S. Cr´ep´e-Renaudin G.I. Dyckes 15a M. Escalier S. Francescato F.A. Di Bello , T. Flick S. De Castro 64 , 142 , , , , T. Farooque , , M. Demichev 80b 170 8 14 , 47 36 1 46 M. Faucci Giannelli , R.M. Fakhrutdinov , Y. Duan A.R. Cukierman N. Fomin 113 , , 36 , M. D¨uhrssen , L. Feligioni , 135 9 180 105 119 L. Franconi , A. D’onofrio G. D’amen , V. Croft L. Fiorini 176 181 , E. Drechsler W. Dabrowski , A. Dell’Acqua , , 64 C. Ferretti 119 , 5 , , M.O. Evans , , R. Di Sipio 38 171 71a,71b 40 , 57 54 70a,70b 54 100 65 Y. Fang 15a,15d 75a,75b J.B. De Vivie De Regie C. David , F.G. Diaz Capriles A. Di Girolamo , , , , T. Eifert D. De Pedis M. Ellert 75a,75b , S. Dungs , F. Dittus , , D. Dodsworth D. Delgove 15a , 155 , , M.M. Czurylo S.W. Ferguson 49 J.E. Derkaoui , 74a,74b , M. Danninger 145a , D. Duvnjak 15c , 138a,138c,a G. Duckeck 170 F.A. F¨orster G. Facini W.S. Freund 46 , 61a , L. Duflot 61b M. Errenst , , , 36 S. Demers 27b , , L. Franco 68a,68b M. Dam 84 D. Emeliyanov , 30 69a,69b , 122 , 46 , J. Donini , H. Cui M. De Beurs R.A. Creager , S. D´ıezCornell 84 , , 178 143 118 109 58 , H. Evans 36 36 100 D. Ferrere D. Fassouliotis M. Feickert P.O. Deviveiros , A.T. Doyle T.A. du Pree C. Da Via , , , 102 , P. Fleischmann 169 , , , 60c 19 , E.M. Farina 69a 124 Y. Fang , P. Francavilla 36 20 24 , 88 , 172 F.M. Follega 138a 60b 80b , D. Della Volpe 150 , 89 74a 141 M.A. Diaz , A. De Santo 62a M. Dobre , B. Dutta , R. Di Nardo , , M. Dunford S. D’Auria A. De Maria M. Cristoforetti , , , , B. Freund M. Elsing B. Dong 138a V. Fabiani M.F. Daneri 146 V. Ellajosyula , , A. Fehr , D. Du 69a,69b , A. Formica S.J. Dittmeier , M. D’uffizi , D. Francis , D. Derendarz , M.G. Eggleston P.A. Erland , P. Czodrowski , 24 , A.B. Fenyuk , C. Di Donato , , , 158b 130 106 27b , , E. Duchovni M.C.N. Fiolhais P.A. Delsart , H. I. Fleck 21 J. Dietrich 29 Y. Delabat Diaz , , , , , , A. Ferrer 84 , 5 73a,73b 80c 65 G. Evans 24 99 35f , 135 61a 20 84 , 168 C. Deutsch M.T. Dova 169 74a,74b K. Cranmer 54 120 25 64 , 64 , 21 , A. Farilla 98 P. Fassnacht 136,p , 105 J. Faltova , C. Dallapiccola 70a , 8 160 , 23b,23a 165 69a 100 36 35f R. De Asmundis , 105 8 L.R. Flores Castillo B.C. Forland D. Fournier S. Franchino P.M. Freeman F. Fassi O.L. Fedin M.J. Fenton R. Ferrari K.D. Finelli T. Fitschen J. Elmsheuser A. Ereditato E. Etzion L. Fabbri S. Falke A. Farbin A. Dubreuil A.C. Dudder A.E. Dumitriu A. Durglishvili B.S. Dziedzic H. El Jarrari E.B. Diehl J. Dingfelder M.A.B. Do Vale M. Donadelli A. Doria A.S. Drobac C. Delporte L. D’Eramo K. Dette L. Di Ciaccio B. Di Micco T. Dias Do Vale A. Dattagupta K. De H. De la Torre M. De Santis J. Del Peso M. Della Pietra M. Cristinziani T. Cuhadar Donszelmann S. Czekierda J.V. Da Fonseca Pinto T. Dai J.R. Dandoy J. Crane JHEP03(2021)268 , , , , , , , , , , , 29 14 5 , 178 105 109 50 113 47 , , , , 172 46 , , , , , , 122 165 118 173 66a,66c , 52 , , 27b , 54 , , , , , , , 174 21 167 18 , , 82 14,w 36 135 113 32 99 96 115 133 , , , , , C. Geng , , 130 23b , 14 , 58 S. Ganguly , 105 152 , 140 , , G. Gessner M.P. Heath 180 132 , 167 , H.A. Gordon T. Guillemin , L.G. Gagnon M. Guth , 52 , , K.H. Hiller 83a , , S. Han 27f , 99 , 126 K. Hara 178 H. Hibi R.L. Hayes 46 , , 163 29 , 123 14 D. Golubkov M.G. Herrmann 127 L. Gonella , C.A. Garner A. Hadef , , 60a , A.A. Geanta , K. Hamano 100 , G. Giugliarelli E. Hansen , C.A. Gottardo 105 8 52 72a,72b , 54 , , 166a 99 J. Guenther S. Grinstein 55b,55a , , 10 130 C. Gwenlan J.G. Heinlein , T. Fusayasu 79 , , C. Grud 101 , G. Gilles 143 J.E. Garc´ıaNavarro 100 Y. He , S. Hirose S. Gonzalez Fernandez , P. Grenier B. Giacobbe , N. Hod , 173 , 31,l 94 L. Henkelmann , , , G.R. Gledhill , G. Giannini , 172 143 N.M. Hartmann , 34 S. Gonzalez-Sevilla M.H. Genest , , , 46 77 L. Han K.K. Gan S. Hellesund A. Guida 46,ai 172 60a M. Havranek K.K. Hill 89 131 , , , 172 , 46 , 27e , 152 92 170 99 P.M. Gravila 55b 32 C. Hayes , H. Herr , 15c 124 , 106 P. Gauzzi K.K. Heidegger 69a,69b , T. Golling , , S. Gargiulo G. Gustavino 33e 136 , , E.C. Hanson 106 N.P. Hessey E.N. Gazis F. He G. Gonella 52 , , , , , 70a I. Grabowska-Bold P.A. Gorbounov G. Gagliardi 37 104 , , C. Guyot , 40 K. Grimm 12c 36 46 Z.J. Grout P.F. Giraud , E.L. Gkougkousis M.I. Gostkin P. Gessinger-Befurt 5 , C. Gubbels H.K. Hadavand , , , , , 142 R. Hankache A. Ghosh , , 21 C. Garc´ıa , , D. Gillberg L. Han M. Hirose , 94 G.D. Hallewell , 114 , , 53 49 A. Held 53 , J.C. Hill R. Gugel 18 144 I.M. Gregor 9,h , 37 64 , , R. Hobincu , 179 39 24 , C. Gemme 60a R. Hauser 46 37 106 , 145a B. Heinemann 24 138a,138c , , 66a,66c 154 99 A. Giannini 20 76,19 C. Goy P.C.F. Glaysher 18 , N.M. Hartman D. Hayden , , , , G. Gaudio , L. Hervas , V. Gratchev S. Gurbuz , 98 R. Gamboa Goni 71a C. Heidegger S. Goldfarb , , R.C.W. Henderson 33c , E. Fullana Torregrosa , 176 , 116 G. Gaycken , P. Gadow P.H. Hansen , C. Haber 80b K. Han 46 155 , 36 , R. Gonzalez Suarez , 113 I. Gkialas A. Ghosh – 23 – 92 , W. Guan S. Gonz´alezde la Hoz R.W. Gardner , , , , 142 , , 109 C. Grefe N.A. Gorasia 36 S.J. Haywood 125 M.D. Hank 24 L. Helary C. Gutschow , , A.A. Grillo , 173 50 , , 18 , , 124 S. Haug 39 18 A.T. Goshaw J. Hobbs B.J. Gilbert , L.O. Gerlach , 161 150 , 105 T. Heim , 18 , 36 D. Guest R. Gon¸calo 90 , , , M. Geisen 127 144 139 44 135 , 91 Y. Hern´andezJim´enez G. Halladjian 143 46 53 139 , , 83b F. Hinterkeuser J. Grosse-Knetter 96 , K. Hildebrand 114 , M.P. Giordani , , 18 152 148 C. Glasman R. Gupta C. Gay P. Gaspar 172 , , P. Giannetti , , F.M. Garay Walls 178 M. Grandi C. Helsens N. Govender , , , A. Haas , , , D. Godin N.D. Hehir 3,ak , S. Hayashida , L. Guan , B.J. Gallop , P.F. Harrison 112 101 , 19 123 147 , 26 165 A. Gabrielli 147 36 , M. Fujimoto S. Heim 132 J. Hejbal J.L. Gonski 31,m 132 H.M. Gray , M.C. Hansen M. Hance , , G.N. Hamity , 107 , D.T. Gil T. Geralis , , 133 , 133 L. Goossens , , R. Hertenberger A. Goriˇsek S. Gkaitatzis J. Geisen , S. Hassani , 34 , 36 M. Ghneimat , 45a,45b 21 , O. Hladik , 57 , 40 , 133 24 93 , N.A. Grieser H.S. Hayward J.J. Hall 52 H. Herde , , 144 81,u F. Guescini 91 50 , E. Gross 172 , 142 , 14 23b,23a Z. Guo 174 92 , I. Hinchliffe 36 128 M. Garcia-Sciveres , 99 , 172 67a,67b 73a,73b 60c C. Gonzalez Renteria 48 , Y.S. Gao , 15a C. Gray 90 L.K. Gladilin D.M. Gingrich A. Gavrilyuk R. Goncalves Gama , B. Hiti 50 , , , , , E.J. Gallas E.S. Haaland S. Harkusha , S. George J.A. Frost J. Heilman M. Hamer S. Grancagnolo A. Hasib S. Hellman J.C. Grundy , , L. Heinrich 10 , 46 , , A.G. Goussiou R.J. Hawkings , , G. Herten , , L.F. Gutierrez Zagazeta , , N. Giangiacomi F. Gonnella , , S.J. Gasiorowski 110 E. Hig´on-Rodriguez , , M. Gignac 180 , , C. Grieco J.D. Hansen S. Groh , , J. Haley , 90 36 , , 78 A.L. Heggelund 133 , J. Guo , , J.M. Hays 180 F. Giuli 35f 21 , M. Hils 48 C.N.P. Gee 79 132 K. Hanagaki 149 144 , 117 130 M. Goblirsch-Kolb , , 81 , 93 A. Gabrielli 35b , 67a,67b 127 46 40 , 64 E. Gorini , 132 96 , 36 175 21 Y. Gao 133 68a 138a,138b 72a,72b 144 , 36 165 172 72a,72b 41b,c 60a A.M. Henriques Correia T. Herrmann S. Higashino S.J. Hillier D. Hirschbuehl C.M. Hawkes C.P. Hays V. Hedberg W.D. Heidorn J.J. Heinrich C.M. Helling M. Haleem H. Hamdaoui Y.F. Han J.B. Hansen T. Harenberg Y. Hasegawa J.-F. Grivaz A. Grummer J.G.R. Guerrero Rojas S. Guindon P. Gutierrez C.B. Gwilliam G.R. Gonzalvo Rodriguez B. Gorini M. Gouighri E. Gramstad F.G. Gravili K. Grevtsov D. Giugni P. Gkountoumis I. Gnesi A. Gomes A. Gongadze R. Gonzalez Lopez C.M. Gee S. Gentile M. Ghasemi Bostanabad S. Giagu S.M. Gibson N.E.K. Gillwald J. Fuster G.E. Gallardo J. Gao J.A. Garc´ıaPascual V. Garonne I.L. Gavrilenko D. Froidevaux JHEP03(2021)268 , , , , , , , , , 165 159 106 , , , 47 34 , , 60a , 165 78 36 4b , , , , 161 , 94 , , 46 , , 94 , , 121b,121a 21 , , 62a 72a,72b 162 76 , 116 , , 15c , , 114 , , , , 81 , 5 , , 148 10 165 , 174 52,d , 79,ab , 47 24 150 79 90 37 C. Klein 57 24 , 107,ae , J. Huston P. Krieger S. Kang , , , 161 161 157 , S. Kuday , 143 , 61a 19 F. Klimpel 38 144 , , K. Kordas 84 , N. Kimura E. Kajomovitz K. Kroeninger 79,ab , D.P. Kisliuk , 164 , , 29 X. Huang 84 R.M. Jacobs 114 V. Ippolito , 37 J. Kendrick , 18 P. Jenni , , 162 , , T. Kodama O. Kortner 177 1 Y. Ikegami , V.F. Kazanin , E. Kneringer S. Hou 94 , , , , 21 T. Hryn’ova H. Kr¨uger T.J. Jones , T. Kupfer D. Krasnopevtsev T. Kawaguchi , , , , , 152 , N. Javadov P. Johansson 54 166a 14 M. Kolb A. Koulouris 37 J. Jamieson F. Huegging 112 E. Khramov 158a I. Ibragimov E. Kasimi , , , K. Kreul , , , T.R. Holmes 114 , , 79 91 87 , 139 , 90 108 155 R. Kowalewski , V. Konstantinides 36 J.M. Iturbe Ponce 49 Y. Kulchitsky 24 I. Karkanias 29 M. Klassen , 33e , 90 , N.J. Kang 24 , , 178 175 122 6 , T. Kaji A. H¨onle 79 121b,121a 125 , 52 , K. Korcyl 12c , Y.K. Kim K. Krizka 162 , , N. Huseynov 166b 99 52 , P. Jackson A. Kaczmarska A. Klimentov , , 83a , 34 163 O. Kuchinskaia T. Iizawa 141 D.P. Huang S. Kluth S. Ketabchi Haghighat , , , T. Kishimoto M. Kocian , , 36 , , J. Jejelava S. Kazakos 139 A. Kupco , , L.A. Horyn H. Jivan , T. Holm 14,w 91 , , J.J. Kempster 163 , 48 S.D. Jones 162 A. Kotwal 119 , S. Istin , 114 K. Kawagoe , T. Kono N. Korotkova 58 A.E. Jaspan , K. Iordanidou 48 , 130 , , 168 , 64 , M. Huebner , F.A. Jimenez Morales G. Iakovidis 163 N.M. K¨ohler U. Kruchonak 89 A. Hrynevich 1 , 64 , , E. Kourlitis , , 155 T. Jakoubek 96 G. Khoriauli , V. Kukhtin C. Kahra 52 , 149 , G. Kramberger , E. Kim 148 , , 74a 9 54 34 , 64 M. Kaneda 19,46 101 J.C. Honig J. Kretzschmar , 106 52 , 15a,15d,am , 46 39 112 P. Jacka M. Krivos A.N. Karyukhin S. Koperny M.J. Kareem , , 130 , 99 , , P. Klimek 76,19 122 P. Kluit , 137 A.G. Kharlamov , , R. Iguchi 89 P. Horn M. Kobel 65 , , 69a M. Kuna , 61b 90 133 A. Kubota , R.F.H. Hunter L. Jeanty F.I. Kaya , , , , 40 113 87 128 , D. Hohov 116 – 24 – D. Kelsey 84 33e 58 B.P. Kerˇsevan , S. Jiggins 52 , M. Iodice , T. Koffas A. Juste Rozas 143 T. Kuhl 174 Y.F. Hu , A.E. Kiryunin , G. Jarlskog , , , O. Jinnouchi C. Issever K. Kawade 34 , , , A. Kahn A.X.Y. Kong , , , F. Hubaut K. Jakobs R.W.L. Jones , J. Hrivnac , , , , 24 180 36 60a G. Iacobucci V. Izzo 46 60c 114 , T. Klapdor-Kleingrothaus 52 142 , 83a 99 152 128 , 27b T.J. Khoo 129 140 U. Klein , 176 A. Kilgallon , T.M. Hong A. Kotsokechagia 43 , E.V. Korolkova J.A. Kremer 24 , , , 28a 70a,70b , C. Kourkoumelis Y. Horii K. Karava 90 K.S. Krowpman , , , 173 14 36 , 32 A. Krishnan 36 6 , R. Ignazzi D. Hohn A. Khanov , , , S. Hu E.F. Kay M. Kumar V.A. Kramarenko 33e , , 36 R. Hulsken , 135 , F.F. Klitzner R. Kopeliansky , 36 J. Kirk , , V. Kartvelishvili 102 J.S. Keller , D. Kobayashi , 39 53 148,164 , Y. Jiang , 143 S. Kuehn J. Katzy , F. Jeanneau A. Kamenshchikov J.A. Krzysiak 36 , , , 171 , S. Kersten 36 , 96 70a,70b 122 W. Islam 52 48 E. Jones , 79 A. Jinaru , M. Kagan , K. K¨oneke , 46 15c P.T. Koenig , 99 P.A. Janus 174 49 , , J.M. Izen , 60d 102 , 65 S. Hyrych M. Klein Z. Hubacek 139 , K.B. Jakobi 162 , , , 15c G. Introzzi D. Kar 54 126 M. Kiehn 129 , 155 , , O. Kivernyk Q. Hu J. Kroll M. Hrabovsky 178 P. Iengo , I. Korolkov , , , , 180 E.E. Khoda , 152 105 15a 81 82 , J.J. Junggeburth 35a Z. Jia 10 , 88 64 , 94 147 139 A. Hoecker A. Knue W.H. Hopkins 18 , B. Konya , , S. Jin , , C. 154 , R. Keeler 94 , 148 M. Huhtinen A.S. Kozhin 101 M. Khandoga , A. Kaluza A. Krasznahorkay 171 , O. Kepka , , , G. Kawamura , M. Ishino 114 L.B.A.H. Hommels , M.C. Kruse A. Ivina , Y.P. Kulinich , H. Kagan , , R. Jansky 29 121b,121a , Z.M. Karpova S. Kido , D. Kirchmeier G. J¨akel 33a 13 , J.T. Kuechler , , , , 39 X. Ju V.V. Kostyukhin 133 , 143 J. Hoya 143 78 134 S. Krishnamurthy , M. Javurkova , Y. Huang , H. Imam C.A. Johnson , , J. Kroll 170 A. Korn 114 J. Jia T. Komarek D.M. Koeck , 79 53 , , 45a,45b , , , , 46 , 145b 83a T. Klioutchnikova M.H. Klein 36 151 C. Kitsaki , J. Kanzaki 7 57 , S.-C. Hsu 5 , 5 36 , 114 158b , R. Hyneman 113 , 60a 114 160 24 141 75a,75b 46 72a,72b 63 116 175 59 165,165 F. Krieter H. Kroha N. Krumnack D. Kuechler S. Kuleshov N. Konstantinidis G. Koren S. Kortner A. Kourkoumeli-Charalampidi W. Kozanecki M.W. Krasny V. Kitali L. Klein T. Klingl E.B.F.G. Knoops P. Kodys I. Koletsou J.M. Keaveney K.E. Kennedy F. Khalil-Zada T. Kharlamova J. Khubua A. Kirchhoff M. Kado C.W. Kalderon Y. Kano S.N. Karpov A. Kastanas T. Kawamoto K.W. Janas T. Jav˚urek S. J´ez´equel J. Jimenez Pena K.A. Johns J. Jovicevic J. Huth L. Iconomidou-Fayard N. Ilic M.F. Isacson R. Iuppa B.P. Jaeger M. Holzbock B.H. Hooberman J. Howarth P.J. Hsu Y. Huang T.B. Huffman M.C. Hodgkinson JHEP03(2021)268 , , , , , , , , 79 52 83a , 157 , 105 , 161 , 134 158b , , 46 , , , , , , 136 , , , , , , 60a 80a 7 151 24 54 160 92 , , 100 60b 148 , 50 , , , , 148 , 151 60b , 29 , , K. Maj 79 , 113 176 76 , A. L¨osle , , 103 , 171 , 69a,69b , 151 , , S.C. Lee , Y. Liu 18 111 , 94 , D. Levin , 48 M. Lu 58 , 79 127 H. Li , I. Maznas 114 59 113 5 , 80c , Z. Li 60a , 172 B.X. Liu 23b,23a , 172 J. Masik 71a,71b 60a G. Marchiori 46 157 , , S. Lim M.S. Lutz , V.P. Maleev T. Lyubushkina , 78 A.L. Lionti , G. Mchedlidze , M. LeBlanc K. Lantzsch , , , , A. Matic 62c 110 T. Kwan 84 133 79 , R. Longo 130 , 46 L. Lee 18 78 , 29 , K. Lohwasser E. Ladygin X. Liu , M.P.J. Landon , , 138a,138b,138d , H. Li Y. Li A. Kurova , 170 36 , , , 17 129 Z. Marshall , A. Manousos 19 C.J. McNicol K. Lehmann M. Lavorgna A. Lucotte 50 , , , , 52 , , M. Maerker A.M. Lory B. Liu 134 J. Levˆeque 46 15a C. Leonidopoulos , , C.M. Macdonald 48 , , 60c , 107 , 18 5 8 34 K. Lie , S. Malyukov J.E. Lambert 127 113 29 104 M.A.L. Leite , R. Mazini 15c J. Llorente Merino , , , 51 , A.C. Martyniuk 136 10 71a , A. Linss T.G. McCarthy 73a 58 , , 83a F. Lanni X. Li A. Maio , , , 27b P. Liu , F. Li 21 161,v J. Kvita Pa. Malecki P. Mastrandrea L. Longo , A. Lebedev L. Marchese G.R. Lee , , 105 , , T. Lohse , , , N.A. Luongo , 169 , 80b P. Martinez Agullo F. Lasagni Manghi J.J. Lozano Bahilo , 29 , 60a V. Lyubushkin R. Mashinistov D. Lacour 147 134 T. Mathisen J.A. Mcfayden 121b,121a , , , 101 161 , L. Manhaes de Andrade Filho , , V.J. Martin A. Mann , , U. Landgraf 153 , A. Laurier T. Maeno J.D. Little C. Leggett 89 S. Leone , 60c,60d 19 , 68a , , , 29 W.F. Mader , 91 15a 162 14,w , 60d,60c,b 69a,69b 119 96 72a,72b A. Lleres 29 73a,73b 176 99 82 , 24 B. Liberti 38 173 174 , , S. Maltezos A. Leisos M. Marjanovic Y.A. Kurochkin , , M. Levchenko , 46 32 G. Maccarrone , P.C. McNamara , 46 S. Li F.L. Lucio Alves , J.H. Lindon 96 C.A. Lee I.K. Lakomiec , , , M.Y. Liu , 32 V.S. Martoiu , , S.P. Mc Kee T. Lari , 7 F. Lyu C-Q. Li 70a,70b , , 166a 174 , , 94 142 53 N. Lorenzo Martinez A.K. Kvam 60a P.A. Love , , H. Lacker A.J. Lankford B. Malaescu 60a A. Marantis T. Lenz , 96 142 I. Mandi´c , , , 103 , 143 , , 105 6 J. Maeda – 25 – A. Lister C. Maidantchik , E. Lan¸con E. Le Guirriec 64 113 D.A. Maximov 163 , R. Madar , , 72a,72b 42 S. Loffredo 92 , T. Mashimo I. Longarini , , , D. Matakias 100 102 M. Martinez , 119 , , 48 , A. Laudrain T.A. Martin P. Massarotti 39 7 , B. Lund-Jensen , M. Lefebvre 91 , 161 S. Lai , 99 89 , C. Malone 100 135 162 , , K.H. Mankinen B. Li , A.E. McDougall C. Marcon 171,aj 93 M. Liu M. Livan , Q.Y. Li 62a 172 , , , , 77 , 72a W.A. Leight M. Liberatore C.G. Lester J. Love 48 , , , 145c , 74a,74b 15b C. Luci 104 E. Lytken 60a , A.C.A. Lee 23b,23a , 36 , , R.E. Lindley 64 M. Kuze 15a , J. Lorenz 106 , B. Le P. Loch 58 , 65 , S.J. McMahon J.F. Laporte 73a,73b 147 60d,60c 139 36 15a,15d , , N. Makovec B. Maˇcek 46 N. Madysa S. Manzoni , D.P.J. Lack , 148 , , D.M. Mac Donell , B. Li L.L. Kurchaninov R.E. Long K.J.C. Leney L. Masetti J.P. Mc Gowan , , D.J. Mahon , T.S. Lau , , , , 174 J.P. Mandalia , T.M. Liss , S. Martin-Haugh , 130 U. Mallik , , 94 68a,68b 27b 21 128 161 82 , 29 R. Les 171 141 51 114 C. Lampoudis , 17 R.J. Langenberg T. Masubuchi M. Li 139 55b,55a , L. Massa , Y.W. Liu T. Lagouri , , 102 K. Liu Z. Liang , , L. Luminari , H.P. Lefebvre , 7 , , A. Lounis 72a,72b , , 53 109 L. Martinelli R. Lysak 60c 37 90 S. Marti-Garcia , 154 , 105 134 , 66a,66c,r R.A. Linck 41b,41a 15a , Y. Ma 17 166a , 90 E.F. McDonald J. Machado Miguens H.J. Lubatti 41b,41a , 170 L. Marcoccia , , E.S. Kuwertz , 106 , 60b 18 J. Maurer 121b,121a L. Li 63 J. Manjarres Ramos , D.J. Lewis , , Z. Li I. Manthos , J.D. Long , 148 R. Leitner A. Lopez Solis , S. Majewski , 139 K.D. McLean , , , C. Mc Ginn G. Mancini F. Ledroit-Guillon G. Lehmann Miotto , , C. Leroy M. Lazzaroni , W. Lampl , I. Luise , H. Kurashige 162 F. Lacava 147 103 , , , X. Lou , 161 , , 178 V. Latonova A. Lipniacka 6 Y.L. Liu , 143 42 139 E.M. Lobodzinska , , S.R. Maschek , 113 A. Lapertosa J. Magro J.C. Lange 100 28a 20 , , 15a,15d , , , 93 65 65 144 52 J.K.K. Liu 172 D. Malito K. Lin B. Laforge 134 , , 36 172 , , 92 , H. Lyons 36 52 52 135 5 70a 58 L.L. Ma Y.J. Lu 32 B. Lefebvre Z. Li 29 , , 60a , K. Li , , 45a,45b 15a,15d 29 78 135 133 60c A. Mastroberardino N. Matsuzawa S.M. Mazza W.P. McCormack M.A. McKay M. Marcisovsky M.U.F. Martensson B. Martin dit Latour V.I. Martinez Outschoorn A. Marzin A.L. Maslennikov V. Magerl O. Majersky F. Malek J. Mamuzic I.M. Maniatis B. Mansoulie S. Lu F. Luehring D. Lynn H. Ma J.C. MacDonald M. Madugoda Ralalage Don J.B. Liu Y. Liu S.L. Lloyd M. Lokajicek I. Lopez Paz X. Lou A. Leopold L.J. Levinson J. Li Z. Li C.Y. Lin E. Lipeles M. Lassnig S.D. Lawlor T. LeCompte S. Lee N. Lehmann C.E. Leitgeb M.G. Kurth C. Lacasta R. Lafaye S. Lammers V.S. Lang A. Lanza O. Kuprash JHEP03(2021)268 , , , , , , , , 94 21 , , , , , 150 26 53 , , 177 122 46 36 , , 133 , 14 , , , , , 133 , , 102 94 46 , , 162 , 46 37 18 165 139 , 60a , 162 , 12c 29 109 14 96 , 88 , , 165 , , 27b , , E. Nurse , 21 29 , 163 , 142 , 172 P. Moder , , 169 , 83a , 178 101 , T. Nobe 1 46 , 33a 6 P.R. Newman F. Meloni 38 A.P. O’neill K. O’Connor , , K. M¨onig 66a,66c , M. Niemeyer , , 109 M. Morinaga , , , , , 177 A. Milic S. Nemecek , H.Y. Meng C. Merlassino , 135 A.A. Minaenko 173 28b , 33e 59 M.J. Oreglia , J.K.R. Meshreki 151 R. Ospanov V.E. Ozcan E.J.W. Moyse P. Moschovakos 140 , 144 H. Oide J. Ouellette , , , , 61a , , 21 145a , , , A. Olariu , Y. Minegishi B.P. Nachman R.R.B. Norisam 148 T.J. Neep , P. Nilsson 57 137 36 , , P. Palni , F. Monticelli 120 C. Padilla Aranda 142 79 , E. Nagy , 35e 153 , 31,n 162 , 36 46 K. Ntekas B. Parida 21 J.U. Mj¨ornmark 140 , T. Megy , 94 45a,45b , T. Nguyen Manh 14 , 29 45a,45b V.A. Mitsou , 112,110 83b J.L. Oliver , C. Mwewa , T. Nitta 81 , 36 , G. Panizzo 129 133 , R.P. Middleton C. Moreno Martinez 29 P. Murin T. Naumann 101 M. Morii , , 18 113 , , , 47 J. Nielsen 46 S. Mondal A. Paramonov K. Mochizuki , 19 , , J.J. Mullin , 34 , D.C. O’Neil J. Moss 172 100 151 , , 40 L. Morvaj R. Newhouse V. O’Shea 96 42 H. Mildner 53 , , , , 150 C.C. Ohm 24 M. Mineev R.E. Owen F. Napolitano , M. Ouchrif , , M. Myska , 118 94 , M. Palka 91 , 180 165 , J.L. Nagle Y. Okumura 57 , S.A.M. Merkt , , 18 100 83a M. Montella , L. Nozka 131 36 M.E. Nelson , M. Nordberg P. Pani F. Nechansky O. Meshkov , 130 S. Meehan , , 19 , , 81 90 , J.P. Ochoa-Ricoux ¨ Oncel 29 , B.R. Mellado Garcia 36 , I. Nitsche A. Mizukami 117 D. Mori 93 , K. Nikolopoulos , D.A. Milstead , , 103 M. Naseri , 110 105 102 , M. Muˇskinja , J. Mitrevski , 92 114 M. Michetti A. Pacheco Pages 159 S. Mobius 178 138a , , 176 S. Parajuli 134 A. Oh , H.D.N. Nguyen , 136 B. Mondal , ¨ , 177 R.S. Orr D.S. Nielsen O.O. , 127 49 , M. Mikuˇz , G.A. Mullier , M. Owen , 143 , , , R.G. Oreamuno Madriz 9,h A.P. Morris S.R. Paredes Saenz H. Nanjo 35f J. Myers 83a 14 , , , 33e , 84 B. Mindur 89 143 , 139 G.J. Ottino D. Oliveira Damazio P. Moskvitina S. Palestini 36 15a , , 132 81 , – 26 – M. Moreno Ll´acer 65 K. Nagano , M. Neumann 45a,45b , , , 62b , G. Merz C. Nelson 124 99 50 , A.M. Mendes Jacques Da Costa F.J. Munoz Sanchez R. Novotny 61a I. Ochoa R. Nisius 143 A. Milov , , , , , D. Melini 133 , 145a 68a , 138a , M.W. O’Keefe , M.A. Nomura 14 48 118 82 , S. Mergelmeyer T. Mitani 34 , 43 60c K. Pachal 85 P.Y. Nechaeva Z.A. Meadows B. Ngair J.M. Muse , , , , , 134 I. Naryshkin J-P. Meyer P.S. Miyagawa T. Moa , , , 32 133 , N. Orlando S. Morgenstern 33e G. Myers 172 169 , , 42 I. Nikolic-Audit 65 20 , A. Ogrodnik 138a,138e , H. Oppen , , Q. Ouyang 41b,41a P.S. Ott J. Montejo Berlingen J. Olszowska 120 , , , , R. Nicolaidou 11 159 S. Palazzo K. Nagai 53 J.G. Panduro Vazquez 137 , 68a,68b A. Ochi , , G. Mornacchi K. Nakamura , A.I. Mincer 87 F. Neuhaus , 84 , , C. Meroni , , M. Mikestikova , K. Papageorgiou 151 C. Nellist , N. Nishu , 65 48 122,af , 54 , 143,* 74a,74b T. Moskalets 133 36 57 L.S. Miller G. Mokgatitswane , 134 D. Muenstermann B. Meirose , 116 , 171 , 109 , Y. Okazaki 178 I. Nomidis 23b , 72a 37 , 39 90 C. Meyer 137 H.A. Pacey 158b A. Miucci , E. Meoni 85 , 69a,69b 165 , O. Novgorodova , Y.W.Y. Ng 6 , R. Narayan S.A. Olivares Pino , , M. Mironova , J.E. Mdhluli , D. Paredes Hernandez S. Oerdek , 129 H. Otono , 91 , 165 19 114 , 14 46 A. Murrone 10 L. Mince , A.A. Myers 81 , 30 J.L. Munoz Martinez , J. Ocariz 138a P.U.E. Onyisi , , A.Nag Nag A. Ouraou , A. Olszewski , , M. Mlynarikova , , G. Palacino A. Nisati , 174,aa D. Orestano , C.E. Pandini A.K. Morley , M. Morgenstern 47 A. Mehta , M. Negrini , , V. Nikolaenko 18 158b , A. Montalbano , J. Navarro-Gonzalez 132 122,af A.L. Moreira De Carvalho , 54 169 , J. Mueller , 88 61a Y. Nakahama 34,ak , L. Merola C. Papadatos R.B. Nickerson D.W. Miller 11 , , O. Miu , 176,142 , , , G. Mikenberg A.S. Mete , 11 132 E.D. Mendes Gouveia Y. Noguchi M.S. Neubauer 55b , , 68a,68b 113 , M. Mosidze J. Pacalt 64 M.L. Ojeda S. Mohapatra , Y.S. Ng , , , T. Novak 101 36 , 54 , 22a , 6 54 38 42 S. Menke L.M. Mir , 101 , , 50 8 138a,138e 24 32 60c S. Odaka 119 137 , 91 36,f 70a,70b 36 162 113 85 87 N. Ozturk S. Pagan Griso D.K. Panchal L. Paolozzi C. Paraskevopoulos L.F. Oleiro Seabra M.J.R. Olsson A. Onofre G.E. Orellana G. Otero y Garzon F. Ould-Saada H.R. Nindhito D.L. Noel J. Novak F.G. Oakham S. Oda R. Oishi G. Navarro A. Negri M. Nessi C.W. Ng E. Nibigira N. Nikiforou D.P. Mungo W.J. Murray A.G. Myagkov O. Nackenhorst A.M. Nairz R.F. Naranjo Garcia E. Monnier N. Morange P. Morettini V. Morisbak B. Moser S. Muanza C.D. Milke I.A. Minashvili Y. Mino M. Mittal T. Mkrtchyan P. Mogg S. Mehlhase A. Melzer L. Meng P. Mermod J. Metcalfe L. Mijovi´c R.A. McPherson JHEP03(2021)268 , , , , , , , , , , , , 43 90 79 52 64 79 , 46 , , , , , 53 143 , 114 179,j , , , 94 171 , 39 , 24 23b 161 , , , 101 , , 52 , 152 74a,74b 27b 97 21 180 57 , 80a , , 119 27c 70a,70b 36 , , , , 111 , , 138a K. Reeves K. Peters , , A.J. Ruby , 29 G. Rybkin , , , , D. Sammel , , A. Quadt 61a 46 172 D. Pohl , , , 52 , A. Peyaud 29 , 27a A. Pathak 83a A. Polini , , 119 22b , , 36 33e 103,aa 52 141 E. Rossi , E. Plotnikova 90 A. Sahu 100 , 46 106 , , M.B. Rendel G. Rahal B. Roland C. Petridou 141 , , J.A. Parsons 100 , 141 N.A. Rusakovich M.W. Phipps , 46 A. Robson 141 72a,72b , A. Salnikov , P. Pralavorio , 66a,36,66c , 114 , 27b F. Pasquali E. Reynolds 140 , 52 , B.S. Peralva R. Pedro , D. Pietreanu 120 99 145d A. Rimoldi , , 142 , 172 S. Popa P. Postolache 30 J. Poveda N. Proklova , , 144 126 , M. Raymond 68a,68b Y. Qin , , X. Ruan , 60a , 118 B. Rottler , 154 , 36 74a,74b 96 72a 140 D.F. Rassloff , M. Rybar 147 , S. Richter 178 , C. Pitman Donaldson 105 E. Rossi G. Redlinger C. Sandoval 159 , , , P. Rivadeneira 27b 3 , R. Polifka , J.R. Pater D.V. Perepelitsa , A. Perrevoort 148 N. Rompotis A. Salzburger , M. Przybycien , V. Pleskot , L. Sabetta , , , M. Renda , 114 14 , 135 , 180 I. Pogrebnyak S.H. Robertson 6 K. Petukhova , 36 , , 52 M. Sahinsoy V. Petousis 155 46 Z. Rurikova H. Peng , 15a,15d R.A. Rojas , 172 , , 36 , R. Piegaia 70a,70b F. Ragusa 134 , 102 E.W. Parrish , 72a,72b J. Qian 45a,45b 36 P.W. Phillips , 45a,45b , 103 23b,23a 101 , 62b 132 , B. Reynolds I. Riu T. Poulsen S. Pospisil 100 Y. Rozen , , 28a , J.M.P. Pasner , 111 A. Sanchez Pineda , 94 104 M. Rotaru , 11 L. Pontecorvo , 58 A. Rodriguez Rodriguez M.L. Proffitt A. Prades Ibanez G. Salamanna , 153 J.L. Pinfold , 18 , , , I. Ravinovich 101 L. Pedraza Diaz K. Ran , , M. Rijssenbeek R. Richter , M. Robles Manzano 55b,55a , , 172 , , C. Rizzi 126 B.J. Rosser 36 S. Perrella 54 F. Safai Tehrani , 46 111 , 172 , 57 , 67a 92 M. Sandhoff S. Saha , J. Proudfoot A. Renardi 132 E. Petit , 92 P. Sabatini , , C. Peng , E.M. R¨uttinger 36 F. Salvatore 79 , , , L. Poggioli , 102 145d 89 , V. Plesanovs , 7 O. Røhne 29 36 66a,66c 40 , 120 46 P. Pasuwan 29 75a,75b , S. Rettie D.M. Rebuzzi M. Romano 54 A. Rummler H. Potti T. Pham 139 , M. Racko , , , , , , A. Policicchio , 93 – 27 – 180 59 18 , R.H. Pickles 32 N.E. Pettersson O. Rifki , 111 F. Parodi 172 181 41b,41a , , A. Rozanov G. Ripellino J. S´anchez R. Rosten E. Rizvi , 102 , , , B. Ravina , 32 181 , L. Pereira Sanchez 67a,67b V.R. Pascuzzi 114 , 11 , P. Saha 46 , G. Rosin , D. Salamani , 99 171 E. Ricci 151,166a 128 O. Penc , M. Pedersen R. Sadykov R. Poggi , M. Primavera , , , 134 , H. Pernegger 72a D. Pyatiizbyantseva 162 152 138a C. Rembser , , 60d,60c , J. Roggel 96 141 D. Ponomarenko , 152 144 , F. Pastore M.-A. Pleier 100 T.C. Petersen M. Pinamonti 64 , , , , 150 36 C.J. Potter 29 D.M. Portillo Quintero S. Rodriguez Bosca A. Roy , S. Protopopescu , , , G. Pezzullo 36 P. Rieck J.P. Rutherfoord , I.G. Sanderswood 119 , M. Reale A. Picazio 55b , A. Ramirez Morales , , S. Rave 5 100 M. Pettee D. Salvatore , , , 79 , 68a,68b , , 121b,121a M.E. Pozo Astigarraga A. Poley E.D. Resseguie 79 L. Rossini 29 , , A. Romaniouk , , 46 18 M.A. Parker T.T. Rinn , 134 14 T. Saito , , 148 113 J.A. Sabater Iglesias , , C.M. Robles Gajardo 46 S. Rosati 38,47 , , 29 70a 68a A. Ruiz-Martinez A. Rej 55b 31 71a,71b 70a,70b D. Price M. Safdari , , 32 , P. Puzo , S. Roe 70a,70b , , 23b G. Rabanal Bolanos 162 J. Pearkes , 74a,74b 122 134 52 , F. Rizatdinova 99 P. Reznicek 78 R. Poettgen , , 171 , 36 155 36 166b L. Perini A. Pizzini , , 174 L. Portales D. Sampsonidou M. Ridel , , I.N. Potrap S. Passaggio , E. Pianori , , B.A. Petersen J. Roloff , C. Roda , , 166a , F. Prokoshin C.O. Sander 27d L. Rustige A.P. Pereira Peixoto 161 G. Pownall , 83b M. Saito L. Roos , , L.P. Rossi G. Rovelli S. Resconi , 133 F. R¨uhr S. Prell V. Polychronakos , 72a 121b,121a 65 H.F-W. Sadrozinski , , , , , L. Pascual Dominguez A.D. Pilkington 121b,121a 154 , , A. Puri , F. Rauscher , L. Rinaldi , 73a,73b 100 N.P. Readioff , , A. Reiss , A.J. Parker G. Polesello , L. Pezzotti , S. Rajagopalan 1 , , , 64 , , 36 62c A. Ryzhov 64 57 132 44 103 46 46 F. Petrucci D. Robinson S.V. Peleganchuk T. Pauly 64 , 148 52 37 124 , , 46 , , 53 160 136 54 132 165 A. Salvador Salas 73a,73b 64 46 53 90 , 132 145d 69a,69b 172 B. Safarzadeh Samani M. Saimpert J. Salt D. Sampsonidis H. Sandaker E. Rossi D. Rousseau T.A. Ruggeri H.L. Russell E.B. Rye S. Sacerdoti J.C. Rivera Vergara M. A. Rocchi A.M. Rodr´ıguezVera C.P.A. Roland M. Ronzani A.L. Read D. Reikher A.G. Rennie O.L. Rezanova E. Richter-Was M. Rimoldi M.M. Prapa K. Prokofiev D. Pudzha M. Queitsch-Maitland J.A. Raine D.M. Rauch P. Podberezko I. Pokharel C.S. Pollard G.A. Popeneciu K. Potamianos T.D. Powell R.F.Y. Peters P. Petroff R. Pezoa G. Piacquadio J.E. Pilcher L. Pizzimento U. Parzefall E. Pasqualucci J. Patton T. Peiffer M.M. Perego E. Perez Codina T.H. Park JHEP03(2021)268 , , , , , , , , , , , 96 90 , , 53 , 81 , , 64 119 71a 153 169 110 , , 152 , 64 149 110 151 79 , , 52 99 , , , , , , , , , 115 127 , , 117 103 , 46 138a,138b 18 174 176 , , 166b 178 F. Scuri 28b F. Sohns 99 , B. Stapf , , , , , 36 O. Sasaki , , E. Skorda , , , S. Simion , 142 26 , 66a,66b 53 50 , S. Singh A. Taffard , 69a , 53 , , 133 96 156 , M.J. Sullivan 151,166a 36 45a 57 , 119 J. Strandberg 175 112 160 , T. Takeshita S. St¨arz 100 A.A. Snesarev A.C. Schaffer , , , A. Shmeleva 66a,66c J. Stupak , , , 110 , 55b,55a 48 A. Soloshenko H. Santos 82 84 , , A. Sydorenko , S.C. Seidel 94 S. Schmitt 99 A. Schwartzman 138a,138d 17 , 61a 178 , , M. Shapiro K.E. Schleicher M.J. Shroff , , W.Y. Song A. Schulte , J. Smiesko 38 A. Skaf , , , M. Shimojima , 19 , 99 122 175 L. Serkin , G. Sciolla , M. Shehade , 143 C. Sawyer 99 , , 14 15a 33e A. Søgaard 180 142 64 G.A. Stewart B. Stelzer , 177 , 100 , M. Spangenberg E. Shabalina 144 , 162 , O. Smirnova 41b,41a D.P. Spiteri , C.J.E. Suster 160 , , J. Taenzer 45a,45b 155 , 130 54 V. Sinetckii G. Sekhniaidze V.V. Sulin R. Soualah R. Str¨ohmer 114 C. Schiavi M. Stankaityte , , B. Stugu , , , , , , K. Takeda J. Shlomi U. Sch¨afer S.B. Silverstein 155 , , T. Scanlon O. Sidiropoulou , 100 , 46,x 112,s , , 46 P. Seema 29 M. Stamenkovic 165 80b N. Scharmberg A. Straessner , 137 28b 169 C. Santoni , 86 J.G. Saraiva , , T. Swirski , 36 , L. Serin A. Sonay C. Schmitt , M. Schott 135 , , 79,y , 47 33e L.Y. Shan , A. Smykiewicz 2 19 P. Starovoitov Ph. Schune E.M. Shrif 51 , , 79 61a , , , 70a,70b 114 29 99 B.H. Smart S.M. Shaw 168 J. Sj¨olin A.A. Solodkov A. Soffer 133 , , 66a,66c , R. Sawada , , 178 F. Schroeder 140 A. Sfyrla 139 144 , 126 A. Sciandra , , X. Sun , M. Spalla , , M. Schioppa 178 155 112 M. Spina 54 Y. Shimogama 172 , , , 106 105 P. Sinervo 174,aa 36 , 165,ak S.A. Stucci T.J. Stevenson 181 J.M. Seixas , , H. Son A.L. Steinhebel C. Scharf 55b,55a , P. Strizenec , , , K. Tackmann , , N.B. Suarez M. Schernau L. Schaefer , S.P. Swift C. Serfon 67a,67b , 56 12b , , A. Sansoni S. Stonjek , L.N. Smirnova R. Stamen 46 67a,67b 29 , , , , M.M. Stanitzki E. Schopf K. Sedlaczek , R. Takashima 148 A. Sbrizzi 99 , , 113 M. Shiyakova 19 , 37 A. Sapronov 101 60a 49 , , , K. Smolek P. Staroba K. Shaw S. Sun 166a , – 28 – 116 , , , 52 111 120 90 S. Shrestha 45a,45b 134 K. Schmieden 133 138a , , 89 23b S. Sottocornola 163 148 58 85 R. Sobie , G. Spigo , B.A. Schumm 123 , M.V. Silva Oliveira S. Schramm U. Soldevila , E. Sideras Haddad P. Savard , , 153 114 , , V. Smakhtin , , D. Ta F. Sforza 29 X. Su , 28b , 5 C. Seitz 52 , S. Sen 16 36 61a , , S. Simsek D. Shaked Renous 111 168 171 H. Stenzel , , S.Yu. Sivoklokov , 37 141 152 , S. Spagnolo Y. Sano R. Schwienhorst , C.O. Shimmin 21 , , P. Sommer E. Schanet , F. Schenck P. Steinberg T. Strebler , , D. Schaefer , , , J. Stark 46 , 130 , E.J. Schioppa 166a 94 A. Strubig , C. Sbarra 143 Y. Smirnov 23b,23a , 44 , S. Shirabe , 136 154 P.G. Scholer B.L. Stamas T. Sumida , 141 127 45a,45b , , M. Stolarski , 114 26 144 42 , B. Stanislaus 60d,147,60c S. Snyder , 55b,55a M. Swiatlowski 172 , 111 4c , M. Smizanska 133 D.R. Shope K.A. Saoucha E. Sauvan K. Sliwa R.H.M. Taibah T. Seiss C.D. Sebastiani 61b , Dj. Sijacki , , , , , F. Sopkova , , 84 P.B. Shatalov 27b , , , S. Sevova L. Shi 130 T. Sykora I. Siral 52 84 , 1 139 , 29 , , 48 94 T.M. Spieker 133 104 178 122 68a,68b 114 , A.M. Sickles D. South , 94 , J. Schovancova M. Schumacher 127 W. Su , 141 , 52 , E.Yu. Soldatov , 139 118 61a M. Strauss P. Schacht 36 152 V. Solovyev 23b,23a , , G.H. Stark D. Scheirich , , , N.W. Shaikh M. Sannino , , Z.M. Schillaci G. Stoicea 147 Ph. Schwemling S. Sultansoy 122 , , 122 , G. Stavropoulos 121b,121a , 136 M. Svatos E. Stanecka F. Siegert J. Shojaii , E. Tagiev A. Santra R. Stroynowski , , , C.J. Simpson-allsop I.P.J. Shipsey , O. Stelzer-Chilton , A. Schoening A. Stabile , , 135 S.Yu. Smirnov , K.R. Schmidt-Sommerfeld 24 I.M. Snyder 36 , , 142 , , 54 , , A.L. Sopio , , D. Su H.A. Smith 45a,45b 84 N. Semprini-Cesari R.D. Schamberger 105 21 99 A.S. Sharma , , 37 P. Sicho B.D. Seidlitz 18 , M. Slawinska , , 93 155 M. Sykora , , L.M. Scyboz , H. Severini 36 130 , , I. Sayago Galvan , 137 M. Sioli , D. Sperlich 143 141 P. Sherwood 111 46 37 140 166a 119 F. Sauerburger 42 , , , 36 , 113 95 178 144 127 28a 93 23b,23a 104 60a 33e 127 167 N.A. Styles D.M.S. Sultan M.R. Sutton I. Sykora R. Tafirout E.A. Starchenko R. Staszewski H.J. Stelzer M.C. Stockton S. Strandberg D.M. Strom O.V. Solovyanov A. Sopczak A.M. Soukharev F. Span`o M. Spousta A. Stampekis S. Sinha P. Skubic N. Smirnov E.A. Smith H.L. Snoek C.A. Solans Sanchez Y. Shen J.D. Shinner M.J. Shochet E. Shulga A. Sidoti R. Simoniello F. Scutti A. Seiden S.J. Sekula M. Sessa J.D. Shahinian A. Sharma L.K. Schildgen S. Schlenker L. Schoeffel J.F.P. Schouwenberg H-C. Schultz-Coulon T.A. Schwarz S.N. Santpur K. Sato L. Sawyer J. Schaarschmidt D. Schaile V.A. Schegelsky D.P.C. Sankey JHEP03(2021)268 , , , , , , , , 59 60a 106 , , , , 101 , , 119 , 140,* 160 , , 89 36 , 104 114 61b 36 , , , , , 72a,72b , 130 , , 72a , 140 81 99 , 151,ak , , 111 11 , , 99 21 , 135 62b , , 34 , , 103 , , 148 47 133 , , 156 166a , 64 , , V. Vrba 46 130 102 45a,45b 139 A.M. Wang , 92 , W.X. Wang , 104 , 93 16 119 S. Tisserant L. Vigani , 93 A. Vallier Y. Tu , , , , , 178 P. Vokac , N.M. Tamir 40 , , 60a I. Van Vulpen F.C. Ungaro 21 , 181 , 133 E. Torrence 154 51 R.-J. Wang , R.J. Ward 62b 158a D. Vannicola A.F. Webb , 180 E. Tzovara 94 45a,45b S. Veneziano , K. Vorobev , , F. Tsai , , B.W. Whitmore , , 169 V.M. Walbrecht , B. Vachon M.C. Vetterli 42 , K. Tokushuku , 32 102 , 94 , D.R. Tovey 84 128 , 161 141 M.G. Vincter 93 169 K. Whalen , H.H. Williams I.M. Trigger B. Wendland K.E. Varvell , 167 , 140 , C. Wagner , , , 28a A. Trofymov E.J. Thorpe 39 M. Tasevsky , T. Vazquez Schroeder 51 , A.R. Weidberg 20 G.N. Taylor , 29 29 , 64 , 101,z , 167 W. Verkerke 58 , 138a,138c M. Testa P. Tipton 14 , , 135 W.T. Wang M. Vogel G. Unel 141 , D.W. Thomas 35f D. Turgeman 133 , , , 24 , , K.C. Tam P. Wang 14 , 19 P. Teixeira-Dias 111 29 R.A. Vallance E. Valdes Santurio , 79 , , C. Wiglesworth 60a 155 A. Tarek Abouelfadl Mohamed D. Tsybychev C.P. Ward , , , , 62a V. Vacek S. Tok´ar S. Van Stroud 46 , V. Wallangen A. Trzupek V. Vorobel , , 152 , J. Toth 99 , B.M. Waugh P. Tornambe 99 , 81 113 R. Wakasa , , , 6 , P. Tas S. Wada 103 87 A. Tricoli , , D. Whiteson 84 24 150 , Y. Wei , S. Tzamarias G.H.A. Viehhauser , 12d , E.G. Tskhadadze E. Vilucchi F. Veloso , T. Wenaus , 88 121b,121a 133 , , 1 147 152 , 37 E.R. Vandewall B. Trocm´e M. Vranjes Milosavljevic 39 , S. Terzo , C. Vergis 68a , , 155 , , T.D. Weston 50 154 36 D. Varouchas 61a 148 P.J. Verschuuren D.M. Williams , 165 Y. Tayalati 16 , , E. Thomson T. Wang 98 , 143 165 , , A. Undrus J. Wang 61a , , 93 I. Vivarelli 157 L. Val´ery , 21 J. Tojo 152 S. Tsuno , , 11 18 , 60b 138a S. Turchikhin 71a,71b Z. Uysal , 48 , 18 , S. Timoshenko 172 8 D. Vazquez Furelos G. Watts 36 C. Tosciri S. Tapprogge , , , N. Wieseotte I. Vukotic – 29 – C. Valderanis , , , P.M. Tuts , , 23b,23a M.J. White A. Warburton 38 21 P.S. Wells , 30 H. Wahlberg M. Trzebinski , F. Tresoldi 36 , L. Tompkins J. Terron 94 , 142 , , E. Von Toerne W. Walkowiak 8 171 , , N. Vranjes , , T. Varol S.M. Weber A.A. Talyshev 68a 36 , T. Theveneaux-Pelzer 52 , , , L.M. Veloce M. Unal , , P. Van Gemmeren 33c M. Wessels 93 180 H. Wang , G.F. Tartarelli 175 , S. Wang 162 , 121b,121a V. Tsiskaridze , , , 33e 34 R. Teixeira De Lima , S. Todt , W. Trischuk , C. Vernieri 50 100 , , E.M. Villhauer L.J. Wilkins G. Usai , 101 36 , , 14 24 119 81,116 A. Valero 157 60c 89 , V. Tsulaia 141 173 36 , M. Verducci 172 119 , 27b,e 55b,55a 104 A.N. Tuna 161,v , P.D. Thompson O.E. Vickey Boeriu C. Vittori , M. Vandenbroucke , , 123 , F. Vazeille A. White A. Vaidya 114 , R. Turra , M. Toscani , 46 , 50 27b M. Wielers , 36 C. Weiser , 148 23b,23a , M.F. Watson 36 21 , G. Unal L. Truong 174 105 R. Vuillermet , , 48 S. Wahdan , A. Tavares Delgado M. Vozak K. Terashi M. Talby 172 , 99 T. Trefzger , , , , 21 , C. Wang S.A. Weber S. Tapia Araya , A.S. Tee , S.D. Walker M.J. Veen , , , , 167 155 N. Wermes 90 81 C. Varni 162 101 M. Tomoto G. Tarna , S.M. Wang , 180 C. Wanotayaroj 119 90 , , , 124 20 , 64 7 113 P. Urquijo 60a 36 100 , 32 Yu.A. Tikhonov , 60b 120 H.G. Wilkens 105 D.A. Trischuk A. Tsirigotis , , , 28b C. Wiel T. Vickey T.R. Van Daalen , , N. Themistokleous J.C. Vermeulen , 52 , , W. Vandelli 134 S. Todorova-Nova A. Verbytskyi , I.I. Tsukerman A.S. White , , 110,ag T. Vafeiadis V. Tudorache 179 , , , R.J. Turner M. Weirich 172 N.K. Vu , , S.E. von Buddenbrock , 119 , 145d 107,ae , S. Valentinetti E.A. Thompson G.A. Vasquez M. Villaplana Perez J.J. Teoh G. Tateno 89 F. Trovato , , Y. Takubo , , , C. Wang A. Vishwakarma , , A.T. Watson , H. Teagle 47 161 , 46 S. Wenig , 165,aa 132 F. Ukegawa , 27b , 4b,t R. Tanaka R. Walker , 119 , W. Wagner , 21 K. Tariq , R. Tombs 36 , Z. Wang R. Wang C.J. Treado M.S. Weber E. Torr´oPastor V. Vecchio 50 , , , 21 , 73a,73b 27b 57 , , , , 68a 36 23b,23a 67a,67b 166a 179 J. Urban E.W. Varnes J.H. Vossebeld 24 166b 162 , , , 162 142 17 29 48 53 159 126 60a 60a 23b,23a 41b,41a 162 72a 172 J. Weingarten T. Wengler A.M. Wharton W. Wiedenmann L.A.M. Wiik-Fuchs J. Walder A.Z. Wang R. Wang Y. Wang N. Warrack C. Weber M. Villa G.S. Virdee J. Von Ahnen M. Vos M. Vreeswijk P. Wagner R. Vari M.E. Vasile J. Veatch A. Ventura A.T. Vermeulen N. Viaux Maira K. Uchida K. Uno K.O.H. Vadla M. Valente J.A. Valls Ferrer M. Vanadia S. Trincaz-Duvoid C. Troncon P.V. Tsiareshka M. Tsopoulou A. Tudorache I. Turk Cakir J.P. Thomas V.O. Tikhomirov K. Todome E. Tolley H. Torres A. Traeet J. Tanaka S. Tarem E. Tassi W. Taylor H. Ten Kate R.J. Teuscher E.P. Takeva JHEP03(2021)268 , , , , , 54 , 28a , 53 143 , 60a 36 , , 15b , 42 62c , , , ˇ Zeniˇs , 154 , University 62c ) 105 60a 179 36 d 133 T. Xu ( , , T. Y. Zhu , K. Zoch , , J. Ye , , , , Istanbul Bilgi 155 135 18 E. Zaffaroni ) 122 , 94 105 b 46 15c ( G. Zhang , , J. Xiang , 10 M. Zhou , T. Yang C.J.S. Young 79 40 , Physics Department, , 7 , Z. Zhao 23b,23a S.L. Wu ) , 15b , S. Zhang b 78 ( R. Xu 60a , 57 R. W¨olker 144 S. Zambito , H. Ye J. Zhu , 179 , , 29 99 O. Zenin 34 46 , E. Winkels 15a , Department of Physics, S. Xella 5 D.P. Yallup ) , T. Yamazaki H. Zhou 171 , , , c A.F. Wongel ( G. Zacharis , 50 , A. Zoccoli S. Yang L. Xu N.I. Zimine , , Y. Zhao , 33a , 167 179 , 84 D.F. Zhang 173 16 18 , A. Wolf R. Zhang 65 49 , , 60a K. Wraight H. Zhu , , K. Yoshihara Y.C. Yap , 95 15c , 84 171 60a 18 Istanbul Aydin University, Application 177 J.C. Zeng ) , b Division of Physics, TOBB University of N. Zakharchuk C. Zhou ( ) H. Xu , ˇ , Zivkovi´c , c S. Yacoob P. Zhao 133 ( , , B.M. Wynne 105 H.T. Yang 60a , B. Zabinski 64 , L. 158b , , 156 B. Zhang I. Wingerter-Seez , H. Yamauchi , , M. Zhang 100 D. Zieminska V.W.S. Wong H.L. Zhu 35f , , , , M. Wobisch 150 K. Yorita 162 , W-M. Yao 133 , 133 , 60a 60c,60d 39 152 , H. Xu – 30 – K.W. Wo´zniak 60a , , B. Zhou 15a,15d Z. Zhang 84 15a , 138a,138c 121b,121a G. Zemaityte 171 , B. Yabsley , P. Yin 36 , 180 T.R. Wyatt M. Zaazoua M. Zgubiˇc , 152 L. Zhang , , 89 , Department of Physics Engineering, Gaziantep University, Department of Physics, Nanjing University, Nanjing, T. Zakareishvili 15a,15d D. Xu H.J. Yang , Z. Yang C. Zhu , ) ) , , , c 64 d 133 , M. Yamatani ( 61a ( , M. Ziolkowski 15c 25 162 , M. Wittgen 155 60b 163 114 D. Zhong 122,af 52 Z. Xu , H. Wolters , B.K. Wosiek , , V. Zhulanov P.J. Windischhofer , , 84 105 46 60b C. Zeitnitz X. Yue Y. Zhang , Z. Yan L. Zwalinski , , , , 110 102 47 Y. Yang D. Zerwas L. Zhang M.R. Yexley , , , 37 , 60b 60c C.G. Zhu 60b,i , , I. Xiotidis 79 Z. Xu 15a 35a 15a 7 , J. Wuerzinger , Z. Zinonos , 60a Z. Zheng B.T. Winter , , A.M. Zaitsev 15b Y. Yamaguchi , 60a , 52,* R. Zou 79 S.D. Worm , , , J. Yan 130 87 S. Willocq K. Zhukov M.W. Wolter 134 , , , R. Yuan 82 X. Zhang , 148 , 144 X. Yang 32 52 X. Xie S.V. Zeißner , , Y. Zhou , 15a , K. Zhang Y. Xu S. Zerradi , , 152 60c , Y. Wu 6 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Department of Physics, Ankara University, Ankara, 52 , 60c 60a ) ) ) I. Yeletskikh 105 92 , a a a 105 54 Tsinghua University, Beijing, of Chinese Academy ofInstitute Science (UCAS), of Beijing, Physics, China UniversityDepartment of for Belgrade, Physics Belgrade, and Serbia Physics Technology, University Division, of Lawrence Berkeley Bergen, Bergen, NationalBerkeley Norway Laboratory CA, and U.S.A. University of California, University, Faculty of Engineering andBogazici University, Natural Sciences, Istanbul, Istanbul, Gaziantep, Turkey Institute of Physics, AzerbaijanInstitut Academy of de d’Altes Sciences, F´ısica Energies Baku, (IFAE),Barcelona, Azerbaijan Barcelona Spain Institute of Science and Technology, Department of Physics, UniversityDepartment of of Arizona, Physics, Tucson University AZ,Physics of U.S.A. Department, Texas National at and Arlington,Physics Kapodistrian Arlington University Department, TX, National of U.S.A. Technical Athens, UniversityDepartment Athens, of of Greece Athens, Physics, Zografou, University Greece of Texas at Austin, Austin TX, U.S.A. Physics Department, SUNY Albany, AlbanyDepartment NY, of U.S.A. Physics, University of Alberta, Edmonton AB,and Canada Research Center for AdvancedEconomics Studies, and Istanbul, Technology, Ankara, Turkey LAPP, Universit´eGrenoble Alpes, Universit´eSavoie MontHigh Blanc, Energy CNRS/IN2P3, Physics Annecy, Division, France Argonne National Laboratory, Argonne IL, U.S.A. Department of Physics, University of Adelaide, Adelaide, Australia 29 ( ( ( 7 8 9 3 4 5 6 1 2 16 17 18 13 14 15 10 11 12 X. Zhuang S. Zimmermann T.G. Zorbas D. Zanzi S. Zenz J. Zhang X. Zhang A. Zhemchugov N. Zhou N. Yamaguchi Y. Yamazaki X. Yang S. Ye C. Young J. Zahreddine F. Winklmeier J. Wollrath N.L. Woods X. Wu X. Xiao W. Xu S. Williams JHEP03(2021)268 West ) f ( LPMR, Facult´e Moroccan ) ) e d ( ( INFN Sezione di Bologna, ) b ( iThemba Labs, Western Cape, ) School of Physics, University of b ) ( e ( INFN Gruppo Collegato di Cosenza, ) b ( Facult´edes sciences, Universit´e ) f ( Oskar Klein Centre, Stockholm, Sweden ) b ( Horia Hulubei National Institute of Physics and ) b ( – 31 – University Politehnica Bucharest, Bucharest, Facult´edes Sciences, Universit´eIbn-Tofail, K´enitra, ) ) e b Department of Physics, Alexandru Ioan Cuza University of Iasi, ( ( ) c ( National Institute for Research and Development of Isotopic and Molecular Technologies, ) d ( Department of Physics, Stockholm University, Dipartimento di Fisica, Universit`adella Calabria, Rende, Facult´edes Sciences Ain Chock, Universitaire R´eseau de Physique des Hautes Energies - Department of Physics, University of Cape Town, Cape Town, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Transilvania University of Brasov, Brasov, Facultad de Ciencias y Centro de Investigaci´ones,Universidad Antonio Nari˜no,Bogot´a, INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica, University of South Africa, Department of Physics, Pretoria, Facult´edes Sciences Semlalia, Universit´eCadi Ayyad, LPHEA-Marrakech, Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Departamento de Universidad F´ısica, Nacional de Colombia, Bogot´a,Colombia, Colombia ) ) ) ) ) ) ) ) ) ) ) ) ) a a a c a c d a b a a b a Lehrstuhl f¨urExperimentelle Physik IV, TechnischeInstitut Universit¨atDortmund, Dortmund, f¨urKern- und Germany Teilchenphysik, TechnischeDepartment Universit¨atDresden, Dresden, of Germany Physics, DukeSUPA University, - Durham School NC, of U.S.A. PhysicsINFN and e Astronomy, Laboratori Nazionali University diPhysikalisches of Frascati, Institut, Edinburgh, Frascati, Freiburg, Italy Albert-Ludwigs-Universit¨atFreiburg, Edinburgh, Germany U.K. Laboratori Nazionali di Frascati, Italy Physics Department, Southern MethodistPhysics University, Department, Dallas University TX, of U.S.A. National Texas at Centre for Dallas, Scientific Richardson Research TX, ”Demokritos”, U.S.A. Agia Paraskevi, Greece Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany CERN, Geneva, Switzerland Enrico Fermi Institute, University ofLPC, Chicago, Universit´eClermont Auvergne, Chicago CNRS/IN2P3, IL, Clermont-Ferrand,Nevis U.S.A. France Laboratory, Columbia University, IrvingtonNiels NY, Bohr U.S.A. Institute, University of Copenhagen, Copenhagen, Denmark Department of Physics, Carleton University, Ottawa ON, Canada Universit´eHassan II, Casablanca, ( Foundation for Advanced Science Innovationdes and Sciences, Research Universit´eMohamed (MAScIR), Premier, Rabat, Oujda, Mohammed V, Rabat, Morocco California State University, CA,Cavendish U.S.A. Laboratory, University of Cambridge, Cambridge, U.K. ( ( the Witwatersrand, Johannesburg, South Africa Physics Department, Cluj-Napoca, University in Timisoara, Timisoara, Romania ( Sciences, Kosice, Slovak Republic Physics Department, Brookhaven National Laboratory,Departamento Upton de Universidad NY, F´ısica, de U.S.A. Buenos Aires, Buenos Aires, Argentina Physikalisches Institut, Universit¨atBonn, Bonn, Germany Department of Physics, BostonDepartment University, of Boston Physics, MA, Brandeis U.S.A. University, Waltham MA, U.S.A. Nuclear Engineering, Bucharest, Iasi, Albert Einstein Center forUniversity Fundamental Physics of and Bern, Laboratory Bern, forSchool Switzerland High of Energy Physics Physics, and Astronomy, University of( Birmingham, Birmingham, U.K. Italy Institut f¨urPhysik, Humboldt Universit¨atzu Berlin, Berlin, Germany ( ( ( ( ( ( ( ( 48 49 50 51 52 42 43 44 45 46 47 36 37 38 39 40 41 34 35 31 32 33 28 29 30 24 25 26 27 21 22 23 19 20 JHEP03(2021)268 Instituto de Tsung-Dao Dipartimento ) ) ) c d c ( ( ( Department of Physics and ) ICTP, Trieste, c ( ) b ( INFN Sezione di Genova, Italy ) b ( Institute of Frontier and Interdisciplinary ) b ( – 32 – Dipartimento di Fisica, Universit`adi Roma Tor Vergata, ) b ( Dipartimento di Matematica e Fisica, Universit`aRoma Tre, ) b ( Dipartimento di Fisica, Universit`adi Milano, Milano, Italy Dipartimento di Fisica, Universit`adi Napoli, Napoli, Italy ) Dipartimento di Fisica, Sapienza Universit`adi Roma, Roma, Italy Dipartimento di Fisica, Universit`adi Pavia, Pavia, Italy ) b Dipartimento di Matematica e Fisica, Universit`adel Salento, ) ) b ( Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Pisa, Italy ) b ( b b ) ( ( ( b ( School of Physics and Astronomy, Shanghai Jiao Tong University, Key ) c ( Universit`adegli Studi di Trento, Trento, Italy ) b ( Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland ) b ( Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, ) b ( Departamento de Engenharia Universidade El´etrica, Federal de Juiz de Fora (UFJF), Juiz de AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, INFN-TIFPA, INFN Sezione di Napoli, INFN Sezione di Pavia, INFN Sezione di Pisa, INFN Sezione di Roma, INFN Sezione di Roma Tor Vergata, INFN Sezione di Roma Tre, INFN Gruppo Collegato di Udine, Sezione di Trieste,INFN Udine, Sezione di Lecce, INFN Sezione di Milano, Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, Kirchhoff-Institut f¨urPhysik, Heidelberg, Ruprecht-Karls-Universit¨atHeidelberg, Dipartimento di Fisica, Universit`adi Genova, Genova, Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, Physikalisches Institut, Heidelberg, Ruprecht-Karls-Universit¨atHeidelberg, Germany Department of Physics, University of Hong Kong, Hong Kong, ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) a a a a a a a a a a a a a b a b a a Krakow, Institute of Nuclear PhysicsFaculty Polish of Academy Science, of Kyoto Sciences, University,Kyoto Krakow, Poland Kyoto, University Japan of Education,Research Kyoto, Center Japan for Advanced ParticleFukuoka, Physics Japan and Department of Physics, Kyushu University, Fora, UniversidadeF´ısica, de S˜aoPaulo, S˜aoPaulo, Brazil KEK, High Energy Accelerator ResearchGraduate Organization, School Tsukuba, of Japan Science, Kobe University, Kobe, Japan Roma, Italy Institut f¨urAstro- und Teilchenphysik, Austria Leopold-Franzens-Universit¨at,Innsbruck, University of Iowa, IowaDepartment City of IA, Physics U.S.A. andJoint Astronomy, Institute Iowa for State Nuclear University, Research, Ames Dubna, IA, Russia U.S.A. Roma, Italy Department of Physics, Indiana University, Bloomington IN, U.S.A. Politecnico di Ingegneria e Architettura, Universit`adi Udine, Udine, Italy Lecce, Italy ( Institute for Advanced Study, HongKowloon, Kong Hong University Kong, of China Department Science of and Physics, Technology, Clear National WaterIJCLab, Tsing Bay, Universit´eParis-Saclay, Hua CNRS/IN2P3, University, 91405, Hsinchu, Orsay, Taiwan France University of Science andScience Technology of and China, Key Hefei, Laboratory ofUniversity, Particle Qingdao, Physics andLaboratory Particle for Irradiation Particle (MOE), Astrophysics Shandong andLee Institute, Cosmology (MOE), Shanghai, SKLPPC, China Shanghai, ( ´preetdeD´epartement Physique et Nucl´eaire Corpusculaire, Universit´ede Gen`eve,Gen`eve,Switzerland II. Physikalisches Institut, Justus-Liebig-Universit¨atGiessen, Giessen,SUPA - Germany School of PhysicsLPSC, and Universit´eGrenoble Alpes, Astronomy, CNRS/IN2P3, University GrenobleLaboratory of INP, for Glasgow, Grenoble, Particle Glasgow, France Physics U.K. and Cosmology, Harvard University, Cambridge MA, U.S.A. II. Physikalisches Institut, Georg-August-Universit¨atG¨ottingen,G¨ottingen,Germany ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 84 85 86 87 80 81 82 83 75 76 77 78 79 69 70 71 72 73 74 65 66 67 68 62 63 64 61 55 56 57 58 59 60 53 54 JHEP03(2021)268 Novosibirsk State ) b ( – 33 – Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, ) a Ochanomizu University, Otsuka, Bunkyo-ku,Ohio Tokyo, State Japan University, ColumbusHomer OH, L. U.S.A. Dodge DepartmentNorman of OK, Physics U.S.A. and Astronomy,Department University of of Physics, Oklahoma, OklahomaPalack´yUniversity, State RCPTM, University, Joint Stillwater Laboratory of OK, Optics, U.S.A. Olomouc, Czech Republic University Novosibirsk, Russia Institute for High EnergyProtvino, Physics Russia of the NationalInstitute Research for Centre Kurchatov Theoretical and Institute, ExperimentalCentre Physics ”Kurchatov Institute”, named by Moscow, Russia A.I.Department of Alikhanov Physics, of New National York Research University, New York NY, U.S.A. Institute for Mathematics, AstrophysicsNijmegen, and Netherlands Particle Physics, RadboudNikhef University/Nikhef, National Institute forAmsterdam, Subatomic Netherlands Physics and UniversityDepartment of of Amsterdam, Physics, Northern Illinois University, DeKalb IL, U.S.A. D.V. Skobeltsyn Institute ofMoscow, Nuclear Russia Physics, M.V. Lomonosov Ludwig-Maximilians-Universit¨atM¨unchen,M¨unchen,Germany Fakult¨atf¨urPhysik, Moscow State University, Max-Planck-Institut f¨urPhysik (Werner-Heisenberg-Institut), M¨unchen,Germany Nagasaki Institute of AppliedGraduate Science, School Nagasaki, of Japan Science andDepartment of Kobayashi-Maskawa Institute, Physics Nagoya and University, Astronomy, University Nagoya, of Japan New Mexico, Albuquerque NM, U.S.A. Department of Physics andB.I. Astronomy, Stepanov Michigan Institute State of University,Research Physics, East Institute National Lansing for Academy MI, Nuclear of U.S.A. ProblemsGroup Sciences of of of Byelorussian Particle Belarus, State Physics, Minsk, University,P.N. University Belarus Minsk, Lebedev of Physical Belarus Montreal, Institute Montreal of QC,National the Canada Research Nuclear Russian University Academy of MEPhI, Sciences, Moscow, Moscow, Russia Russia Institut f¨urPhysik, Universit¨atMainz, Mainz, Germany School of Physics andCPPM, Astronomy, Aix-Marseille University of Universit´e,CNRS/IN2P3, Marseille, Manchester,Department France Manchester, of U.K. Physics, UniversityDepartment of of Massachusetts, Physics, Amherst McGill MA,School University, U.S.A. of Montreal Physics, QC, University Canada Department of of Melbourne, Physics, Victoria, University Australia of Michigan, Ann Arbor MI, U.S.A. Louisiana Tech University, Ruston LA,Fysiska U.S.A. institutionen, Lunds universitet,Centre Lund, de Sweden Calcul de(IN2P3), l’Institut Villeurbanne, National France de Physique etDepartamento Nucl´eaire de de Teorica C-15 F´ısica Physique and desMadrid, CIAFF, Particules Spain Universidad Aut´onomade Madrid, Physics Department, Lancaster University, Lancaster,Oliver U.K. Lodge Laboratory, University ofDepartment Liverpool, of Liverpool, Experimental U.K. ParticleUniversity Physics, of JoˇzefStefan Institute Ljubljana, and Ljubljana, DepartmentSchool Slovenia of of Physics, Physics andDepartment Astronomy, of Queen Physics, Mary Royal UniversityDepartment Holloway of of University London, Physics London, of and U.K. London, Astronomy, Egham, University U.K. College London, London, U.K. Instituto de La F´ısica Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina ( 95 96 97 98 99 90 91 92 93 94 88 89 126 127 128 129 122 123 124 125 118 119 120 121 112 113 114 115 116 117 106 107 108 109 110 111 100 101 102 103 104 105 JHEP03(2021)268 High ) b ( Universidad ) b ( Centro de Nuclear F´ısica da ) d ( Instituto de Alta Investigaci´on,Universidad de ) c ( – 34 – Departamento de Universidade F´ısica, do Minho, Braga, ) e ( Department of Physics and Astronomy, York University, Toronto ) b ( Departamento de Universidad Federico Chile F´ısica, Santa T´ecnica Mar´ıa,Valpara´ıso, Instituto Superior Universidade T´ecnico, de Lisboa, Lisboa, Portugal ) ) d h ( ( Departamento y de Te´orica del F´ısica Cosmos, Universidad de Granada, Granada (Spain), TRIUMF, Vancouver BC, E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Departamento de Pontificia F´ısica, Universidad de Cat´olica Chile, Santiago, aoa´roeIsrmnacaeFıiaExperimental F´ısica deLaborat´oriode Instrumenta¸c˜aoe Part´ıculas- LIP, Lisboa, Dep and F´ısica CEFITEC of Faculdade de Ciˆenciase Tecnologia, Universidade Nova de Lisboa, Departamento de Universidade F´ısica, de Coimbra, Coimbra, Departamento de Faculdade F´ısica, de Universidade Ciˆencias, de Lisboa, Lisboa, ) ) ) ) ) ) ) ) a a a a b c f g Department of Physics, Tokyo InstituteTomsk State of University, Technology, Tokyo, Tomsk, Japan Russia Department of Physics, University of Toronto, Toronto ON, Canada ON, Canada Department of Physics, Technion, IsraelRaymond Institute and of Beverly Technology, Sackler Haifa,Tel School Israel Aviv, of Israel Physics andDepartment Astronomy, of Tel Physics, Aviv Aristotle University, International University Center of for Thessaloniki, Elementary Thessaloniki,Tokyo, Particle Greece Tokyo, Physics Japan and Department of Physics, University of Departments of Physics andDepartment Astronomy, of Stony Physics Brook University, andSchool Stony Astronomy, of University Brook NY, Physics, of U.S.A. University Sussex,Institute of Brighton, of Sydney, U.K. Physics, Sydney, Academia Australia Sinica, Taipei, Taiwan Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia Department of Physics, UniversityDepartment of of Washington, Physics Seattle and WA,Department U.S.A. Astronomy, of University Physics, of Shinshu Sheffield,Department University, Sheffield, Physik, Nagano, U.K. Universit¨atSiegen, Japan Siegen, Germany Department of Physics, SimonSLAC Fraser University, National Burnaby Accelerator Laboratory, BC, StanfordPhysics CA, Canada Department, U.S.A. Royal Institute of Technology, Stockholm, Sweden Santa Cruz Institute forSanta Particle Cruz Physics, CA, University U.S.A. of California Santa Cruz, Andres Bello, Department ofTarapac´a, Physics, Santiago, Universidade Federal de S˜aoJo˜aodel Rei (UFSJ), S˜aoJo˜aodel Rei, Brazil Caparica, Institute of Physics ofCzech the Technical Czech University Academy in of Prague,Charles Sciences, Prague, University, Prague, Czech Czech Faculty Republic of Republic Particle Mathematics Physics and Department, Physics, Rutherford Prague, AppletonIRFU, Czech Laboratory, CEA, Republic Didcot, Universit´eParis-Saclay, U.K. Gif-sur-Yvette, France Department of Physics and Astronomy, University of( Pittsburgh, Pittsburgh PA, U.S.A. ( Universidade de Lisboa,( Lisboa, ( Graduate School of Science, OsakaDepartment of University, Physics, Osaka, University Japan Department of of Oslo, Physics, Oslo, Oxford Norway LPNHE, University, Sorbonne Oxford, Universit´e,Universit´ede U.K. Paris, CNRS/IN2P3,Department Paris, of France Physics, UniversityKonstantinov of Nuclear Pennsylvania, Physics Philadelphia Institute PA,St. of U.S.A. National Petersburg, Russia Research Centre ”Kurchatov Institute”, PNPI, Institute for Fundamental Science, University of Oregon, Eugene, OR, U.S.A. ( ( ( ( 164 165 166 159 160 161 162 163 154 155 156 157 158 147 148 149 150 151 152 153 144 145 146 139 140 141 142 143 137 138 132 133 134 135 136 130 131 JHEP03(2021)268 – 35 – Also at Hellenic OpenAlso University, at Patras, Institucio Greece CatalanaAlso de at Recerca i Institut Estudis f¨urExperimentalphysik, Universit¨atHamburg, Avancats,Also Hamburg, ICREA, at Germany Barcelona, Institute Spain forSciences, Nuclear Sofia, Research and Bulgaria Nuclear Energy (INRNE) of the Bulgarian Academy of St. Petersburg, Russia Also at Department ofAlso Physics, at University Dipartimento of di Fribourg, Fribourg,Also Matematica, Switzerland at Informatica e Faculty of Fisica,Also Universit`adi Physics, Udine, at M.V. Udine, Giresun Lomonosov Italy University, MoscowAlso State Faculty of at University, Engineering, Graduate Moscow, Giresun, School Russia Turkey of Science, Osaka University, Osaka, Japan Also at Department ofAlso Physics, at Ben Department Gurion of UniversityAlso Physics, of at California the Department State Negev, of University, BeerAlso Physics, East Sheva, at California Bay, Israel Department State U.S.A. of University,Also Physics, Fresno, at U.S.A. California Department State of University,Also Physics, Sacramento, at King’s U.S.A. Department College of London, Physics, London, St. U.K. Petersburg State Polytechnical University, Gen`eve,Switzerland Also at Departament deAlso Fisica at de Department la of UniversitatChios, Financial Autonoma Greece and de Management Barcelona, Barcelona, Engineering,Also Spain University at of Department the of Aegean, East Physics Lansing and MI, Astronomy, U.S.A. MichiganAlso State at University, Department of Physics and Astronomy, University of Louisville, Louisville, KY, U.S.A. New York NY, U.S.A. Also at Center forAlso High at Energy Centro Physics, Studi PekingAlso e University, at Ricerche China Enrico CERN, Fermi, Geneva, Italy Also Switzerland at CPPM, Aix-MarseilleAlso Universit´e,CNRS/IN2P3, Marseille, at de D´epartement France Physique et Nucl´eaire Corpusculaire, Universit´ede Gen`eve, Department of Particle PhysicsDepartment and of Astrophysics, Physics, Weizmann University Institute undFakult¨atf¨urMathematik of of Naturwissenschaften, Wisconsin, Science, Fachgruppe Madison Rehovot, Physik, WI, Israel BergischeWuppertal, U.S.A. Universit¨at Wuppertal, Germany Department of Physics, Yale University, New Haven CT,Also U.S.A. at Borough of Manhattan Community College, City University of New York, Department of Physics, UniversityDepartment of of British Physics Columbia, and Vancouver undFakult¨atf¨urPhysik BC, Astronomy, W¨urzburg, Astronomie, University Canada Julius-Maximilians-Universit¨atW¨urzburg, of Victoria,Germany Victoria BC, Canada Department of Physics, UniversityWaseda of University, Warwick, Tokyo, Coventry, Japan U.K. Applied Sciences, University ofDepartment Tsukuba, of Tsukuba, Japan Physics andDepartment Astronomy, of Tufts University, Physics Medford and MA,Department Astronomy, of U.S.A. University Physics of and CaliforniaDepartment Astronomy, Irvine, of University Irvine Physics, of CA, University Uppsala, U.S.A. Instituto of Uppsala, de Illinois, Sweden Corpuscular F´ısica Urbana (IFIC), IL, CentroSpain U.S.A. Mixto Universidad de Valencia - CSIC, Valencia, Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and l i t b c j s e q r o p d g v y a k x f h u n w m 179 180 181 173 174 175 176 177 178 168 169 170 171 172 167 JHEP03(2021)268 – 36 – Also at University ofDeceased Chinese Academy of Sciences (UCAS), Beijing, China Also at National Research NuclearAlso University at MEPhI, Physics Moscow, Department, Russia Also An-Najah at National Physikalisches University, Institut, Nablus,Also Freiburg, Albert-Ludwigs-Universit¨atFreiburg, Palestine Germany at The CityAlso College at of TRIUMF, New Vancouver York, BC,Also New Canada at York Universita NY, di U.S.A. Napoli Parthenope, Napoli, Italy Budapest, Hungary Also at Institute ofAlso Particle at Physics Institute (IPP), of Canada Also Physics, at Azerbaijan Instituto Academy of deAlso Sciences, Fisica at Baku, Teorica, IFT-UAM/CSIC, Istanbul Azerbaijan Madrid, University, Spain Also Dept. at of Joint Physics, Institute Istanbul,Also for Turkey at Nuclear Moscow Research, Dubna, Institute Russia of Physics and Technology State University, Dolgoprudny, Russia Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, z ∗ al ai ab ac aj ae ad ag aa ak af ah am