Results on the Selection of Stationary Phase Liquid and Column Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Results on the Selection of Stationary Phase Liquid and Column Conditions [Agr. Biol. Chem., Vol. 29, No. I, p. 56•`60, 1965] Gas-Liquid Chromatography of Organophosphorus Pesticides* By Jun KANAZAWA, Hiroshi KUBO** and Rokuro SATO** Agricultural Chemicals Inspection Station, Ministry of Agriculture and Forestry, Kodaira, Tokyo Received July 29, 1964 A method for separation and identification of mixtures of organophosphorus pesticides by gas-liquid chromatography with the thermal conductivity detector is described. By the combination of 6 operating conditions with three columns containing high vacuum silicone grease, silicone compound DC-11 and fluorosilicone FS-1265, mixtures of up to 19 organo phosphorus pesticides can be mutually separated. This technique should be very useful for quality control of pesticide formulation, residue analysis and legal medicine. Nowadays in our country a many kinds of results on the selection of stationary phase organophosphorus pesticide have been used for liquid and column conditions for separation of the control of noxious insects of crops and 19 organophosphorus pesticides by means of hygiene. Many of them have generally such the gas-liquid chromatography. high poisonous character for the mammals EXPERIMENTAL that from view-points of standard manage Apparatus. ment of formulations, toxicology and legal The apparatus used in the present investigation medicine, a simple rapid method is needed was a Shimadzu Model GC-2B gas chromatograph, for the qualitative and quantitative identifica equipped with a thermal conductivity type of detector tions of these pesticides in mixtures, in com and a 2-mV. recorder at full scale. The column used mercial preparations and treated foodstuffs. was a stainless steel spiral tubing of 1m. long with In recent years the gas chromatograph has 4mm. internal diameter. become increasingly popular as an analytical Column Packings. instrument. Gas chromatography has been al In all of this work 32- to 48-mesh Celite 545 was ready utilized for separation, identification.1•`6) used as supporting medium. Three stationary phases However, little work has been carried out on were used as follows: 1) 5% high vacuum silicone the mutually qualitative analysis of a number grease (HVSG); 2) 5% silicone compound (DC-11); 3) 5% fluorosilicone (FS-1265). These all are products of these pesticides, except the report by of Dow-Corning. Ethylacetate for HVSG and FS-1265 Giuffrida.6) , chloroform for DC-11 were used as the coating solvents In this paper the authors wish to report the to Celite 545. * Gas Chromatography of Agricultural Chemicals . Part Samples. XVI. ** Present address: Tokyo University of Agriculture and Organophosphorus pesticides tested were Bis-0,0-di Technology, Fuchu, Tokyo. ethyl-phosphoric anhydride (TEPP) , 0,0-dimethyl-2,2- 1) D. M. Coulson, L. A. Cavanagh and L Stuart, J. Agr . dichlorovinyl phosphate (DDVP), 0,0-dimethyl 0-(2- Food Chem., 7, 250 (1959). 2) J. Kanazawa and R. Sato, Bunseki Kagaku, 11, 122 ethylthio)ethyl phosphorodithioate (Thiono methyl (1962). demeton), 0,0-diethyl S-ethylthiomethyl phosphoro 3) D. L. Petitjean and C. D. Lantz, J. Gas Chromatog., 1(2), 23 (1963). dithioate (Thimet), 0,0-diethyl 0-(2-ethylthio)ethyl 4) T. Nishimoto and M. Ueda, Shokuhin Eiseigaku Zasshi , 4 phosphorodithioate (Thiono dimeton) Octamethyl- 192 (1963). 5) R. C. Nelson, J. Assoc. Offic. Agr. Chem. 47, 289 (1964). pyrophosphoramide (Schradan), 0,0-diethyl S-(2-ethyl 6) L. Giuffrida, ibid., 47, 293 (1964). thio)ethyl phosphorodithioate (Di-syston), 0,0-diethyl Gas-Liquid Chromatography of Organophosphorus Pesticides 57 0-(2-isopropyl-6-methyl-4-pyrimidiyl phosphorothioate 0-p-nitrophenyl phosphorothioate (parathion), 0,0,0'0'- (diazinon), 0,0-diethyl 0-2,4-dichlorophenyl phosphoro tetraethyl S,S'-methylene bisphosphorodithioate dithioate (VC-13), 0,0-dimethyl S-(N-methylcarbamoyl- (ethion), 0,0-diethyl S-(p-chlorophenylthio)methyl methyl) phosphorodithioate (dimethoate), 0,0-dimethyl phosphorodithioate (Trithion), 0-ethyl 0 p-nitrophenyl 0-p-nitrophenyl phosphorothioate (methyl (parathion) , 0 phenylphosphonothioate (EPN), 0,0-diethyl S-(2,5-di ,0-dimethyl 0-3-methyl-4-nitrophenyl phosphorothio chlorophenylthio)methyl phosphorodithioate (Phenkap ate (Sumithion), 0,0-dimethyl 0-(4-methylthio-m-tolyl) ton). In these diazinon, dimethoate and methyl para phosphorothioate (Baycid), 0,0-dimethyl S-(1,2-dicarbe- thion used were chemical pure material, the other thoxyethyl) phosphorodithioate (malathion), 0,0-diethyl pesticides were technical grades. Twenty-five weight per cent toluene solution of the parent compounds TABLE I. OPERATING CONDITIONS was used. But only dimethoate was used in acetone solution owing to poor solubility in toluene. Operating Conditions. Helium was used for the carrier gas. The detector filament current was adjusted to 200 mA at the TABLE II. RETENTION TIMES OF ORGANO PHOSPHORUS PESTICIDES FIG. 1. Gas Chromatogram of Mixtures of Organophosphorus Pesticides. 58 Jun KANAZAWA, Hiroshi KUBO and Rokuro SATO operating column temperature. The sample size was In the three column packings, high vacuum 1 to 2ƒÊl at 2 to 4mV, full scale span of the recorder, silicone grease column gave the sharpest and and the chart speed was 1cm per minute. The the most symmetrical peaks, and peak resolu operating conditions used in this investigation were tion of the each pesticides was good at column shown in Table I. temperature 165•Ž. Under this operating condition (I), the organophosphorus pesticides RESULTS AND DISCUSSION eluted in the following order : TEPP and The retention times and their relative values DDVP (Group A), Thiono methyl demeton (methyl parathion or ethion as the unity) of (B), Thimet (C), Thiono demeton (D), Di the organophosphorus pesticides tested were syston, Schradan and diazinon (Group E), VC- shown in the Table II. 13, dimethoate and methyl parathion (Group FIG. 2. Gas Chromatograms of Mixtures of Organophosphorus Pesticides , Gas-Liquid Chromatogray of Organophosphorus Pesticides 59 F), Sumithion (G), Baycid, malathion and a column with fluorosilicone FS-1265 as the parathion (Group H), (Fig. 1). Accordingly stationary phase at column temperature 170•Ž at least 8 sorts of the those organophosphorus (Condition III), these mixtures can be satis pesticides can be separated completely under factorily separated (Fig. 2). this operating condition. However, the The vapor pressures of ethion, Trithion, operating condition (1) does not mutually EPN and Phenkapton are so relatively low separate compounds within group, for ex that the column temperature must be raised ample, VC-13, dimethoate and methyl to 195•Ž. In the operating condition (IV), parathion (Group F) or Baycid, malathion the column with high vacuum silicone grease and parathion (Group H), whereas by using as the stationary phase does not separate EPN FIG. 3. Gas Chromatograms of Mixtures of Organophosphorus Pesticides. 60 Jun KANAZAWA, Hiroshi KUBO and Rokuro SATO and Phenkapton, but under the operating decomposition of some organophosphorus condition (VI) with fluorosilicone FS-1265, pesticides. This finding agrees with the indi these can be separated (Fig. 3). cation presented by Crosby and Laws.7) Though the column with silicone compound Thus by the combination of two or three DC-11 has almost the same separating ability columns packed with silicone of different to high vacuum silicone grease column, the property, a large number of organophosphorus retention order is changed a little, especially pesticides were qualitatively analysed. This the retention time of dimethoate is considera work would be applicable to the composition bly shorten. analysis of formulated products, to the residue The column containing silicone Gum SE-30 analysis, and to the legal medicine by the as the stationary phase was also suitable for combination of extraction and cleanup the present objects, which gave approximately method.8,9) the same relative retention times comparable to those obtained with silicone compound DC- Acknowledgement. The authors wish to 11. Polyethylene glycol 6000 was unsatisfac thank Sumitomo Chem. Co., Nihon Kayaku tory as the stationary phase for this work, Co. and Nihon Tokushu Noyaku Co., for because this column gave generally tailing kind supply of technical products of organo peaks probably owing to its affinity with phosphorus pesticides. organophosphorus pesticides. 7) N. T. Crosby and E. Q. Laws, Analyst, 89, 319 (1964). Stainless steel must be used as the column 8) R. Moddes and J. W. Cook, j. Assoc. Offic. Agr. Chem., 42, 208 (1959). material. The copper column caused thermal 9) D. E. Coffin and W. P. Mckinley, ibid, 46, 223 (1963)..
Recommended publications
  • Dimethoate 4EC Systemic Insecticide – Miticide ACTIVE INGREDIENT: PRECAUTIONARY STATEMENTS (Cont.) Dimethoate*
    GROUP 1B INSECTICIDE Dimethoate 4EC Systemic Insecticide – Miticide ACTIVE INGREDIENT: PRECAUTIONARY STATEMENTS (Cont.) Dimethoate* .......................................................... 43.5% Mixers, loaders, applicators, flaggers, and other handlers must OTHER INGREDIENTS: .......................................... 56.5% wear: Long-sleeved shirt and long pants, shoes plus socks, goggles TOTAL: .............................................................. 100.0% or face shield, chemical-resistant gloves, a NIOSH-approved * This product contains 4 pounds of dimethoate per gallon. dust/mist filtering respirator with MSHA/NIOSH approval number prefix TC-21C or a NIOSH-approved respirator with any N, R, P, or KEEP OUT OF REACH OF CHILDREN HE filter, and chemical-resistant apron when mixing, loading, clean- ing up spills, or equipment. WARNING See Engineering Controls for additional requirements and excep- Si usted no entiende la etiqueta, busque a alguien para que se la ex- tions. plique a usted en detalle. (If you do not understand the label, find Follow manufacturer’s instructions for cleaning/maintaining PPE. If someone to explain it to you in detail.) no such instructions for washables exist, use detergent and hot water. Keep and wash PPE separately from other laundry. See FIRST AID Below Discard clothing and other absorbent materials that have been EPA Reg. No. 19713-231 Net Content: drenched or heavily contaminated with this product’s concentrate. EPA Est. No. 19713-GA-001 2.5 Gals. (9.46 L) Do not reuse them. ENGINEERING CONTROLS FIRST AID Mixers and loaders supporting aerial application to alfalfa, cotton, IF SWALLOWED: soybeans, corn, safflower, sorghum, and wheat, must use a closed • Call a poison control center or doctor immediately for treatment system that meets the requirements listed in the Worker Protections advice.
    [Show full text]
  • 3-27-2017 Nerve Agents
    Week of March 13, 2017 – Nerve Agents Last month, on February 13, Kim Jong-nam, the exiled half-brother of North Korea's ruler, Kim Jong Un, was murdered by having the nerve agent, VX-gas, sprayed into his face while at Malaysia’s Kuala Lumpur International Airport. According to the Council on Foreign Relations (CFR), VX is the most toxic nerve agent ever synthesized. The CFR (founded in 1921) is a United States 4900-member organization, nonprofit, publisher, and think tank specializing in U.S. foreign policy and international affairs. The median lethal dose (LD50) of VX due to skin contact (not ingestion) for humans is estimated to be about 10 mg or 0.00035 ounces (that’s about 1/20 of a drop of liquid!). The median lethal airborne concentration (LC50) for this material, for which humans would inhale, is estimated to be 30 – 50 milligrams per cubic meter for only one minute! Typically, inhalation exposures are measured over an 8-hour time period. Yet, the effectiveness of VX is measured as an airborne exposure contaminant within a minute time period! VX is one a of number of chemical substances that is classified as a nerve agent. The principal nerve agents are sarin (GB), soman (GD), tabun (GA), and VX. They are manmade compounds that have been manufactured for the sole purpose to be used in chemical warfare. Nerve agents are organophosphorus compounds and therefore, are similar in mechanism of action as a number of pesticides; some of the most notable being malathion, parathion, and diazinon. As its name implies, these chemicals have a phosphorus atom connected to an organic molecule; the molecular variations of these materials are quite numerous.
    [Show full text]
  • Chlorpyrifos (Dursban) Ddvp (Dichlorvos) Diazinon Malathion Parathion
    CHLORPYRIFOS (DURSBAN) DDVP (DICHLORVOS) DIAZINON MALATHION PARATHION Method no.: 62 Matrix: Air Procedure: Samples are collected by drawing known volumes of air through specially constructed glass sampling tubes, each containing a glass fiber filter and two sections of XAD-2 adsorbent. Samples are desorbed with toluene and analyzed by GC using a flame photometric detector (FPD). Recommended air volume and sampling rate: 480 L at 1.0 L/min except for Malathion 60 L at 1.0 L/min for Malathion Target concentrations: 1.0 mg/m3 (0.111 ppm) for Dichlorvos (PEL) 0.1 mg/m3 (0.008 ppm) for Diazinon (TLV) 0.2 mg/m3 (0.014 ppm) for Chlorpyrifos (TLV) 15.0 mg/m3 (1.11 ppm) for Malathion (PEL) 0.1 mg/m3 (0.008 ppm) for Parathion (PEL) Reliable quantitation limits: 0.0019 mg/m3 (0.21 ppb) for Dichlorvos (based on the RAV) 0.0030 mg/m3 (0.24 ppb) for Diazinon 0.0033 mg/m3 (0.23 ppb) for Chlorpyrifos 0.0303 mg/m3 (2.2 ppb) for Malathion 0.0031 mg/m3 (0.26 ppb) for Parathion Standard errors of estimate at the target concentration: 5.3% for Dichlorvos (Section 4.6.) 5.3% for Diazinon 5.3% for Chlorpyrifos 5.6% for Malathion 5.3% for Parathion Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: October 1986 Chemist: Donald Burright Organic Methods Evaluation Branch OSHA Analytical Laboratory Salt Lake City, Utah 1 of 27 T-62-FV-01-8610-M 1.
    [Show full text]
  • Hawaii on Two Foliage Plants, Dwarf Brassaia Diazinon Plant After Spots
    in Japan and England will be given by Tosh Fu- {Brassaia arboricola) and Dwarf Ti {Cordyline chikami of O.M. Scotts and Ray McMicken of B. terminalis 'Madameandre') to determine their Hayman Co., respectively. phototoxicity to selected insecticides and acara- cides. Plants, growing in 6-inch pots, were treated Farwest Show by submerging the aerial portions of the plant in Farwest Nursery, Garden, and Supply Show water suspensions of 7 pesticides for 15seconds. will be September 8-10, 1975, at the Memorial Granular formulations of 2 pesticides were ap Coliseum in Portland, Oregon. For information plied to the soil surface. Materials, at 2X stand contact: Farwest Nursery Show, Suite GA-7, ard rates, were as follows: 222 S.W. Harrison, Protland, OR. 97201. Amount formulation per: ASHS The 72d annual meeting of ASHS (American Material and formulation 1-gallon water 6-inch pot Society for Horticultural Science) will be held in chlorobenzilate 4E 2t — Honolulu, September 8 to 13, 1975, at the dicofol (Kelthane) 35WP 2T - Sheraton-Waikiki Hotel. Meeting concurrently Pentac 50WP 2T — with ASHS will be the American Horticulture carbaryl (Sevin) 50WP 2T - Society. The University of Hawaii will host the diazinon AG500 (48% EC) 2t - meeting with Dr. Richard Bullock, general chair dimethoate (Cygon) 2E 2t — man. Dr. Henry Nakasone will serve as assistant Volck Oil Supreme 2T - general chairman, Dr. Phil Parvin as local arrange aldicarb (Temik) 10G - 1.5t ments chairman, and Dr. Richard Criley as pro disulfoton (Di-Syston) 15G - 1.5t gram chairman. Neighbor island tours will be untreated controls - conducted following the meetings.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Lifetime Organophosphorous Insecticide Use Among Private Pesticide Applicators in the Agricultural Health Study
    Journal of Exposure Science and Environmental Epidemiology (2012) 22, 584 -- 592 & 2012 Nature America, Inc. All rights reserved 1559-0631/12 www.nature.com/jes ORIGINAL ARTICLE Lifetime organophosphorous insecticide use among private pesticide applicators in the Agricultural Health Study Jane A. Hoppin1, Stuart Long2, David M. Umbach3, Jay H. Lubin4, Sarah E. Starks5, Fred Gerr5, Kent Thomas6, Cynthia J. Hines7, Scott Weichenthal8, Freya Kamel1, Stella Koutros9, Michael Alavanja9, Laura E. Beane Freeman9 and Dale P. Sandler1 Organophosphorous insecticides (OPs) are the most commonly used insecticides in US agriculture, but little information is available regarding specific OP use by individual farmers. We describe OP use for licensed private pesticide applicators from Iowa and North Carolina in the Agricultural Health Study (AHS) using lifetime pesticide use data from 701 randomly selected male participants collected at three time periods. Of 27 OPs studied, 20 were used by 41%. Overall, 95% had ever applied at least one OP. The median number of different OPs used was 4 (maximum ¼ 13). Malathion was the most commonly used OP (74%) followed by chlorpyrifos (54%). OP use declined over time. At the first interview (1993--1997), 68% of participants had applied OPs in the past year; by the last interview (2005--2007), only 42% had. Similarly, median annual application days of OPs declined from 13.5 to 6 days. Although OP use was common, the specific OPs used varied by state, time period, and individual. Much of the variability in OP use was associated with the choice of OP, rather than the frequency or duration of application.
    [Show full text]
  • Azinphos Methyl Analysis of Risks to Endangered and Threatened Salmon and Steelhead
    Azinphos methyl Analysis of Risks to Endangered and Threatened Salmon and Steelhead July 23, 2003 William Erickson, Ph.D. and Larry Turner, Ph.D. Environmental Field Branch Office of Pesticide Programs Summary Azinphos methyl is an organophosphate pesticide registered for control of insects on a variety of crops, mainly fruits and nuts. Azinphos methyl is very highly toxic to fish and aquatic invertebrates. An ecological risk assessment that includes nontarget aquatic organisms was prepared by OPP’s Environmental Fate and Effects Division (EFED) in 1999, and an Interim Reregistration Eligibility Decision (IRED) was issued in October of 2001. The assessment concludes that acute and chronic Levels of Concern (LOCs) are exceeded for threatened and endangered (T&E or listed) freshwater fish as a result of runoff and drift of azinphos methyl from all treatment sites. Acute and chronic levels of concern also are exceeded for individuals of T&E invertebrates, as well as populations of invertebrates that may serve as food for listed fish. A subsequent agreement between azinphos methyl registrants and the Agency has led to 23 uses being canceled; seven other uses being phased out in 2005. Mitigation measures will reduce application rates and add no-spray buffers to product labels. Despite these measures, we conclude that azinphos methyl may affect 25 Evolutionarily Significant Units (ESUs) and will have no effect on one ESU. Our determinations are based on the known or potential use of azinphos methyl on various use sites in each county where there is habitat or a migration corridor for an ESU and the acute and chronic risks of azinphos methyl to endangered fish.
    [Show full text]
  • Diazinon 50W INSECTICIDE
    RESTRICTED USE PESTICIDE DUE TO AVIAN AND AQUATIC TOXICITY FOR RETAIL SALE TO AND USE ONLY BY CERTIFIED APPLICATORS OR PERSONS UNDER THEIR DIRECT SUPERVISION AND ONLY FOR THOSE USES COVERED BY THE CERTIFIED APPLICATOR’S CERTIFICATION. Diazinon 50W INSECTICIDE For control of certain insects on fruits, vegetables, nuts, field crops, and ornamentals grown outdoors in nurseries. ACTIVE INGREDIENT % BY WT. Diazinon: O,O-diethyl O-(2-isopropyl-6-methyl-4-pyrimidinyl) phosphorothioate ................................................................................................. 50.0% INERT INGREDIENTS ....................................................................................................................................................................................................... 50.0% TOTAL................................................................................................................................................................................................................................. 100.0% EPA Reg. No. 66222-10 KEEP OUT OF REACH OF CHILDREN CAUTION FIRST AID CONTAINS AN ORGANOPHOSPHATE THAT INHIBITS CHOLINESTERASE IF SWALLOWED: Call a poison control center or doctor immediately for treatment advice. Do not induce vomiting unless told to by a poison con- trol center or doctor. Have person sip a glass of water if able to swallow. Do not give anything by mouth to an unconscious or convulsing person. IF INHALED: Move person to fresh air. If person is not breathing, call 911 or an ambulance, then
    [Show full text]
  • Innovative Biocatalysts As Tools to Detect and Inactivate Nerve Agents Elena Porzio1, Francesca Bettazzi2, Luigi Mandrich1, Immacolata Del Giudice1, Odile F
    www.nature.com/scientificreports OPEN Innovative Biocatalysts as Tools to Detect and Inactivate Nerve Agents Elena Porzio1, Francesca Bettazzi2, Luigi Mandrich1, Immacolata Del Giudice1, Odile F. Restaino3, Serena Laschi4, Ferdinando Febbraio1, Valentina De Luca1, 3 1 5 6 Received: 24 February 2018 Maria G. Borzacchiello , Teresa M. Carusone , Franz Worek , Antonio Pisanti , Piero Porcaro6, Chiara Schiraldi3, Mario De Rosa3, Ilaria Palchetti 2 & Giuseppe Manco1 Accepted: 25 July 2018 Published: xx xx xxxx Pesticides and warfare nerve agents are frequently organophosphates (OPs) or related compounds. Their acute toxicity highlighted more than ever the need to explore applicable strategies for the sensing, decontamination and/or detoxifcation of these compounds. Herein, we report the use of two diferent thermostable enzyme families capable to detect and inactivate OPs. In particular, mutants of carboxylesterase-2 from Alicyclobacillus acidocaldarius and of phosphotriesterase-like lactonases from Sulfolobus solfataricus and Sulfolobus acidocaldarius, have been selected and assembled in an optimized format for the development of an electrochemical biosensor and a decontamination formulation, respectively. The features of the developed tools have been tested in an ad-hoc fabricated chamber, to mimic an alarming situation of exposure to a nerve agent. Choosing ethyl-paraoxon as nerve agent simulant, a limit of detection (LOD) of 0.4 nM, after 5 s of exposure time was obtained. Furthermore, an optimized enzymatic formulation was used for a fast and efcient environmental detoxifcation (>99%) of the nebulized nerve agent simulants in the air and on surfaces. Crucial, large- scale experiments have been possible thanks to production of grams amounts of pure (>90%) enzymes. Pesticides and warfare nerve agents are frequently organophosphates (OPs) or related compounds (e.g.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Bioactivation of N-Alkyl Substituted Phosphor- Amidothioate Insecticides
    J. Pesticide Sci. 9, 675-680 (1984) Original Article Bioactivation of N-Alkyl Substituted Phosphor- amidothioate Insecticides Masako UEJI and Chojiro ToMIzAWA National Institute of Agro-Environmental Sciences, Yatabe, Tsukuba-gun, Ibaraki 305, Japan (Received May 15, 1984) The insecticidal activity of O-ethyl O-2-isopropoxycarbonylphenyl N-alkylphoshor- amidothioates was examined with reference to their activation in biologicalsystems. Toxicity to the adzuki bean weevil varied with different N-alkyl groups. N-isopropylphosphoramido- thioate was the most toxic of the compounds tested, and N-unsubstituted, N-methyl- and N-ethylphosphoramidothioates were more toxic than fenitrothion. However, N-propyl and N-butyl homologs were less active than fenitrothion with the exception of the N-isopropyl homolog. LD50 values of the phosphoramidothioates for the insect were not correlated with in vitro anti-AChE activity of the phosphoramidates. 150 of N-isopropylphosphoramidate for acetylcholinesterases from adzuki bean weevil and bovine serum was higher than 10-3 M. When the phosphoramidothioates and phosphoramidate were incubated with rat liver micro- somal system, AChE activity of bovine serum was strongly inhibited in the presence of NADPH. Inhibition of AChE activity was reduced by addition of SKF 525-A to the micro- somal system. The compounds became also potent inhibitors for AChE by treatment with m-chloroperbenzoic acid. From these results, it was concluded that phosphoramidothioates and their oxons were activated oxidatively to inhibit AChE by the microsomal system as well as chemical treatment with peracid. of amide groups of phosphoramidothioate or INTRODUCTION phosphoramidate insecticides except schradan Bioactivity of phosphoramidothioates is vari- (octamethylpyrophosphoramidate). Moreover, able with structural changes.
    [Show full text]
  • Investigation on the Behavior of Pesticides in Atmosphere
    Aerosol and Air Quality Research, 11: 783–790, 2011 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2010.10.0085 Investigation on the Behavior of Pesticides in Atmosphere Pasquale Avino1, Giuseppe Cinelli2, Ivan Notardonato2, Mario V. Russo2* 1 DIPIA, INAIL (ex-ISPESL), via Urbana 167, 00184 Rome, Italy 2 Faculty of Agriculture, University of Molise, via De Sanctis, Campobasso, Italy ABSTRACT Although pesticides are widely used in agriculture, they and in particular the relative residues in foodstuffs, water and atmosphere, may cause remarkable sanitary problems due to the harmful effects (carcinogenic and mutagenic effects) on the human health. In fact, their spread in waters and atmosphere can produce undesired effects on various organisms and/or water contamination. This paper shows an analytical approach based on XAD-2 adsorbent and GC analysis for evaluating the pesticide trend in atmosphere: in particular, the pesticides investigated are omethoate, dicrotofos, disulfoton, dimethoate, parathion methyl, formothion, paraoxon ethyl, malaoxon, parathion ethyl, iodofenfos and triazofos. For the analytical methodology a linearity response was obtained (r2 = 0.9988) in GC-NPD whereas the limits of detection range between 2 and 5 pg/μL in GC-NPD with a Relative Standard Deviation below 9.5. Finally, this approach has been successfully applied to real samples: the results show that dimethoate concentration decreases with increasing distance from the sampling site but it is still persistent in atmosphere after few days from the pesticide spraying. Keywords: Pesticides; XAD-2 adsorbent; GC analysis; Atmosphere; Air quality. INTRODUCTION 2009). One of the most important OP reactions is water hydrolysis.
    [Show full text]