Introduction to Nanomaterials and Occupational Safety and Health

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Nanomaterials and Occupational Safety and Health Introduction to Nanomaterials and Occupational Safety and Health William Marsh Rice University This material was produced under grant number SH-21008-10-60-F-48 from the Occupational Safety and Health Administration, U.S. Department of Labor. It does not necessarily reflect the views or policies of the U.S. Department of Labor, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. 1-1 Introduction to Nanotechnology and Nanomaterials Lesson Overview The purpose of this lesson is to provide workers with introductory information about nanotechnology and nanomaterials. These topics will be covered: 1. How small is a nanometer? 2. Definitions and commonly used terms 3. How is the nanoscale different from the macroscale or the atomic scale? 4. Major classes of nanomaterials and their benefits Learning Objectives At the end of this module you will be able to Contrast objects at the nanoscale with larger and smaller forms of matter Define key terms in nanotechnology Explain some of the ways nanomaterial properties differ from molecules and microscale particles Describe some of the physical and chemical characteristics that can change at the nanoscale Describe some of the major classes of nanomaterials produced today and their properties and potential benefits Topic 1: How small is a nanometer? 1 nm = 0.000000001 m = 10-9 m = one billionth meter The size of any object worthy of the name “nanobug” cannot be estimated by squeezing together one’s fingers nor seen by squinting one’s eyes. The nanoscale is much too small for us to experience directly with our senses. As with chemical substances, nanoscale objects may be present in the working environment with little to alert the worker of a possible exposure. Just because you can’t see it, feel it, smell it or taste it doesn’t mean it’s not there. 1-2 Handout 1 Remember that “nano” does not simply mean “very small”. There are many forms of matter much smaller than a nanometer, including electrons, atoms and most molecules. The nanoscale is in between the very small atomic regime and the larger regime of microparticles and colloids. On the left of the diagram are naturally occurring objects of various sizes. On the right are human-designed objects of various sizes. There are plenty of natural objects that fall within the nanoscale, notably DNA and some larger proteins. Whether these can be called “nanotechnology” will be addressed in Topic 2. 1-3 Where does each of these fit? Place the following objects on the ruler according to their approximate size. (Use diameter unless otherwise specified.) 1. Bacterium 5. Virus 2. Ant 6. Human hair 3. Molecule 7. Atom 4. Buckyball (C60) Topic 2: Definitions and Commonly Used Terms Key terms include nanotechnology, nanoscale, nanomaterial, nanoparticle and nanofiber. There are several standard definitions for each of these. GROUP ACTIVITY (See Handout 2) In groups of 3-5, find similarities and differences among the definitions of nanotechnology, nanoparticle and nanomaterial published by ASTM, BSI and OSHA. 1-4 Handout 2 A Selection of Standard Definitions and Terms Nanotechnology ASTM International: E 2456 – 06 nanotechnology, n—A term referring to a wide range of technologies that measure, manipulate, or incorporate materials and/or features with at least one dimension between approximately 1 and 100 nanometers (nm). Such applications exploit the properties, distinct from bulk/macroscopic systems, of nanoscale components. British Standards Institute PAS 71: 2005 design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanoscale nanoscale: having one or more dimensions of the order of 100 nm or less OSHA website Nanotechnology is the understanding, manipulation, and control of matter at dimensions of roughly 1 to 100 nanometers, which is near-atomic scale, to produce new materials, devices, and structures. Nanoparticle ASTM International: E 2456 – 06 nanoparticle, n—in nanotechnology, a sub-classification of ultrafine particle with lengths in two or three dimensions greater than 0.001 micrometer (1 nanometer) and smaller than about 0.1 micrometer (100 nanometers) and which may or may not exhibit a size-related intensive property. ultrafine particle, n—in nanotechnology, a particle ranging in size from approximately 0.1 micrometer (100 nanometers) to .001 micrometers (1 nanometer). DISCUSSION—The term is most often used to describe aerosol particles such as those found in welding fumes and combustion by-products… British Standards Institute PAS 71: 2005 particle with one or more dimensions at the nanoscale OSHA website No definition published Nanomaterial ASTM International: E 2456 – 06 No standard definition published. British Standards Institute PAS 71: 2005 material with one or more external dimensions, or an internal structure, on the nanoscale, which could exhibit novel characteristics compared to the same material without nanoscale features OSHA website Engineered nanoscale materials or nanomaterials are materials that have been purposefully manufactured, synthesized, or manipulated to have a size with at least one dimension in the range of approximately 1 to 100 nanometers and that exhibit unique properties determined by their size. 1-5 There are other standards produced by voluntary standard developing organizations, most notably ISO, but no consensus has emerged yet about which set of definitions will prevail. OSHA’s definition of nanotechnology conforms more or less to that posted on the National Nanotechnology Initiative’s nano.gov website. Nanomaterial: Like its definition for nanoparticle, BSI’s nanomaterial definition references one or more dimensions at the nanoscale. However, it distinguishes between external dimensions (meaning “of the whole object”) and internal structure. Therefore an object can be larger than 100 nm in all three dimensions yet still be considered a nanomaterial if it has structural features within the nanoscale range. OSHA simply refers to one or more dimensions between 1-100 nm. Both BSI and OSHA refer to special properties but the BSI definition is less restrictive about this requirement (“could exhibit” for BSI vs. “that exhibit” for OSHA). ASTM does not define this term. For the purposes of this course, we will use the OSHA definition of nanomaterial and the ASTM definition of nanoparticle. Flowchart for Nanotechnology Terms 1-6 This flowchart uses the OSHA and BSI criteria for nanomaterial, the ASTM definition of nanoparticle and the BSI definition of nanofiber. Nanofibers and nanoparticles can be called nanomaterials. They differ only in their length-to-width aspect ratio. Long and narrow objects are more accurately described as nanofibers whereas objects that are more spherical than needle-like are better described as nanoparticles. To be safe, one can simply call an object with one or more external dimensions on the nanoscale a nanomaterial. IMAGE CREDITS: Quantum dot tetrapod: Mike Wong, Rice University; Nanofiber: DOI: 10.1002/adma.200803174 What is it? Use the flowchart to determine what each of these objects should be called. SOURCE: nanoshell is from nanospectra.com; macroporous nickel is from [Advanced Materials article] Different Types of Nanomaterials Naturally occurring: There are many materials that satisfy the size requirements of the nanoscale but are produced naturally rather than in a factory or research lab. Combustion products (e.g., from a forest fire) and volcanic ash are both composed of a range of substances and particle sizes, some of which are on the nanoscale. Viruses could even be considered nanoscale particles. Human Origin (incidental): Humans engage in many activities that produce nanoscale particles as an unintentional waste product of the process. Workers may be familiar with examples from 1-7 welding, sandblasting or other industrial processes. Some of these particles have been implicated in unwanted public or occupational health outcomes. Human Origin (Engineered): When we speak in this course about nanomaterials we will be talking about the third class shown in the table, the particles that have been intentionally designed to be in the nanoscale and are being studied or used commercially because of their novel properties. Some examples, about which more will be presented later, include nanoscale metals such as nanosilver, semiconducting nanoparticles known colloquially as quantum dots, carbon-based nanomaterials such as nanotubes, ceramic (metal oxide) nanoparticles such as titanium dioxide which is found in sunscreens, and polymeric hydrocarbon-based nanoparticles such as capsules used for drug delivery. The main differences between Incidental and Engineered nanomaterials are that Engineered nanomaterials are intentionally designed to exploit a novel feature that accompanies the small size and are typically better controlled than randomly produced Incidental nanomaterials. Topic 3: How is the nanoscale different from the macroscale or the atomic scale? Nanomaterial Properties Can Change with Size Classical Mechanics (Everyday Physics) Quantum Mechanics (Wave Physics) 0.1 1 10 100 1000 Length Scale (nm) The nanoworld Very small forms of matter such as atoms and molecules have their own set of rules and don’t behave the same way as larger objects. At the nanometer scale, fundamental physical and chemical properties depend on the size of the object. 1-8 Start with an individual water molecule. We can’t see or feel individual water molecules but when conditions are right the individual molecules start to cluster together into tiny droplets. The droplet may start off as a cluster of 5 or 6 molecules, at which point it’s not much different than a single molecule. However, the bigger the cluster gets, the more it begins to resemble a raindrop. As more and more molecules cluster together, the droplet gets heavier and heavier until eventually it falls from the sky. In other words, there is a point at which the cluster of water molecules stops resembling an individual gas-phase molecule and starts resembling a liquid-phase raindrop. The water undergoes a smooth transition from gas to liquid simply as a result of its change in size.
Recommended publications
  • Gold Nanoshells
    Nuclear Medicine and Biomedical Imaging Research Article Gold nanoshells: A ray of hope in cancer diagnosis and treatment Shanbhag PP*, Iyer V and Shetty T Saraswathi Vidya Bhavans College of Pharmacy, University of Mumbai, India Abstract Ideal properties of gold nanoshell has resulted in making it a ray of hope in biomedical areas such as targeted drug delivery, cancer detection and treatment and in eliminating tumors without harming normal healthy cells. Gold nanoshells are spherical particles with diameter ranging from 10-200 nm consisting of a dielectric core that is covered by a thin metallic shell of gold. An important role of gold nanoparticle based agents is their multifunctional nature. This review focuses on physics, synthesis and biomedical applications of gold nanoshells due to their inert nature, non-cytotoxicity and biocompatibility. Introduction Advantages The discovery of nanoshell was made by Professor Naomi J. 1. Biocompatibility Halas and her team at Rice University in 2003 [1,2]. Nanotechnologies Non-cytotoxicity can be defined as design, characterization, production and application 2. of structures, devices and systems by controlling shape and size at a 3. Bio sensing application nanometer scale [2,3]. Gold nanoparticles show different shapes as shown in Figure 1 [3]. 4. Protection of drugs from being degraded in the body before they reach their target site Nanoshell particles comprise of special class of nanocomposite materials [4]. Gold nanoshells are spherical nanoparticles composed 5. Enhance drug absorption into tumors and cancerous cells of a dielectric core which is covered by a thin gold shell with tunable 6. Prevention of drugs from interacting with normal cells, thus optical resonances [5,6].
    [Show full text]
  • Accomplishments in Nanotechnology
    U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well,
    [Show full text]
  • Nanomaterial Safety
    Nanomaterial Safety What are Nanomaterials? Nanomaterials or nanoparticles are human engineered particles with at least one dimension in the range of one to one hundred nanometers. They can be composed of many different base materials (carbon, silicon, and various metals). Research involving nanomaterials ranges from nano-particle synthesis to antineoplastic drug implants to cell culture work. Material Scientists, Chemists, Biologists, Biochemists, Physicists, Microbiologists, Medical-related disciplines and many engineering disciplines (Mechanical, Chemical, Biological and Environmental, etc.) perform research using nanomaterials. Naturally created particles of this size range are normally called ultra-fine particles. Examples are welding fumes, volcanic ash, motor vehicle exhaust, and combustion products. Nanomaterials come in many different shapes and dimensions, such as: • 0-dimensional: quantum dots • 1-dimensional: nanowires, nanotubes, • 2-dimensional: nanoplates, nanoclays • 3-dimensional: Buckyballs, Fullerenes, nanoropes, crystalline structures Nanoparticles exhibit very different properties than their respective bulk materials, including greater strength, conductivity, fluorescence and surface reactivity. Health Effects Results from studies on rodents and in cell cultures exposed to ultrafine and nanoparticles have shown that these particles are more toxic than larger ones on a mass-for-mass basis. Animal studies indicate that nanoparticles cause more pulmonary inflammation, tissue damage, and lung tumors than larger particles Solubility, shape, surface area and surface chemistry are all determinants of nanoparticle toxicity There is uncertainty as to the levels above which these particles become toxic and whether the concentrations found in the workplace are hazardous Respiratory Hazards: • Nanoparticles are deposited in the lungs to a greater extent than larger particles • Based on animal studies, nanoparticles may enter the bloodstream from the lungs and translocate to other organs and they are able to cross the blood brain barrier.
    [Show full text]
  • Best Practices for Handling Nanoparticles in Laboratories
    Best Practices for Handling Nanoparticles in Laboratories Introduction The purpose of this document is to provide a readily-accessible summary of information currently available on safe work practices for research laboratories working with engineered nanomaterials at Missouri State University. This interim guidance has been compiled from guidance from governmental agencies and universities currently engaged in nanomaterial research sources such as: The Center for Disease Control (CDC), The National Institute for Occupational Safety and Health (NIOSH), The Occupational Safety and Health Administration (OSHA), Department of Energy (DOE), Massachusetts Institute of Technology (MIT), Virginia Tech, and University of Florida. A list of sources can be found in the References section at the end of this document. It should be recognized that rapid changes in the understanding of these risks and management techniques may occur in this field, and researchers are strongly encouraged to stay abreast of these developments. It is anticipated that the internal MSU documents will be used in conjunction with the researcher’s Departmental (or University general) Chemical Hygiene Plan (CHP), and that this guidance is subject to revision as new information or regulatory guidance becomes available. Nanomaterial Definitions Nanoparticles are particles having a diameter of 1 to 100 nanometers (nm) that may or may not have size-related intensive properties. The precise definition of particle diameter depends on particle shape as well as how the diameter is measured. These materials often exhibit unique physical and chemical properties as compared to their parent compounds. They may be suspended in a gas as a nanoaerosol, suspended in a liquid as a colloid or nanohydrosol, or embedded in a matrix as a nanocomposite.
    [Show full text]
  • Enhancing the Thermal Stability of Carbon Nanomaterials with DNA
    University of Rhode Island DigitalCommons@URI Chemical Engineering Faculty Publications Chemical Engineering 2019 Enhancing the Thermal Stability of Carbon Nanomaterials with DNA Mohammad Moein Safee University of Rhode Island Mitchell Gravely University of Rhode Island Adeline Lamothe University of Rhode Island Megan McSweeney University of Rhode Island Daniel E. Roxbury University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/che_facpubs Part of the Chemical Engineering Commons Citation/Publisher Attribution Safaee, M.M., Gravely, M., Lamothe, A. et al. Enhancing the Thermal Stability of Carbon Nanomaterials with DNA. Sci Rep 9, 11926 (2019). https://doi.org/10.1038/s41598-019-48449-x Available at: https://doi.org/10.1038/s41598-019-48449-x This Article is brought to you for free and open access by the Chemical Engineering at DigitalCommons@URI. It has been accepted for inclusion in Chemical Engineering Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. www.nature.com/scientificreports OPEN Enhancing the Thermal Stability of Carbon Nanomaterials with DNA Mohammad Moein Safaee , Mitchell Gravely, Adeline Lamothe, Megan McSweeney & Daniel Roxbury Received: 31 January 2019 Single-walled carbon nanotubes (SWCNTs) have recently been utilized as fllers that reduce the Accepted: 6 August 2019 fammability and enhance the strength and thermal conductivity of material composites. Enhancing Published: xx xx xxxx the thermal stability of SWCNTs is crucial when these materials are applied to high temperature applications. In many instances, SWCNTs are applied to composites with surface coatings that are toxic to living organisms.
    [Show full text]
  • Carbon Nanomaterials: Building Blocks in Energy Conversion Devices
    Mimicking Photosynthesis Carbon nanostructure-based donor- acceptor molecular assemblies can be engineered to mimic natural photo- synthesis. Fullerene C60 is an excellent electron acceptor for the design of donor-bridge-acceptor molecular systems. Photoinduced charge transfer processes in fullerene-based dyads and triads have been extensively investigated by several research groups during the last decade. In these cases the excited C60 accepts an electron from the linked donor group Carbon Nanomaterials: to give the charge-separated state under visible light excitation. Photoinduced charge separation in these dyads has Building Blocks in Energy been achieved using porphyrins, phtha- locyanine, ruthenium complexes, ferro- cene, and anilines as electron donors. Conversion Devices The rate of electron transfer and by Prashant Kamat charge separation efficiency is dependent on the molecular configuration, redox Carbon nanotubes, fullerenes, and mesoporous carbon potential of the donor, and the medium. Clustering the fullerene-donor systems structures constitute a new class of carbon nanomaterials with provides a unique way to stabilize properties that differ signifi cantly from other forms of carbon electron transfer products. The stability of C anions in cluster forms opens such as graphite and diamond. The ability to custom synthesize 60 up new ways to store and transport nanotubes with attached functional groups or to assemble photochemically harnessed charge. fullerene (C60 and analogues) clusters into three-dimensional Novel organic solar cells have (3D) arrays has opened up new avenues to design high surface been constructed by quaternary area catalyst supports and materials with high photochemical self-organization of porphyrin and fullerenes with gold nanoparticles. and electrochemical activity.
    [Show full text]
  • Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
    nanomaterials Review Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine Daniel Ziental 1 , Beata Czarczynska-Goslinska 2, Dariusz T. Mlynarczyk 3 , Arleta Glowacka-Sobotta 4, Beata Stanisz 5, Tomasz Goslinski 3,* and Lukasz Sobotta 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 2 Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 3 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 4 Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; [email protected] 5 Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] * Correspondence: [email protected] (T.G.); [email protected] (L.S.) Received: 4 January 2020; Accepted: 19 February 2020; Published: 23 February 2020 Abstract: Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Surface-Enhanced Raman Scattering on Tunable Plasmonic Nanoparticle Substrates
    Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates J. B. Jackson*†‡ and N. J. Halas†‡§¶ሻ Departments of *Physics and Astronomy, §Electrical and Computer Engineering, and ¶Chemistry, †Laboratory of Nanophotonics, and ‡Rice Quantum Institute, Rice University, Houston, TX 77005 Communicated by James L. Kinsey, Rice University, Houston, TX, November 8, 2004 (received for review August 13, 2004) Au and Ag nanoshells are investigated as substrates for surface- the development of precisely designed nano-optical components enhanced Raman scattering (SERS). We find that SERS enhance- for SERS and other applications. ments on nanoshell films are dramatically different from those Independent control of the core and shell dimensions of observed on colloidal aggregates, specifically that the Raman nanoshells offers a valuable opportunity to systematically con- enhancement follows the plasmon resonance of the individual trol the plasmon resonance frequency of a nanostructure. The nanoparticles. Comparative finite difference time domain calcula- plasmon resonant frequency of a nanoshell can be tuned from tions of fields at the surface of smooth and roughened nanoshells the visible region of the spectrum into the infrared (19, 22–25), reveal that surface roughness contributes only slightly to the total giving rise to a host of useful applications (26–29). The plasmon enhancement. SERS enhancements as large as 2.5 ؋ 1010 on Ag resonances for Au and Ag nanoshells in this wavelength region nanoshell films for the nonresonant molecule p-mercaptoaniline are quite similar (22). The tunable plasmon frequency allows us are measured. to design substrates with plasmon resonances shifted far away from the electronic resonances of an adsorbate molecule, pro- nanoparticles ͉ nanoshells ͉ plasmons ͉ spectroscopy viding a strategy for separating the electromagnetic from the chemical effects in SERS.
    [Show full text]
  • Nanomedicine and Medical Nanorobotics - Robert A
    BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging.
    [Show full text]
  • Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual-Energy Mammography
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual-Energy Mammography Roshan Anuradha Karunamuni University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biomedical Commons Recommended Citation Karunamuni, Roshan Anuradha, "Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual- Energy Mammography" (2014). Publicly Accessible Penn Dissertations. 1326. https://repository.upenn.edu/edissertations/1326 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1326 For more information, please contact [email protected]. Selection and Evaluation of a Silver Nanoparticle Imaging Agent for Dual-Energy Mammography Abstract Over the past decade, contrast-enhanced (CE) dual-energy (DE) x-ray breast imaging has emerged as an exciting, new modality to provide high quality anatomic and functional information of the breast. The combination of these data in a single imaging procedure represents a powerful tool for the detection and diagnosis of breast cancer. The most widely used implementation of CEDE imaging is k-edge imaging, whereby two x-ray spectra are placed on either side of the k-edge of the contrast material. Currently, CEDE imaging is performed with iodinated contrast agents. The lower energies used in clinical DE breast imaging systems compared to imaging systems for other organs suggest that an alternative material may be better suited. We developed an analytical model to compare the contrast of various elements in the periodic table. The model predicts that materials with atomic numbers from 42 to 52 should provide the best contrast in DE breast imaging while still providing high-quality anatomical images.
    [Show full text]
  • Making Better Use of Clinical Trials
    Making better use of clinical trials Computational decision support methods for evidence-based drug benefit-risk assessment ZOL OFT PAXIL PLACEBO 75 PROZAC 20mg Gert van Valkenhoef Making better use of clinical trials Computational decision support methods for evidence-based drug benefit-risk assessment Proefschrift ter verkrijging van het doctoraat in de Medische Wetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. E. Sterken, in het openbaar te verdedigen op woensdag 19 december 2012 om 14:30 uur door Gerardus Hendrikus Margondus van Valkenhoef geboren op 25 juli 1985 te Amersfoort Promotores: Prof. dr. J.L. Hillege Prof. dr. E.O. de Brock Copromotor: Dr. T.P. Tervonen Beoordelingscommissie: Prof. dr. A.E. Ades Prof. dr. E.R. van den Heuvel Prof. dr. M.J. Postma ISBN 978-90-367-5884-0 (PDF e-book) iii This thesis was produced in the context of the Escher Project (T6-202), a project of the Dutch Top Institute Pharma. The Escher Project brings together university and pharmaceutical partners with the aim of energizing pharmaceutical R & D by iden- tifying, evaluating, and removing regulatory and methodological barriers in order to bring efficacious and safe medicines to patients in an efficient and timely fashion. The project focuses on delivering evidence and credibility for regulatory reform and policy recommendations. The work was performed at the Faculty of Economics and Business, University of Groningen (2009 – 2010), at the Department of Epidemiology, University Medical Center Groningen (2010-2012), and during a series of research visits to the Depart- ment of Community Based Medicine, University of Bristol.
    [Show full text]