Enzyme Applications in Pulp and Paper Industry

Total Page:16

File Type:pdf, Size:1020Kb

Enzyme Applications in Pulp and Paper Industry Enzyme Applications in Pulp and Paper: An Introduction to Applications Dr. Richard Venditti Associate Professor - Director of Graduate Programs Department of Wood and Paper Science Biltmore Hall Room 1204 Raleigh NC 27695-8005 Tel. (919) 515-6185 Fax. (919) 515-6302 Email: [email protected] Slides courtesy of Phil Hoekstra. Endo-Beta 1,4 Xylanase Enzymes • Are proteins that catalyze chemical reactions • Biological cells need enzymes to perform needed functions • The starting molecules that enzymes process are called substrates and these are converted to products Endo-Beta 1,4 Xylanase Cellulase enzyme which acts on cellulose substrate to make product of glucose. Endo-Beta 1,4 Xylanase Enzymes • Are extremely selective for specific substrates • Activity affected by inhibitors, pH, temperature, concentration of substrate • Commercial enzyme products are typically mixtures of different enzymes, the enzymes often complement the activity of one another Endo-Beta 1,4 Xylanase Types of Enzymes in Pulp and Paper and Respective Substrates • Amylase --- starch • Cellulase --- cellulose fibers • Protease --- proteins • Hemicellulases(Xylanase) ---hemicellulose • Lipase --- glycerol backbone, pitch • Esterase --- esters, stickies • Pectinase --- pectins Endo-Beta 1,4 Xylanase Enzyme Applications in Pulp and Paper • Treat starches for paper applications • Enhanced bleaching • Treatment for pitch • Enhanced deinking • Treatment for stickies in paper recycling • Removal of fines • Reduce refining energy • Cleans white water systems • Improve softness in tissue • Clean outs Endo-Beta 1,4 Xylanase Starch Conversion for Surface Coatings • Amylases are used to cleave starch molecules to reduce the viscosity • Used for surface sizing and for starch in coatings • Not used for dry strength agent additive Endo-Beta 1,4 Xylanase Bleaching • Hemicellulases (xylanases) are used to cleave hemicelluloses in fiber, making the bleaching process more effective • May be able to reduce bleaching chemicals by up to 30% • Can improve brightness Endo-Beta 1,4 Xylanase Pitch treatment • Lipases used to control pitch in pulping processes • Converts tri-glycerides to fatty acids which are more stable in water, won’t deposit as much Endo-Beta 1,4 Xylanase CH2 –--------- CH –---------CH2 Triglycerides OOO Ester-Bonds C=O C=O C=O (CH2)15 CH3 (CH2)15 CH3 (CH2)15 CH3 glycerol Fatty acids CH2 –--------- CH –---------CH2 │ OH OH OH OH │ C=O │ (CH2)15 CH3 Endo-Beta 1,4 Xylanase Deinking • Paper recycling inks and stickies attach to fibers at the surface of the fibers, stuck to microfibrils • Cellulase and hemicellulase enzymes hydrolyze these microfibrils, releasing the adhesives • Esterases help breakdown ink particles • Enzyme assisted DI reported to remove 30-60% more toners • Enzyme assisted DI reported to improve brightness by 4-5 points Endo-Beta 1,4 Xylanase Control and Removal Methods for Stickies – Use of environmentally benign adhesive (recyclable adhesive) – Avoidance: Control of recovered paper quality – Mechanical removal: screening and water clarification – Chemical control: polymers surfactants, others – Passivation with inorganics – Enzyme hydrolysis – Physical adsorption to paper fibers: retention – Dispersion – Protection: treatment of equipment to limit deposits – Mill shut down for clean-up Endo-Beta 1,4 Xylanase CLASSIFICATION OF STICKIES PRIMARY SECONDARY (Formed in (Change in pulper) environment, pH, temp., etc.) Endo-Beta 1,4 Xylanase MACRO VS MICRO STICKIES Macrostickies Retained on 6-cut (0.15 mm) slotted screen* Microstickies Accepted by 6-cut (0.15 mm) slotted screen* * Trend is towards 0.10 mm or 0.075 mm slottedEndo-Beta screen 1,4 Xylanase Stickies Control • Microstickies in dilution water recirculate back into the systems • Microstickies agglomerate under shear and pH changes and contribute to macrostickies, secondary stickies • Reducing microstickies will make a significant impact on macrostickies • Ability to measure both micro and macro is important Endo-Beta 1,4 Xylanase Endo-Beta 1,4 Xylanase Without Proper Water Clarification (<20% reduction): “ re-introduction of stickies” Endo-Beta 1,4 Xylanase Enzymes as stickies treatment • Esterases used to break ester bonds in polymers used in toners and adhesives • Improved paper cleanliness • Less deposits, less clean up on PM • Can be used as substitute for talc or solvent based dispersants Endo-Beta 1,4 Xylanase -(CH2 – CH - CH2 –CH -CH2 – CH )n - PVAc OOO Ester-Bonds C=O C=O C=O CH3 CH3 CH3 PVAlcohol Acetic acid -(CH2 – CH )- CH2 –CH -CH2 – CH )n - │ OH OH OH OH │ C=O │ CH3 Endo-Beta 1,4 Xylanase polyvinyl acetate Hydrophobic Surface -(-CH2CH-)n- OCOCH3 without Esterase with Esterase Agglomerates of PVAc polyvinyl alcohol + acetic acid -(-CH CH-)n- OH 2 OH HO OH HO OH OH OH OH OH + CH COOH OH HO 3 HO OH OH OH OH OH HO OH OH OH HO OH OH OH OH OH OH OH OH HO OH OH OH OH OH OH OH HO OH OH OH OH HO Polyvinyl alcohol OH OH OH OH OH Hydrophilic Endo-Beta 1,4 Xylanase Impact on stickies chemistry • Optimyze has two impacts on stickies – Cleaves ester bonds to reduce size of stickies – Surfaces on smaller stickies are converted to alcohol groups • Alcohol groups are less tacky • Alcohol groups are polar, which allow DAF polymers to grab onto them for removal Endo-Beta 1,4 Xylanase Electron micrographs Untreated Treated Endo-Beta 1,4 Xylanase Optimyze Plus 735 trial data stickies transfer on reel samples during Optimyze Plus 735 evaluation 160 1.2 count 140 PPM 1 BLX dosage 120 0.8 100 80 0.6 stickies 60 0.4 40 BLX 13064dosage (lb/t) 0.2 20 0 0 2/12 3/4 3/24 4/13 5/3 5/23 Endo-Beta 1,4 Xylanase Caustic replacement: neutral deinking for newsprint deinking • Caustic is used in pulping recycled fibers to swell fibers, improving paper making potential • Cellulase enzymes can be used in conjunction with or as a substitute for the caustic to swell fibers • Neutral deinking has some advantages including less COD in the white water, lower costs Endo-Beta 1,4 Xylanase Decrease energy in refining • Cellulase enzymes cause partial depolymerization of cellulose and swelling of fibers, more flexible fibers • Reduction of fines • Improves efficiency of refining, can decrease energy consumption or obtain improved strength at higher freeness • Often better runnability or less dryer energy required Endo-Beta 1,4 Xylanase Fibrillation 3/3/2010 Endo-Beta 1,4 Xylanase Fiber Modification • Enzymes can assist this de-lamination process • Conditions fiber for refining • Reduces refining energy • Changes the refining curve • Old rules do not apply • Laboratory Testing Endo-Beta 1,4 Xylanase Case History • MILL: Quebec • FIBER: Recycled/Softwood Kraft • GRADE: Napkin • GOAL: Increase tensile strength to middle of specification, reduce kraft fiber usage • METHODS: Treated MOW stock at the pulper with 0.5 to 1.0 kg/tonne BZM 2545, about 3 hours of contact time Endo-Beta 1,4 Xylanase Machine Trial of Buzyme 2545 in Napkin grade 45 275 40 270 35 30 265 25 SWK Usage 260 Tensile 20 Kraft Usage (%) Usage Kraft Tensile Strength Tensile 15 255 10 250 5 0 245 Pre-trial Trial Endo-Beta 1,4 Xylanase Machine Trial of Buzyme 2545 in Napkin grade 25 300 250 20 200 15 SWK Usage 150 Tensile 10 Kraft Usage (%) Usage Kraft Tensile Strength Tensile 100 5 50 0 0 Pre-trial Trial Refining energy reduced Endo-Beta 1,4 Xylanase Results: Machine Trial of Buzyme 2545 in Napkin grade • Reduced kraft from 40% to 0% of furnish • Increased tensile to a “comfortable” range • Refining energy reduced 14% • Drainage is better, but cannot take advantage of it, due to drive limitations Endo-Beta 1,4 Xylanase Hydrolysis of fines • Fines build up in water loop in PM and cause drainage, formation and paper properties problems • Cellulase enzymes hydrolyze these fines, making them soluble, improving PM ops • Can run PM faster (up to 10% faster in some cases?) Endo-Beta 1,4 Xylanase Softness in tissue • Cellulase enzymes improve softness by hydrolyzing cellulose in fibers, creating weak spots in fibers, making fibers flexible • Softness increases of up to 25% • P&G has several patents, some donated to NCSU Endo-Beta 1,4 Xylanase Case History • MILL: Quebec • FIBER: 95% SWD/5% Recycled Fiber • GRADE: Premium Bath • GOAL: Reduce refining energy, increase softness and bulk, maintain tensile • METHODS: Treated stock at the pulper with 0.5 to 1.0 kg/tonne BZM 2545, about 3 hours of contact time Endo-Beta 1,4 Xylanase Bulk vs. Tensile Buzyme 2535 vs. Glyoxylated Polyacrylamide 11 Average Bulk to Tensile 10 Increase of 3.5% 9 B/BW 8 7 12 14 16 18 20 22 GMT/BW Buzyme 2535 Gloxylated PAM Linear (Buzyme 2535) Linear (Gloxylated PAM)Endo-Beta 1,4 Xylanase Results • Shut down refiners • Maintained tensile • Bulk/basis weight increased by avg. of 3.5% • Able to reduce BWT due to increase in tensile • Machine speed increase of 100 FPM, due to better drainage Endo-Beta 1,4 Xylanase ROI for Fiber Modification • Reduction in refiner energy • Less fines generation – Better drainage – Softer feel – Less dusting – Cleaner white water • Reduction in starch or CMC • Fiber substitution – Could use more MOW, less virgin Endo-Beta 1,4 Xylanase Improved biodegradability of pulp mill waste water • Cellulases and Hemicellulases used to degrade cellulose and other high molecular weight polymers • COD/BOD ratio of domestic sewage 2:1 • COD/BOD ratio of paper mill waste water up to 5:1 • Hydrolysis of cellulose fines by enzymes to lower molecular weight sugars that are more biodegradable Endo-Beta 1,4 Xylanase Clean Ups / Boil Outs • Amylase to treat starch deposits in clean ups of starch preparation/application equipment • Protease used as biodispersants or enzyme boil-outs, cleave protein molecules in deposits and solubilize deposits Endo-Beta 1,4 Xylanase Summary • Enzymes are green chemicals that can improve operations in pulp and paper • Wide variety of enzymes, must be applied with understanding of how they work • Several widely accepted applications, starch, bleaching, clean ups • Future: high valued functionalized fibers, improved pulping, specialized paper properties, conversion of wastes to fermentable sugars.
Recommended publications
  • Agency Response Letter GRAS Notice No. GRN 000675
    . Janet Oesterling Novozymes North America, Inc. 77 Perry Chapel Church Road Franklinton, NC 27525 Re: GRAS Notice No. GRN 000675 Dear Ms. Oesterling: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000675. We received the notice, dated October 10, 2016, that you submitted in accordance with the agency’s proposed regulation, proposed 21 CFR 170.36 (62 FR 18938; April 17, 1997; Substances Generally Recognized as Safe (GRAS); the GRAS proposal) on July 17, 2016, and filed it on October 14, 2016. We received amendments containing clarifying information on February, 22, 2017 and March 09, 2017. FDA published the GRAS final rule on August 17, 2016 (81 FR 54960), with an effective date of October 17, 2016. As GRN 000675 was pending on the effective date of the GRAS final rule, we requested some additional information consistent with the format and requirements of the final rule. We received an amendment responding to this request on October 24, 2016. The subject of the notice is xylanase enzyme preparation produced by Trichoderma reesei carrying a xylanase gene from Talaromyces leycettanus (xylanase enzyme preparation). The notice informs us of the view of Novozymes North America, Inc. (Novozymes) that xylanase enzyme preparation is GRAS, through scientific procedures, for use as an enzyme at levels up to 48.33 mg Total Organic Solids (TOS) per kg raw material in brewing, cereal beverage processing, baking, and processing of cereal grains such as corn, wheat, barley, and oats. Commercial enzyme preparations that are used in food processing typically contain an enzyme component that catalyzes the chemical reaction as well as substances used as stabilizers, preservatives, or diluents.
    [Show full text]
  • Cellulases: Characteristics, Sources, Production, and Applications
    8 CELLULASES: CHARACTERISTICS, SOURCES, PRODUCTION, AND APPLICATIONS Xiao-Zhou Zhang and Yi-Heng Percival Zhang 8.1 INTRODUCTION lulases: (1) endoglucanases (EC 3.2.1.4), (2) exogluca- nases, including cellobiohydrolases (CBHs) (EC Cellulose is the most abundant renewable biological 3.2.1.91), and (3) β -glucosidase (BG) (EC 3.2.1.21). To resource and a low-cost energy source based on energy hydrolyze and metabolize insoluble cellulose, the micro- content ($3–4/GJ) ( Lynd et al., 2008 ; Zhang, 2009 ). The organisms must secrete the cellulases (possibly except production of bio-based products and bioenergy from BG) that are either free or cell-surface-bound. Cellu- less costly renewable lignocellulosic materials would lases are increasingly being used for a large variety of bring benefi ts to the local economy, environment, and industrial purposes—in the textile industry, pulp and national energy security ( Zhang, 2008 ). paper industry, and food industry, as well as an additive High costs of cellulases are one of the largest obsta- in detergents and improving digestibility of animal cles for commercialization of biomass biorefi neries feeds. Now cellulases account for a signifi cant share of because a large amount of cellulase is consumed for the world ’ s industrial enzyme market. The growing con- biomass saccharifi cation, for example, ∼ 100 g enzymes cerns about depletion of crude oil and the emissions of per gallon of cellulosic ethanol produced ( Zhang et al., greenhouse gases have motivated the production of bio- 2006b ; Zhu et al., 2009 ). In order to decrease cellulase ethanol from lignocellulose, especially through enzy- use, increase volumetric productivity, and reduce capital matic hydrolysis of lignocelluloses materials—sugar investment, consolidated bioprocessing ( CBP ) has been platform ( Bayer et al., 2007 ; Himmel et al., 1999 ; Zaldi- proposed by integrating cellulase production, cellulose var et al., 2001 ).
    [Show full text]
  • What Happens to Cellulosic Fibers During Papermaking and Recycling? a Review
    PEER-REVIEWED REVIEW ARTICLE ncsu.edu/bioresources WHAT HAPPENS TO CELLULOSIC FIBERS DURING PAPERMAKING AND RECYCLING? A REVIEW Martin A. Hubbe,* Richard A. Venditti, and Orlando J. Rojas Both reversible and irreversible changes take place as cellulosic fibers are manufactured into paper products one or more times. This review considers both physical and chemical changes. It is proposed that by understanding these changes one can make better use of cellulosic fibers at various stages of their life cycles, achieving a broad range of paper performance characteristics. Some of the changes that occur as a result of recycling are inherent to the fibers themselves. Other changes may result from the presence of various contaminants associated with the fibers as a result of manufacturing processes and uses. The former category includes an expected loss of swelling ability and decreased wet-flexibility, especially after kraft fibers are dried. The latter category includes effects of inks, de-inking agents, stickies, and additives used during previous cycles of papermaking. Keywords: Paper recycling, Drying, Deinking, Hornification, Inter-fiber bonding, Refining, Fines, Fiber length, Conformability Contact information: Department of Forest Biomaterials Science and Engineering, Box 8005, North Carolina State University, Raleigh, NC 27695-8005, USA; *Corresponding author: [email protected] INTRODUCTION Cellulosic fibers can change significantly when formed into a wet web of paper and subsequently subjected to such processes as pressing, drying, printing, storage, repulping, and deinking. Some of the changes can be subtle. Often it is possible to substitute recovered fibers in place of virgin fibers used for the production of paper or paperboard. On the other hand, characteristic differences between recycled fibers and virgin fibers (fresh from pulping wood, not recycled) can be expected; many of these can be attributed to drying.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Effects of Fiber Weight Ratio, Structure and Fiber Modification Onto Flexural Properties of Luffa-Polyester Composites
    Advances in Materials Physics and Chemistry, 2011, 1, 78-85 doi:10.4236/ampc.2011.13013 Published Online December 2011 (http://www.SciRP.org/journal/ampc) Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites Lassaad Ghali1, Slah Msahli1, Mondher Zidi2, Faouzi Sakli1 1Textile Research Unit, ISET of Ksar Hellal, Ksar Hellal, Tunisia 2Laboratory of Mechanical Engineering, ENIM of Monastir, Monastir, Tunisia E-mail: [email protected], [email protected] Received August 4, 2011; revised September 12, 2011; accepted September 26, 2011 Abstract The effect of chemical modification, reinforcement structure and fiber weight ratio on the flexural proprieties of Luffa-polyester composites was studied. A unsaturated polyester matrix reinforced with a mat of Luffa external wall fibers (ComLEMat), a short Luffa external wall fibers (ComLEBC) and a short Luffa core fi- bers (ComLCBC) was fabricated under various conditions of fibers treatments (combined process, acetylat- ing and cyanoethylating) and fiber weight ratio. It resorts that acetylating and cyanoethylating enhance the flexural strength and the flexural modulus. The fiber weight ratio influenced the flexural properties of com- posites. Indeed, a maximum value of strength and strain is observed over a 10% fiber weight ratio. The uses of various reinforcement structures were investigated. The enhancement of elongation at break and the strain values of the composite reinforced by natural mat was proved. Keywords: Luffa Fibers, Composite, Flexural Properties, Fiber Weight Ratio 1. Introduction cyanoethylation on the mechanical properties of jute fi- ber reinforced polyester composite. They noted that a A combination of properties of some natural fibers in- better creep resistance at lower temperatures was ob- cluding low cost, low density, non-toxicity, no abrasion tained for the composite reinforced with cyanoethylated during processing and recyclability has arisen more in- jute fibers.
    [Show full text]
  • TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector
    TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector 2018 TABLE OF contEnts ACKNOWLEDGEMENTS 10 EXECUTIVE SUMMARY 11 1 INTRODUCTION 13 2 OVERVIEW OF THE PULP AND PAPER SECTOR 15 2.1. Status of the Indian Paper Industry 15 2.2. Overview of the Pulp and Papermaking Process 20 2.3. Patenting in the Paper and Pulp Industry: A Historical Perspective 22 2.4. Environmental Impact of the Pulp and Paper Industry 25 3 METHODOLOGY 27 3.1. Search Strategy 27 4 ANALYSIS OF PATENT DOCUMENTS USING GPI 31 4.1. Papermaking; Production of Cellulose (IPC or CPC class D21) 31 4.2. Analysis of Patenting Activity in Different Technology Areas using GPI 38 5 ANALYSIS OF THE INDIAN PATENT SCENARIO WITHIN THE CONTEXT OF THIS REPORT 81 5.1. Analysis of Patents Filed in India 81 6 CONCLUDING REMARKS 91 REFERENCES 93 ANNEXURE 94 Annexure 1. Technologies related to paper manufacturing 94 Annexure 2. Sustainable/green technologies related to pulp and paper sector 119 Annexure 3. Emerging Technology Areas 127 List OF FIGURES Figure 2.1: Geographical Spread of Figure 4.11: (d) Applicant vs. Date of Indian Paper Mills .................................16 Priority Graph: Paper-Making Machines Figure 2.2: Share of Different Segments and Methods ........................................42 in Total Paper Production .......................19 Figure 4.11: (e) Applicant vs. Date of Figure 2.3: Variety Wise Production of Priority Graph: Calendars and Accessories ..43 Paper from Different Raw Materials ........19 Figure 4.11: (f) Applicant vs. Date of Figure 2.4: Different Varieties of Paper Priority Graph: Pulp or Paper Comprising Made from Various Raw Materials ..........19 Synthetic Cellulose or Non-Cellulose Fibres ..43 Figure 2.5: Diagram of a Process Block Figure 4.11: (g) Applicant vs.
    [Show full text]
  • Cells of Commelina Communis1 Received for Publication April 8, 1987 and in Revised Form June 13, 1987 NINA L
    Plant Physiol. (1987) 85, 360-364 0032-0889/87/85/0360/05/$01.00/0 Localization of Carbohydrate Metabolizing Enzymes in Guard Cells of Commelina communis1 Received for publication April 8, 1987 and in revised form June 13, 1987 NINA L. ROBINSON2 AND JACK PREISS*3 Department ofBiochemistry and Biophysics, University ofCalifornia, Davis, California 95616 ABSTRACI leaves. The sucrose is either degraded in the apoplast or in the cytoplasm of the storage cell. Sucrose, or its degradation prod- The lliztion ofenzymes involved in the flow of carbon into and out ucts, can be further metabolized to the triose-P or 3-PGA level. of starch was determined in guard cells of Commelina communis. The These compounds may then move into the amyloplast via the guard cell chloroplasts were separated from the rest of the cellular triose-P/Pi translocator and are converted into starch. However, components by a modification of published microfuge methods. The at present, the presence of the triose-P/Pi translocator in amy- enzymes of interest were then assayed in the supernatant and chloroplast loplasts has not been demonstrated. Assuming that the triose-P/ fractions. The chloroplast yield averaged 75% with 10% cytoplasmic Pi translocator is present, the movement of carbon into starch contamination. The enzymes involved in starch biosynthesis, ADPglucose would be a reversal of the enzymic steps occurring in the cyto- pyrophosphorylase, starch synthase, and branching enzyme, are located plasm with the last several steps resulting in the direct incorpo- exclusively in the chloroplast fraction. The enzymes involved in starch ration of carbon into starch.
    [Show full text]
  • Xylooligosaccharides Production, Quantification, and Characterization
    19 Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment Qing Qing1, Hongjia Li2,3,4,Ã, Rajeev Kumar2,4 and Charles E. Wyman2,3,4 1 Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, China 2 Center for Environmental Research and Technology, University of California, Riverside, USA 3 Department of Chemical and Environmental Engineering, University of California, Riverside, USA 4 BioEnergy Science Center, Oak Ridge, USA 19.1 Introduction 19.1.1 Definition of Oligosaccharides Oligosaccharides, also termed sugar oligomers, refer to short-chain polymers of monosaccharide units con- nected by a and/or b glycosidic bonds. In structure, oligosaccharides represent a class of carbohydrates between polysaccharides and monosaccharides, but the range of degree of polymerization (DP, chain length) spanned by oligosaccharides has not been consistently defined. For example, the Medical Subject Headings (MeSH) database of the US National Library of Medicine defines oligosaccharides as carbohy- drates consisting of 2–10 monosaccharide units; in other literature, sugar polymers with DPs of up to 30–40 have been included as oligosaccharides [1–3]. ÃPresent address: DuPont Industrial Biosciences, Palo Alto, USA Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, First Edition. Edited by Charles E. Wyman. Ó 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd. 392 Aqueous Pretreatment of Plant Biomass for
    [Show full text]
  • How to Make a Collage 4 Free Mixed Media Collage Techniques Presented by Cloth Paper Scissors®
    how to make a collage 4 free mixed media collage techniques presented by cloth paper scissors® 1 3 4 2 collage to order: objects of my desire: 1 create with words 3 making sewn paper SUSAN BLACK collage collections JENNY COCHRAN LEE the elements of collage: 2 putting it all together reverse collage painting: NICOLE PAISLEY MARTENSEN 4 a bright spot on a winter day HOLLY CHRISTINE MOODY In “Objects of My Desire: Making Sewn Paper Collage Collections,” Jenny Cochran Lee explores how to How to Make a Collage: turn paper scraps into collage art 4 Free Mixed Media treasures. Collage Techniques presented by Finally, Holly Christine Moody Cloth Paper Scissors® offers an easy collage project that ONLINE EDITOR Cate Prato will help you whittle down your decorative paper stash in a fun CREATIVE SERVICES way. In “Reverse Collage Painting,” DIVISION ART DIRECTOR Larissa Davis PHOTOGRAPHER Larry Stein you make a paper collage on a substrate, apply gel medium, Projects and information are for inspiration and personal use only. Interweave Press is not responsible hat is collage art? A and then paint over it. The magic for any liability arising from errors, omissions, or whole lot of fun! At happens when you swipe away mistakes contained in this eBook, and readers should proceed cautiously, especially with respect to technical the most basic level, some of the paint to reveal the information. wyou can make a collage with paper, collage designs below. © F+W Media, Inc. All rights reserved. F+W Media glue, and a substrate like a canvas grants permission for any or all pages in this eBook to With How to Make a Collage: 4 Free or watercolor paper.
    [Show full text]
  • Novel Xylan Degrading Enzymes from Polysaccharide Utilizing Loci of Prevotella Copri DSM18205
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419226; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Novel xylan degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205 Javier A. Linares-Pastén1*, Johan Sebastian Hero2, José Horacio Pisa2, Cristina Teixeira1, Margareta Nyman3, Patrick Adlercreutz1, M. Alejandra Martinez2,4, Eva Nordberg Karlsson1** 1Biotechnology, Dept of Chemistry, Lund University, P.O.Box 124, 221 00 Lund, Sweden. 2Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, San Miguel de Tucumán, Argentina. 3 Dept Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden. 4Facultad de Ciencias Exactas y Tecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina. Corresponding authors: *e-mail: [email protected] ** e-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419226; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Prevotella copri DSM18205 is a bacterium, classified under Bacteroidetes that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber- induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions.
    [Show full text]
  • Exogenous Enzymes As Zootechnical Additives in Animal Feed: a Review
    catalysts Review Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review Brianda Susana Velázquez-De Lucio 1, Edna María Hernández-Domínguez 1, Matilde Villa-García 1, Gerardo Díaz-Godínez 2, Virginia Mandujano-Gonzalez 3, Bethsua Mendoza-Mendoza 4 and Jorge Álvarez-Cervantes 1,* 1 Cuerpo Académico Manejo de Sistemas Agrobiotecnológicos Sustentables, Posgrado Biotecnología, Universidad Politécnica de Pachuca, Zempoala 43830, Hidalgo, Mexico; [email protected] (B.S.V.-D.L.); [email protected] (E.M.H.-D.); [email protected] (M.V.-G.) 2 Centro de Investigación en Ciencias Biológicas, Laboratorio de Biotecnología, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Tlaxcala, Mexico; [email protected] 3 Ingeniería en Biotecnología, Laboratorio Biotecnología, Universidad Tecnológica de Corregidora, Santiago de Querétaro 76900, Querétaro, Mexico; [email protected] 4 Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Apan 43900, Hidalgo, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-771-5477510 Abstract: Enzymes are widely used in the food industry. Their use as a supplement to the raw Citation: Velázquez-De Lucio, B.S.; material for animal feed is a current research topic. Although there are several studies on the Hernández-Domínguez, E.M.; application of enzyme additives in the animal feed industry, it is necessary to search for new Villa-García, M.; Díaz-Godínez, G.; enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in Mandujano-Gonzalez, V.; certain environmental conditions and substrates. This will allow the improvement of the productive Mendoza-Mendoza, B.; Álvarez-Cervantes, J.
    [Show full text]
  • FPL Spaceboard Development
    1988. In: TAPPI proceedings of the 1988 corrugated containers conference; October 24-27; Orlando, FL. Atlanta, GA: TAPPI Press: 11-17. FPL SPACEBOARD DEVELOPMENT The Forest Products Laboratory (FPL) has developed two processing methods ( 1 , 2 ) to form, dewater and consolidate, and dry three-dimensional spaceboard sheets. This paper describes the two processing J. F. Hunt, Mechanical Engineer D. E, Gunderson, Research General Engineer methods; the strength and stiffness values of spaceboard; and the advantages, disadvantages, and 1 USDA Forest Service, Forest Products Laboratory, development challenges of the product and process. One Gifford Pinchot Dr., Madison, WI 53705-2398 BACKGROUND U.S.A. The spaceboard concept emerged from research aimed at ABSTRACT improving the support of linerboard in corrugated fiberboard and the efficient distribution of fibers in structural boards. Experiments at FPL showed that The future direction of structural products from fibers will be toward more efficient fiber the edgewise compression strength of corrugated fiberboard with press-dried linerboard and utilization through efficient design. The Forest Products Laboratory has developed two processing conventional corrugated medium was lower than It was suspected that the corrugated methods to produce three-dimensional structural anticipated. sheets and panels made from fibers. The structural medium was not providing sufficient support to the board that results from combining two sheets or two linerboard. In experiments by Vance Setterholm and panels is called FPL Spaceboard. Dennis Gunderson of FPL, a combined board made from two linerboards fully supported by a low-density foam core yielded higher edgewise compression strength The thickness of the sheet or panel generally than the combined board with the same linerboard determines which processing method to use.
    [Show full text]