Thermosiphon Heat Exchanger for Use in Animal Shelters

Total Page:16

File Type:pdf, Size:1020Kb

Thermosiphon Heat Exchanger for Use in Animal Shelters THERMOSIPHON HEAT EXCHANGER FOR USE IN ANIMAL SHELTERS B.S. Larkin J.E. Turnbull R.S. Gowe Gas Dynamics Laboratory Member CSAE Animal Research Institute National Research Council Engineering Research Service Agriculture Canada Ottawa Agriculture Canada Ottawa Ottawa INTRODUCTION The design of various types of clean ation, vapor flow, condensation and heat exchangers to give a desired heat gravity return. This latent heat transport An animal building is ventilated to recovery is well documented; the impor is much more effective than conduction; control heat, water vapor, gases and odors tant question is whether design perfor the tube has an effective conductivity given off by the animals. Where the mance can be maintained under typical which is several orders of magnitude ventilation rate is determined by sets of dusty farm conditions. In the heat higher than that of a copper bar. exhaust fans controlled by interior exchanger tested, the locations where thermostats (the usual method) the heat fouling can collect are all easily acces There is a small temperature drop losses are automatically balanced to the sible, so that cleaning is simple. The tests associated with the pressure difference heat supply. With this arrangement, con evaluated the effect of fouling on the required to cause vapor flow but this is trol of excessive humidity in the building system and ease of cleaning in a typical usually negligible. In an animal shelter is usually no problem as long as outside poultry environment. heat exchanger, the boiling and conden ambient temperature remains above a sing coefficients are high, or about particular minimum. However, with One problem with air-to-air heat ex 400-500o Btu/ft2h°F (2,300-2,800 colder weather a point is reached at changers is the low air-to-surface heat watts/m2°C) so that the temperature which the mean ventilation rate control transfer coefficient. For significant heat drops at the condensing and boiling sur led to balance the animal heat production transfer, large surface areas are required. faces, although not negligible, are accept is too low to remove the water vapor This heat exchanger uses standard mass- able. produced. produced finned tubing to give the required surface area economically within The advantages of this type of heat For example, in a typical well insul compact external dimensions. exchanger are: (i) Secondary surface of ated swine growing building maintained commercial finned tubing where heat is at 60° F (15°C) this heat deficit occurs at transferred between metal and air; about 25°F (-3°C) outdoor temperature. THERMOSIPHON HEAT EXCHANGER (ii) Metal/air interfaces easily accessible For a more detailed discussion see (2), for cleaning, unlike previous plate-type (5), and (6). During colder periods of a Figure 1 shows one element of a heat exchangers; (iii) Simplicity and ease typical Canadian winter the options are: thermosiphon heat exchanger. Heat is of maintenance, with no mechanical (i) to reduce ventilation rate, resulting in transferred from the exhaust duct to the parts, pipe connections, headers or valves high humidity, condensation and odors, inlet duct along the thermosiphon tubes. which may leak; (iv) Compact physical (ii) to maintain higher ventilation to help arrangement of the heat exchanger, fit control humidity but permit a much During assembly, the air is removed ting easily into normal rectangular duct colder building, or (iii) to add enough from the tubes. A measured quantity of ing without complicated headers or heat to maintain adequate ventilation and working fluid (in this case Refrigerant 22) transition pieces. temperature. is put into each tube so that the lower section is filled with liquid and the upper It is also useful to compare this heat One method of adding heat is to section contains vapor. In operation, recovery application with other buildings recover it from the exhaust air with a whenever the inlet air is colder than the such as hospitals, apartments and office heat exchanger. Giese and Downing (2) exhaust air the vapor will start to buildings. The special features of the and Giese and Ibrahim (3) studied tube condense. This reduces the pressure in the animal shelter application are: (i) The and shell heat exchangers. Giese and Bond tube and the liquid begins to boil. The exhaust air is dirty. Tolerance of fouling (1), Turnbulla and Ogilvie (4) studied resulting vapor flows to the cooler section and ease of cleaning are essential, plate-type heat exchangers. Witz and of the tube and condenses, releasing (ii) There are no specialized maintenance Prattb reported on a rock-bed heat technicians at hand. Reliability and ease storage system through which incoming latent heat. Heat is thus transported along the tube by a continuous cycle of evapor- of maintenance are more important and outgoing flows were alternated. (iii) In most buildings a heat exchanger is designed for maximum practical heat Contribution No. 468 and 545 from Engineer a Turnbull, J.E. Performance of a perpendi recovery, i.e. about 75% effectiveness. ing Research Service and Animal Research cular flow air-to-air heat exchanger. Agric. This means that the heat exchanger Institute, respectively. Eng. Ext. Release, Ontario Dep. Agric, recovers about 75% of the theoretical Guelph, Ontario, Nov. 1965. maximum heat recovery, which depends on the temperature difference between b Witz, R.L. and G.L. Pratt. Innovation in the exhaust and intake air streams. When RECEIVED FOR PUBLICATION AUGUST 6, beef confinement housing and equipment. 1974 designed to 75% effectiveness a thermo ASAE paper no. 71-208, 1971. siphon type heat exchanger is more CANADIAN AGRICULTURAL ENGINEERING, VOL. 17 NO. 2, DECEMBER 1975 85 coefficients in a thermosiphon tube, for typical conditions in a heat exchanger. The test section consisted of thick-walled copper tube, 0.951-inch (2.41-cm) inside diameter. Vapor temperatures were measured with a thermocouple passed along a smaller tube (o.d. = 0.061 inch (1.55 mm), i.d. = 0.045 inch (1.14 mm)) running down the center of the main tube. A similar tube was buried in the wall of the main tube, so that the tube wall temperature could be measured by moving a thermocouple along its length. Using the same thermocouple for measuring all temperatures minimized calibration errors. Heat was supplied 0 REGION OF BOILING LIQUID electrically at one end and removed by a (12 OZ. OF REFRIGERANT 22) fluid flowing through a cooling jacket at 0 REGION OF CONDENSING GAS the other end. 0 ROUND SEALED TUBE OF RED BRASS, These tests led to the following empiri OUTSIDE DIAM. 1.00 IN (2.54 CM ) cal correlations, based on the inside tube INSIDE DIAM. 0.902 IN (2.29 CM ) surface: LENGTH 50 IN (127 CM ) 0 ALUMINUM FINS. H6=91 +0.07862 + 2.577 (1) THICKNESS 0.015 IN (0.38 MM ) Hc=645 - 0.0520- 1.24T (2) 6 FINS/IN (2.4/CM), PRESSED ONTO TUBE SURFACE RATIO 20.3/1 where 0 AIR FLOW DIVIDER. GALVANIZED STEEL. Hu = boiling heat transfer coefficient 0 ELEMENTS SLOPED 4.5° FROM HORIZONTAL (Btu/ft2h°F) H„ = condensing heat transfer coefficient (Btu/ft2h F) Q = heat flux (Btu/ft2h)o Figure 1. Diagram of a thermosiphon tube (not to scale) with specifications as used in this T = vapor temperature ( F) experiment. HEAT EXCHANGER The heat exchanger was made up from thermosiphon tube elements (see Figures 1 and 2) banked vertically four tube elements per bank, with one set of aluminum fins. In the first winter nine banks of tubes were used; in the second winter this was reduced to five. TEST OBJECTIVES 1. To demonstrate the operation of a thermosiphon heat exchanger. 1. To verify design correlations. 3. To investigate the effect of fouling on flow and heat transfer. Figure 2. Thermosiphon tube bank. 4. To study the problem of heat ex changer freezing. 5. To evaluate cleaning methods for the expensive than some other types, but at system would fill with ice. This appears heat exchanger and filters. lower effectiveness it is competitive. to be the practical upper limit on With laying chickens (a typical farm effectiveness and is typical of most farm example) 40% effectiveness is about applications. optimum; this will recover enough heat CHICKEN HOUSE INSTALLATION for good ventiliation down to -30 F (-34°C) outside temperature. Below this, LABORATORY TESTS Figure 3 shows the equipment arrange additional heat cannot come from the ment in the attic space of a research exhaust air, otherwise the exhaust flow Laboratory tests were carried out to chicken house at the Animal Research would be cooled below freezing and the measure the boiling and condensing Institute Greenbelt Farm, Ottawa. 86 CANADIAN AGRICULTURAL ENGINEERING, VOL. 17 NO. 2, DECEMBER 1975 o EXHAUST AIR FILTER FROM CHICKEN CAGE ROOM; 4 FILTER ELEMENTS AT 16x25x2IN(40.6x63.5x5.1 CM) © EXHAUST AIR FILTER FROM CHICKEN FLOOR HOUSING ROOM; 4 FILTER ELEMENTS (SAME AS®) © CENTRIFUGAL EXHAUST FAN, DELHI MODEL 412, 3/4 HP MOTOR © FINNED HEAT EXCHANGER BANKS IN GALV. STEEL BOX TILTED 4.5° ACROSS AND 3.5° BACK, FOR CONDENSATE DRAINAGE CONDENSATE DRAIN TUBE FROM LOW CORNER TO MANURE PIT INSULATED EXHAUST DUCT TRAP DOOR STATION FOR TAKING VELOCITY MEASUREMENTS. INSULATED INTAKE DUCT FROM VENTILATED ATTIC CENTRIFUGAL INTAKE FAN, SAME AS (7) DISCHARGES TO ATTIC DUCT. NLET DUCT & ADJUSTABLE INLET HOLES TO POULTRY ROOMS Xv^v-:->>^:-;i>x->:^^^ © ,v® SECTION 'B-B SECTION 'A'-'A' Figure 3. Detail of heat exchanger installation. The ducting and equipment was fitted estimating throughputs. Chickens were direction was about 900 scfm (25.5 into a rather tight triangular duct space housed in cages in one room and on slat m3/min), about 50% higher than the within the roof trusswork, to serve two and litter floor in the other room.
Recommended publications
  • Modeling and Optimization of a Thermosiphon for Passive Thermal Management Systems
    MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS A Thesis Presented to The Academic Faculty by Benjamin Haile Loeffler In Partial Fulfillment of the Requirements for the Degree Master of Science in the G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology December 2012 MODELING AND OPTIMIZATION OF A THERMOSIPHON FOR PASSIVE THERMAL MANAGEMENT SYSTEMS Approved by: Dr. J. Rhett Mayor, Advisor Dr. Sheldon Jeter G. W. Woodruff School of Mechanical G. W. Woodruff School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Srinivas Garimella G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Date Approved: 11/12/2012 ACKNOWLEDGEMENTS I would like to first thank my committee members, Dr. Jeter and Dr. Garimella, for their time and consideration in evaluating this work. Their edits and feedback are much appreciated. I would also like to acknowledge my lab mates for the free exchange and discussion of ideas that has challenged all of us to solve problems in new and better ways. In particular, I am grateful to Sam Glauber, Chad Bednar, and David Judah for their hard work on the pragmatic tasks essential to this project. Andrew Semidey has been a patient and insightful mentor since my final terms as an undergrad. I thank him for his tutelage and advice over the years. Without him I would have remained a mediocre heat transfer student at best. Andrew was truly indispensable to my graduate education. I must also thank Dr. Mayor for his guidance, insight, and enthusiasm over the course of this work.
    [Show full text]
  • Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi Using Transient System Simulation
    International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 451 ISSN 2229-5518 Modeling and Simulation of a Thermosiphon Solar Water Heater in Makurdi using Transient System Simulation Prof. Joshua Ibrahim, Dr. Aoandona Kwaghger, Engr. Shehu Mohammed Sani ABSTRACT The modeling and simulation of a thermosyphon solar water heater at Makurdi (7.74oN) Nigeria was conducted for a period of three months (November, 2013- January, 2014). The research was aimed at simulating the performance of a solar water heater by using various parameters for greater efficiency. The solar water heater was developed and its performance was simulated at University of Agriculture Makurdi. The solar radiation on a horizontal surface was measured using a solarimeter. The water mass flow rates were measured using a Flow meter. The relative humidity data were measured using the Hygrometer. The inlet, outlet and ambient temperatures were measured using a Digital thermometer. For the simulation of the entire system the following measured parameters were used, as global solar radiation on collector plate, collector ambient temperature, heat exchanger and storage tank ambient temperature, flow rate of the collector and storage loop, the cold tap water temperature and the hot water usage. For the validation of the model and for the identification of parameters as heat loss coefficients in situ measurements were performed. Based on the developed models parameter sensitivity analysis and transient influences can be examining for the element and the entire system as well. The results obtained were simulated using Transient simulation software16 (TRNSYS). The results obtained showed that the daily average solar radiation for the period varied from 405 푊/푚2 to1008 푊/푚2.
    [Show full text]
  • Solar Water Heating System Requirements
    Solar Water Heating Installation Requirements Adapted from The Bright Way to Heat Water™ technical requirements V 27 Energy Trust of Oregon Solar Water Heating Installation Requirements Revisions Energy Trust updates these installation requirements annually. Many thanks to the industry members and technical specialists that have invested their time to help keep this document current. The current document (v 27) underwent significant changes from previous installation requirements. Much of the redundant commentary material was removed and many requirements were evaluated based on cost effectiveness and removed or relaxed. The revisions table below summarizes many of the new changes however this document should be read in its entirety to understand the changes. August, 2012 Revisions Section Revision 2.2 Changed requirement for avoiding galvanic action, allowing aluminum Materials to galvanized steel connections. Requirements related to overheat and freeze protection were moved 2.3 to the new Solar Water Heating System Design and Eligibility Equipment and Installation Requirements document. Water quality requirements were removed. Requirements related to heat exchanger materials were moved to the 2.6 new Solar Water Heating System Design and Eligibility Requirements Plumbing document. Parts of Section 2.10 from v 26 were integrated into section 2.6. Backup water heater requirements were removed and/or deferred to code. 2.8 Anti-convective piping requirements were removed. Backup Water Heater Backup water heater R-10 floor pad was removed. Parts of Section 2.10 from v 26 were integrated into section 2.8 2.9 Storage to collector ratios were revised for single tank systems and moved to the new Solar Water Heating System Design and Eligibility Solar Storage Tank Requirements document.
    [Show full text]
  • Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls
    WHITE PAPER Automotive Off Road Heavy Power Duty Gen Prevent Engine Heater Hassles in Power Generators Reduce Low-Coolant Alarms, Low-Temperature Alarms and Service Calls A power generator’s engine heater is a critical component in providing fast, clean engine starts. Choosing and correctly installing a properly sized, high-quality heater protects the genset investment and ensures performance. Many diesel-power generator dealers, packagers, equipment rental companies and maintenance professionals are familiar with the frustration and cost of excessive low- coolant and low-temperature alarms resulting in service calls. Coolant evaporation can be caused by a thermosiphon circulation (TC) heater or incorrect installation of the heater. Dealers and packagers with service contracts are paying the price with replacement heaters and added service calls. Engine heater service issues are especially problematic for level-one care facilities, such as nursing homes and hospitals, where backup gensets must meet the NFPA 110, Type 10 regulation and start in less than 10 seconds. In Canada, CSA 282 requires engines to maintain a temperature between 100º and 120ºF (38º and 49ºC) to ensure quick startup. Mandatory for power generators, starting engines at these temperatures minimize wear and increase operating life. 1 WHITE PAPER Limited Engine Heater Choices To be cost-competitive, or due to lack of application information, gensets are often shipped with a low-cost engine heater. These heaters may not be suitable for all applications or meet the customer requirements. The dealer may need to upgrade the heater before the power generator is installed or in the field. To select the right engine pre-heater, it is important to be aware of new, more reliable products available today.
    [Show full text]
  • Plate Heat Exchangers for Refrigeration Applications
    Plate heat exchangers for refrigeration applications Technical reference manual A Technical Reference Manual for Plate Heat Exchangers in Refrigeration & Air conditioning Applications by Dr. Claes Stenhede/Alfa Laval AB Fifth edition, February 2nd, 2004. Alfa Laval AB II No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Alfa Laval AB. Permission is usually granted for a limited number of illustrations for non-commer- cial purposes provided proper acknowledgement of the original source is made. The information in this manual is furnished for information only. It is subject to change without notice and is not intended as a commitment by Alfa Laval, nor can Alfa Laval assume responsibility for errors and inaccuracies that might appear. This is especially valid for the various flow sheets and systems shown. These are intended purely as demonstrations of how plate heat exchangers can be used and installed and shall not be considered as examples of actual installations. Local pressure vessel codes, refrigeration codes, practice and the intended use and in- stallation of the plant affect the choice of components, safety system, materials, control systems, etc. Alfa Laval is not in the business of selling plants and cannot take any responsibility for plant designs. Copyright: Alfa Laval Lund AB, Sweden. This manual is written in Word 2000 and the illustrations are made in Designer 3.1. Word is a trademark of Microsoft Corporation and Designer of Micrografx Inc. Printed by Prinfo Paritas Kolding A/S, Kolding, Denmark ISBN 91-630-5853-7 III Content Foreword.
    [Show full text]
  • Echnica L Ssista Nce Tu Dy Umass Memorial Medical Center
    UMASS MEMORIAL MEDICAL CENTER POWER PLANT 55 LAKE AVENUE NORTH WORCESTER, MA T ECHNICAL ECHNICAL A SSISTANCE SSISTANCE PREPARED FOR S TUDY DCAMM Prepared by B2Q Associates, Inc. Andover, MA Revision Date 12/21/2015 TECHNICAL ASSISTANCE STUDY - WATERSIDE ECONOMIZER UMASS MEMORIAL MEDICAL CENTER - POWER PLANT Introduction .................................................................................................................................... 3 Contacts .......................................................................................................................................... 5 Approach & Modeling Methodology .............................................................................................. 6 Executive Summary Table ............................................................................................................... 7 Facility & Process Description ......................................................................................................... 8 Annual Chilled Water Load Profile ................................................................................................ 11 Energy Modeling Methodology .................................................................................................... 15 Baseline Chiller Plant Modeling ................................................................................................ 15 Power Plant Modeling............................................................................................................... 17 Energy Conservation
    [Show full text]
  • "Free" Cooling Using Water Economizers
    engineers newsletter volume 37–3 • providing insights for today’s hvac system designer "free" cooling using Standard 90.1 requirements Water Economizers The following sections of the Standard 90.1 prescriptive path are relevant for water economizers.[4] from the editor … Why economize? In past newsletters, we addressed the ability to accomplish "free" cooling by There are times of the year when a Section 6.5.1 Economizers. "Each artfully rearranging traditional cooling cooling system…" over the size equipment [1] and other ways to achieve system can use outdoor conditions to byproduct cooling virtually for free.[2] cool the building or process using the thresholds shown below "that has a fan We’ve also provided newsletters that standard cooling components to shall include either an air or water discussed air economizers and energy distribute its cooling effect. economizer." There are nine exceptions: code requirements.[3] small individual fan cooling units, In this EN, Susanna Hanson (Trane The most prevalent technique is an air spaces humidified above 35°F (2ºC) applications engineer) focuses on the economizer. When the temperature, or dew point for processes, systems with traditional methods of water-side enthalpy, of the outdoor air is low, condenser heat recovery, some economizing and associated energy code requirements. cooler outdoor air is used to reduce the residential applications, and systems temperature (or enthalpy) of air entering with minimal hours or cooling loads. the cooling coil. This can reduce or There is also an option to use higher eliminate mechanical cooling for much Let’s start with some definitions. efficiency equipment in lieu of an of the year in many climates.
    [Show full text]
  • A Passive Solar Retrofit in a Gloomy Climate
    Rochester Institute of Technology RIT Scholar Works Theses 5-11-2018 A Passive Solar Retrofit in a Gloomy Climate James Russell Fugate [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Fugate, James Russell, "A Passive Solar Retrofit in a Gloomy Climate" (2018). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A Passive Solar Retrofit in a Gloomy Climate By James Russell Fugate A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARCHITECTURE Department of Architecture Golisano Institute for Sustainability Rochester Institute of Technology May 11, 2018 Rochester, New York Committee Approval A Passive Solar Retrofit in a Gloomy Climate A Master of Architecture Thesis Presented by: James Russell Fugate Jules Chiavaroli, AIA Date Professor Department of Architecture Thesis Chair Dennis A. Andrejko, FAIA Date Associate Professor Head, Department of Architecture Thesis Advisor Nana-Yaw Andoh Date Assistant Professor Department of Architecture Thesis Advisor ii Acknowledgments I would like to thank the faculty and staff of the Master of Architecture program at the Rochester Institute of Technology. Being part of the original cohort of students in the program’s initial year was an honor and it has been exciting to see the program grow into the accredited and internationally respected program of today. I want to thank Dennis Andrejko for taking the chance and accepting me into the program as an older, part-time student.
    [Show full text]
  • Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter
    energies Article Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter Hafiz M. Daraghmeh 1 , Mohammed W. Sulaiman 1 , Kai-Shing Yang 2 and Chi-Chuan Wang 1,* 1 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; hafi[email protected] (H.M.D.); [email protected] (M.W.S.) 2 Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-3-5712121 Received: 28 November 2018; Accepted: 24 December 2018; Published: 29 December 2018 Abstract: This study investigates the feasibility of using R-134a filled separated two-phase thermosiphon loop (STPTL) as a free cooling technique in datacenters. Two data center racks one of them is attached with fin and tube thermosiphon were cooled by CRAC unit (computer room air conditioning unit) individually. Thermosiphon can help to partially eliminate the compressor loading of the CRAC; thus, energy saving potential of thermosiphon loop was investigated. The condenser is a water-cooled design and perfluoroalkoxy pipes were used as adiabatic riser/downcomer for easier installation and mobile capability. Tests were conducted with filling ratio ranging from 0 to 90%. The test results indicate that the energy saving increases with the rise of filling ratio and an optimum energy savings of 38.7% can be achieved at filling ratios of 70%, a further increase of filling ratio leads to a reduction in energy saving. At a low filling ratio like 10%, the evaporator starves for refrigerant and a very uneven air temperature distribution occurring at the exit of data rack.
    [Show full text]
  • Air-To-Air Energy Recovery Equipment
    CHAPTER 26 AIR-TO-AIR ENERGY RECOVERY EQUIPMENT Applications ............................................................................. 26.1 Use of Air-to-Air Heat or Heat and Mass Exchangers Basic Heat or Heat and Water Vapor Transfer Relations....... 26.2 in Systems ........................................................................... 26.27 Types of Air-to-Air Heat Exchangers ...................................... 26.5 Economic Considerations ...................................................... 26.35 Performance Ratings ............................................................. 26.19 Additional Technical Considerations .................................... 26.20 Energy and/or Mass Recovery Calculation Comparison of Air-to-Air Heat or Heat and Mass Exchanger Procedure ........................................................................... 26.36 Characteristics ................................................................... 26.26 Symbols .................................................................................. 26.41 IR-TO-AIR energy recovery is the process of recovering heat Table 1 Typical Applications for Air-to-Air Energy Recovery and/or moisture between two airstreams at different tempera- A Method Application tures and humidities. This process is important in maintaining accept- able indoor air quality (IAQ) while keeping energy costs low and Comfort-to-comfort Residences reducing overall energy consumption and carbon dioxide emission. Offices This chapter describes various technologies for air-to-air
    [Show full text]
  • Download Card
    3523 Lousma Drive, SE Grand Rapids, MI 49548 Email: [email protected] Telephone: (616) 534-0032 Website: www.airtechequipment.com MISCELLANEOUS EQUIPMENT • Axial Flow • Flexble Fabric Duct • Propeller • Centrifugal • Dust Collectors •Dampers •Louvers • Mist & Chip Collectors •Access Panels • Downdraft Tables •Access Doors •Ventilators • Rotary Air Locks • AB-QM- Pressure • Data Room Units Independent Control Valve (PICV) • Ice Storage Systems • Desiccant Dehumidifers • Peak Load Shaving • JENEsys Building Operation •Oil Mist Collectors •Welding and Information Platform Fume and Filtration Systems • LYNX CyberPro • Cooling Towers • Fluid Coolers • ECM Fan Arrays •Unit Heat •Wall Hung DX Heat Pumps • Wall Convectors and Air Conditioners • Wall Heat •Air Cooled Vertical X • Baseboard Heat •Heat Pump and Air • Infrared Conditioner • Portables • Vertical Classroom • Ceiling / Cove Ventilator • Gas Detection Systems 070921 LINE CARD Our goal is to support our customers’ requirements in meeting the increasing demands in the industry for efficient and compliant air management systems with….. EXPERIENCE • TECHNOLOGY • PRODUCTS • SERVICE 3523 LOUSMA DRIVE, SE GRAND RAPIDS, MICHIGAN 49548 Telephone: (616) 534-0032 / Fax: (616) 534-0284 Email: [email protected] Website: www.airtechequipment.com 3523 Lousma Drive, SE Grand Rapids, MI 49548 Email: [email protected] Telephone: (616) 534-0032 Website: www.airtechequipment.com AIR SIDE EQUIPMENT • Custom Air Handling Units (800 – 100,000+ cfm) •Condensers & Condensing Units
    [Show full text]
  • Challenges and Limitations of Thermosiphon Cooling What We Learned from CMS…
    Challenges and limitations of thermosiphon cooling What we learned from CMS… Philippe Brédy CEA Saclay DSM/Dapnia/SACM/LCSE Symposium for the Inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06 2007 • The thermosiphon principle (example of two phase ) – Self sustained natural boiling convection • Heating applied (Heat to be removed) –Boiling – Weight unbalance between legs of a loop – Induced flow limited by friction Q Single channel Loop PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007 2 • Rising heat exchangers with various geometry • A mass flow and a flow quality deduced from geometry and heat load • An upper tank –thllhe well-namedhd phase separator- is needdded – to recover gas and to supply supply or condensation of gas (cryocooler) – for separation of the two phases ΔP flow (m,x,geometry) Ù ΔP (x, hi) Hyp: homogenous model (x << 10%) PhB, Symposium for the inauguration of the LHC Cryogenics, CERN, 31/05 & 01/06/2007 3 Advantages vs Inconveniences •A passive creation offlf flow • NdNeed a minimum hhheight – no pumps or regulation valves – Pressure head to create flow • Autonomy in case of external • Circuit geometry must avoid cryogenic failure (volume of liquid any high point or strong in the phase separator) silitiingularities – separation of the phases • Minimization of the liquid –risk of vapor lock volume – use of the phase separator • No possible external action as a back-up volume for liquid –and a po ssible fru stra tion for the operator ! •A quasi-isothermal loop - mainly function
    [Show full text]