Alder-Feeding Sawflies of Alaska
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity. -
Applicability of Coloured Traps for the Monitoring of the Invasive Zigzag Elm Sawfly, Aproceros Leucopoda (Hymenoptera: Argidae)
Acta Zoologica Academiae Scientiarum Hungaricae 62(2), pp. 165–173, 2016 DOI: 10.17109/AZH.62.2.165.2016 APPLICABILITY OF COLOURED TRAPS FOR THE MONITORING OF THE INVASIVE ZIGZAG ELM SAWFLY, APROCEROS LEUCOPODA (HYMENOPTERA: ARGIDAE) Gábor Vétek1, Veronika Papp1, JÓzsef Fail1, Márta Ladányi2 and Stephan M. Blank3 1Department of Entomology, Szent István University H-1118 Budapest, Villányi út 29–43, Hungary; E-mails: [email protected] [email protected], [email protected] 2Department of Biometrics and Agricultural Informatics, Szent István University H-1118 Budapest, Villányi út 29–43, Hungary; E-mail: [email protected] 3Senckenberg Deutsches Entomologisches Institut Eberswalder Str. 90, 15374 Müncheberg, Germany; E-mail: [email protected] Aproceros leucopoda (Hymenoptera: Argidae), native to East Asia, is an invasive pest of elms (Ulmus spp.) recently reported from several European countries. The identification of ef- fective and practical tools suitable for detecting and monitoring the species has become necessary. As no trapping methods have been developed for A. leucopoda yet, in this study we compared white, yellow and fluorescent yellow sticky “cloak” traps for their appli- cability for catching adults. The experiment was carried out in a mixed forest plantation of black locust (Robinia pseudoacacia) and Siberian elm (Ulmus pumila), the latter infested heavily with A. leucopoda, in Hungary, 2012. Both the yellow and fluorescent yellow sticky “cloak” traps proved suitable for capturing high numbers of individuals of A. leucopoda, while the white traps caught significantly less adults. Trapping with the former coloured traps, completed with the inspection of host plants, may be recommended for the detection and monitoring of the pest. -
DEFOLIATORS Insect Sections
Alaska. Reference is made to this map in selected DEFOLIATORS insect sections. (Precipitation information from Schwartz, F.K., and Miller, J.F. 1983. Probable maximum precipitation and snowmelt criteria for Fewer defoliator plots (27 plots) were visited during southeast Alaska: National Weather Service the 1999 aerial survey than in previous years (52 plots) Hydrometeorological Report No. 54. 115p. GIS layer throughout southeast Alaska. An effort was made to created by: Tim Brabets, 1997. distribute these plots evenly across the archipelago. URL:http://agdc.usgs.gov/data/usgs/water) The objectives during the 1999 season were to: ¨ Spend more time covering the landscape during Spruce Needle Aphid the aerial survey, Elatobium abietinum Walker ¨ Allow more time to land and identify unknown mortality and defoliation, and Spruce needle aphids feed on older needles of Sitka ¨ Avoid visit sites that were hard to get to and had spruce, often causing significant amounts of needle few western hemlocks. drop (defoliation). Defoliation by aphids cause reduced tree growth and can predispose the host to Hemlock sawfly and black-headed budworm larvae other mortality agents, such as the spruce beetle. counts were generally low in 1999 as they were in Severe cases of defoliation alone may result in tree 1998. The highest sawfly larvae counts were from the mortality. Spruce in urban settings and along marine plots in Thorne Bay and Kendrick Bay, Prince of shorelines are most seriously impacted. Spruce aphids Wales Island. Larval counts are used as a predictive feed primarily in the lower, innermost portions of tree tool for outbreaks of defoliators. For example, if the crowns, but may impact entire crowns during larval sample is substantially greater in 1999, then an outbreaks. -
Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, Western North America S
1 New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America S. Bruce Archibald,1 Alexandr P. Rasnitsyn Abstract—We describe three new genera and four new species (three named) of siricomorph sawflies (Hymenoptera: Symphyta) from the Ypresian (early Eocene) Okanagan Highlands: Pamphiliidae, Ulteramus republicensis new genus, new species from Republic, Washington, United States of America; Siricidae, Ypresiosirex orthosemos new genus, new species from McAbee, British Columbia, Canada; and Cephidae, Cuspilongus cachecreekensis new genus, new species from McAbee and another cephid treated as Cephinae species A from Horsefly River, British Columbia, Canada. These are the only currently established occurrences of any siricomorph family in the Ypresian. We treat the undescribed new siricoid from the Cretaceous Crato Formation of Brazil as belonging to the Pseudosiricidae, not Siricidae, and agree with various authors that the Ypresian Megapterites mirabilis Cockerell is an ant (Hymenoptera: Formicidae). The Miocene species Cephites oeningensis Heer and C. fragilis Heer, assigned to the Cephidae over a century and a half ago, are also ants. Many of the host plants that siricomporphs feed upon today first appeared in the Eocene, a number of these in the Okanagan Highlands in particular. The Okanagan Highlands sites where these wasps were found also had upper microthermal mean annual temperatures as are overwhelmingly preferred by most modern siricomorphs, but were uncommon -
(Hymenoptera) from the Middle Jurassic of Inner Mongolia, China
European Journal of Taxonomy 733: 146–159 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1229 www.europeanjournaloftaxonomy.eu 2021 · Zheng Y. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:043C9407-7E8A-4E8F-9441-6FC43E5A596E New fossil records of Xyelidae (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China Yan ZHENG 1,*, Haiyan HU 2, Dong CHEN 3, Jun CHEN 4, Haichun ZHANG 5 & Alexandr P. RASNITSYN 6,* 1,4 Institute of Geology and Paleontology, Linyi University, Shuangling Rd., Linyi 276000, China. 1,4,5 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, East Beijing Road, Nanjing 210008, China. 2 School of Agronomy and Environment, Weifang University of Science and Techonoly, Jinguang Road, Shouguang, 262700, China. 3 School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China. 6 Palaeontological Institute, Russian Academy of Sciences, Moscow, 117647, Russia. 6 Natural History Museum, London SW7 5BD, UK. * Corresponding authors: [email protected], [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:28EB8D72-5909-4435-B0F2-0A48A5174CF9 2 urn:lsid:zoobank.org:author:91B2FB61-31A9-449B-A949-7AE9EFD69F56 3 urn:lsid:zoobank.org:author:51D01636-EB69-4100-B5F6-329235EB5C52 4 urn:lsid:zoobank.org:author:8BAB244F-8248-45C6-B31E-6B9F48962055 5 urn:lsid:zoobank.org:author:18A0B9F9-537A-46EF-B745-3942F6A5AB58 6 urn:lsid:zoobank.org:author:E7277CAB-3892-49D4-8A5D-647B4A342C13 Abstract. -
Phylogenetic Analysis of Eurytominae (Chalcidoidea: Eurytomidae) Based on Morphological Characters
Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082© 2007 The Linnean Society of London? 2007 1513 441510 Original Article PHYLOGENETIC ANALYSIS OF EURYTOMINAEH. LOTFALIZADEH ET AL. Zoological Journal of the Linnean Society, 2007, 151, 441–510. With 212 figures Phylogenetic analysis of Eurytominae (Chalcidoidea: Eurytomidae) based on morphological characters HOSSEINALI LOTFALIZADEH1, GÉRARD DELVARE2* and JEAN-YVES RASPLUS2 1Plant Pests and Diseases Research Institute, Evin, Tehran 19395–1454, Iran 2CIRAD – INRA, Centre de Biologie et de Gestion des Populations (CBGP), Campus International de Baillarguet, CS 30 016, F-34988 Montferrier-sur-Lez, France Received February 2006; accepted for publication December 2006 A phylogenetic study of the Eurytominae (Hymenoptera: Chalcidoidea) treating 178 taxa and based on 150 mor- phological characters is given. Several cladograms using the complete species sample, but obtained with different weightings, are presented. Local studies were also carried out to provide possible alternate topologies. The deep nodes of the trees were unstable and were never supported, but most of the superficial nodes were stable and robust. The results therefore provide support for a generic classification of the subfamily. The large genus Eurytoma – which includes about half of the described species of the subfamily – proved to be polyphyletic, and is redefined in a nar- rowed sense using putative synapomorphies. Bruchophagus and Prodecatoma were similarly redefined. The genera Philolema and Aximopsis are reconsidered and defined in a broader concept. A number of the species presently included in Eurytoma were transferred to these genera. Finally, 22 new generic synonymies are proposed and 33 spe- cies are transferred. The study also demonstrates that the Eurytomidae are polyphyletic. -
Forest Insect and Disease Conditions in the United States 2000
United States Department Forest Insect and Of Agriculture Forest Service Disease Conditions Forest Health Protection in the United States March 2002 2000 Healthy Forests Make A World of Difference United States Department Of Agriculture Forest Insect and Forest Service Disease Conditions Forest Health Protection in the United States March 2002 2000 PREFACE This is the 50th annual report prepared by the U.S. • seed orchard insects and diseases; Department of Agriculture Forest Service (USDA • nursery insects and diseases; and Forest Service) of the insect and disease conditions of • abiotic damage. the Nation's forests. This report responds to direction in the Cooperative Forestry Assistance Act of 1978, as These categories are listed in the table of contents; amended, to conduct surveys and report annually on there is no index. insect and disease conditions of major national significance. Insect and disease conditions of local The information in this report is provided by the Forest importance are reported in regional and State reports. Health Protection Program of the USDA Forest Service. This program serves all Federal lands, The report describes the extent and nature of insect- including the National Forest System and the lands and disease-caused damage of national significance in administered by the Departments of Defense and 2000. As in the past, selected insect and disease Interior. Service is also provided to tribal lands. The conditions are highlighted in the front section of the program provides assistance to private landowners report. Maps are provided for some pests showing through the State foresters. A key part of the program affected counties in the East and affected areas in the is detecting and reporting insect and disease epidemics West. -
Pear Sawfly Caliroa Cerasi Order Hymenoptera, Family Tenthredinidae; Common Sawflies Introduced Pest
Pests of Trees and Shrubs Pear sawfly Caliroa cerasi Order Hymenoptera, Family Tenthredinidae; common sawflies Introduced pest Host plants: Cherry, cotoneaster, hawthorn, mountain- ash, pear and plum Description: Adult sawflies are 5–8 mm long, black and yellow, and stout bodied. Larvae are slimy, slug-like, and shiny olive-green to blackish in color. They are 12 mm long when full grown. Life history: Adults emerge early in June and lay single eggs on leaf undersides. Larvae appear in June, feed for about a month, then drop to the soil to pupate. A second generation can begin in early August. Overwintering: Prepupae in the soil. Damage symptoms: Larvae feed on upper leaf surfaces, Scorched leaves caused by pear sawfly larva defoliation leaving only the leaf veins. Heavy defoliation gives the damage. (189) tree a scorched appearance, and leaves may drop prema- Photo: Jeff Hahn turely. Severe defoliation can adversely affect tree health. Monitoring: Look for black, slug-like larvae feeding on the upper surface of leaves in June and again in August, and look for their damage on the leaves. Physical control: Small populations of larvae can be removed by hand and destroyed. Chemical control: Horticultural oils and insecticidal soaps are very effective against larvae. Biological control: No reports of natural enemies Plant mortality risk: Low Biorational pesticides: azadirachtin, horticultural oil, insecticidal soap, pyrethrins, spinosad Conventional pesticides: acephate, bifenthrin, carbaryl, Leaf damage caused by pear sawfly larvae. (188) chlorpyrifos (nursery only), cyfluthrin, deltamethrin, Photo: Whitney Cranshaw fluvalinate, imidacloprid, lambda-cyhalothrin, malathion, permethrin Leaf damage caused by young, pear sawfly larvae. -
Evidence and Implications of Recent and Projected Climate Change in Alaska’S Forest Ecosystems 1, 2 1 3 4 JANE M
Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems 1, 2 1 3 4 JANE M. WOLKEN, TERESA N. HOLLINGSWORTH, T. SCOTT RUPP, F. STUART CHAPIN, III, SARAH F. TRAINOR, 5 6 7 3 8 TARA M. BARRETT, PATRICK F. SULLIVAN, A. DAVID MCGUIRE, EUGENIE S. EUSKIRCHEN, PAUL E. HENNON, 9 10 11 8 1 ERIK A. BEEVER, JEFF S. CONN, LISA K. CRONE, DAVID V. D ’AMORE, NANCY FRESCO, 8 3 12 11 13 THOMAS A. HANLEY, KNUT KIELLAND, JAMES J. KRUSE, TRISTA PATTERSON, EDWARD A. G. SCHUUR, 14 14 DAVID L. VERBYLA, AND JOHN YARIE 1Scenarios Network for Alaska and Arctic Planning, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 2United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Boreal Ecology Cooperative Research Unit, P.O. Box 756780, University of Alaska, Fairbanks, Alaska 99775 USA 3Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775 USA 4Alaska Center for Climate Assessment and Policy, University of Alaska, 3352 College Road, Fairbanks, Alaska 99709 USA 5United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Anchorage Forestry Sciences Laboratory, 3301 C Street, Suite 200, Anchorage, Alaska 99503 USA 6Environment and Natural Resources Institute, Department of Biological Sciences, University of Alaska, Anchorage, Alaska 99508 USA 7United States Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, Alaska 99775 USA 8United States Department of Agriculture Forest -
Pollinators Full.Pdf
Hymenoptera: Bees Hymenoptera: Bees Hymenoptera: Wasps, Ants & Sawies Hymenoptera: Wasps, Ants & Sawies Pollinator Insects of the South West Slopes of NSW and North East Victoria This guide has been prepared to aid identication of a Pollinator Insects selection of common pollinator insects. Insects Pollinator This guide provides a good starting point, but many species can look similar. Please see the references and websites listed if you would like help with accurate of the South West Slopes of NSW species identification. and North East Victoria An identification and conservation guide Halictid bee Hylaeus bee Gasteruptiid wasp Hairy ower wasp Halictidae Colletidae Gasteruptiidae Scoliidae of the South West Slopes NSW and North East Victoria Blue-banded bee Chequered cuckoo bee Ant Cream-spotted ichneumon wasp Apidae Apidae Formicidae Ichnuemonidae Hylaeus bee (bubbling) Large Lasioglossum sp. Orange ichneumon wasp Paper wasp Colletidae Halictidae Ichnuemonidae Vespidae Orange ichneumon wasp Ichnuemonidae Online pollinator information resources Aussie Bee aussiebee.com.au Bee Aware Australia beeawareaustralia.org Common spring bee European honey bee Cuckoo wasp European wasp Australian Museum Plant2pollinator Colletidae Apidae Chrysididae Vespidae australianmuseum.net.au/welcome-to-plant2pollinator PaDIL Australian Pollinators padil.gov.au/pollinators Bowerbird bowerbird.org.au Leafcutter bee Red bee Paper wasp Sawy adult Victorian butteries Megachilidae Halictidae Vespidae Tenthredinidae museumvictoria.com.au/bioinformatics/butter/images/bthumbmenu.htm Atlas of Living Australia ala.org.au Hymenoptera: Bees Hymenoptera: Wasps, Ants & Sawies Wild Pollinator Count wildpollinatorcount.com • Around 2,000 native bee species currently known. • Around 8,000 native species currently known; many more undescribed. Photography • Mostly found in sunny, open woodlands, gardens and meadows with lots • Found in all habitats. -
Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems
Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Sims, L., Goheen, E., Kanaskie, A., & Hansen, E. (2015). Alder canopy dieback and damage in western Oregon riparian ecosystems. Northwest Science, 89(1), 34-46. doi:10.3955/046.089.0103 10.3955/046.089.0103 Northwest Scientific Association Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Laura Sims,1, 2 Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall, Corvallis, Oregon 97331 Ellen Goheen, USDA Forest Service, J. Herbert Stone Nursery, Central Point, Oregon 97502 Alan Kanaskie, Oregon Department of Forestry, 2600 State Street, Salem, Oregon 97310 and Everett Hansen, Department of Botany and Plant Pathology, 1085 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Abstract We gathered baseline data to assess alder tree damage in western Oregon riparian ecosystems. We sought to determine if Phytophthora-type cankers found in Europe or the pathogen Phytophthora alni subsp. alni, which represent a major threat to alder forests in the Pacific Northwest, were present in the study area. Damage was evaluated in 88 transects; information was recorded on damage type (pathogen, insect or wound) and damage location. We evaluated 1445 red alder (Alnus rubra), 682 white alder (Alnus rhombifolia) and 181 thinleaf alder (Alnus incana spp. tenuifolia) trees. We tested the correlation between canopy dieback and canker symptoms because canopy dieback is an important symptom of Phytophthora disease of alder in Europe. We calculated the odds that alder canopy dieback was associated with Phytophthora-type cankers or other biotic cankers. -
25Th U.S. Department of Agriculture Interagency Research Forum On
US Department of Agriculture Forest FHTET- 2014-01 Service December 2014 On the cover Vincent D’Amico for providing the cover artwork, “…and uphill both ways” CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Product Disclaimer Reference herein to any specific commercial products, processes, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recom- mendation, or favoring by the United States government. The views and opinions of wuthors expressed herein do not necessarily reflect those of the United States government, and shall not be used for advertising or product endorsement purposes. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C.