An Innovative Solution to Compatibility Problem When Navision Indian Version Is Run in Windows Japanese OS Version

Total Page:16

File Type:pdf, Size:1020Kb

An Innovative Solution to Compatibility Problem When Navision Indian Version Is Run in Windows Japanese OS Version An Innovative Solution to compatibility problem when Navision Indian version is run in Windows Japanese OS version Introduction: After successful completion of NAV implementation in one of our Japanese subsidiary in India, one fine morning client support team at Infosys received a call from the client regarding a issue to be solved. “NAV is not working. We are not able to open NAV”. We asked the client to send the error message to us. The error message from client read as follows “The double-byte character set, code page 932, on your computer is not supported by this version of Microsoft Business solutions – Navision”. An internal brain storming and first level investigation with client has brought out the reason for the issue. NAV was accessed from a laptop in which Windows OS of Japanese version is installed. Diagnosis: What is single byte character set? NAV Indian version is accessible only from Windows OS of worldwide A single byte can be used to represent up to version. NAV Indian version is not 256 different code points in a code page. recognising Japanese OS. Why, Many languages (for example English, French, Japanese Operating system consists of and German) require only a single byte of ‘Double byte character set (DBCS)’ storage to represent their alphabets, instead of Single Byte Character Set. punctuation, and special characters. The code pages for these languages are often referred to as single-byte code pages. A double-byte character set (DBCS) is a character set that uses 2-byte (16-bit) characters instead of 1-byte (8-bit) characters. Some languages use characters that cannot be represented by using single-byte What is Double Byte Character Set (DBCS)? codes. Both ASCII and DBCS code pages are actually a mixture of single-byte and double- EBCDIC are byte characters. For example, in the Japanese DBCS code-page (932) single-byte codes. the first 256 characters are occupied by ASCII characters and some Languages that very commonly used Japanese characters called katakana. use double-byte character sets “DBCS stands for Double Byte Character Set. This term has two basic meanings: In CJK computing, the term "DBCS" traditionally means a include Chinese, character set in which every graphic character not representable by Japanese, and an accompanying SBCS is encoded in two bytes; Han characters Korean. The would generally comprise most of these two-byte characters. majority of the character sets The term "DBCS" can also mean a character set in which all provided with characters (including all control characters) are encoded in two bytes. “(Source: From Wikipedia, the free encyclopedia) SQL Server 6.5 are single-byte. Complex Asian languages such as Chinese, Korean, or Japanese have many What is code page? more characters than Western European A code page, or character set, defines a languages. For example, Chinese has more collection of characters, numbers, than 10,000 characters. New code pages punctuation, symbols, and special characters for a particular language. Using a had to be developed for languages that use process called encoding , each character in multiple bytes of storage to represent all the code page is assigned a numeric value possible code points. A double-byte character set (DBCS) or multiple-byte character set can be used to encode 216, or more than 65,000, different characters. The remaining characters in a code page above code point 128 (hex 0x80) are sometimes referred to as extended characters. Extended characters differ from code page to code page depending on the requirements of the language. Difference between Single-byte and Double-byte Character set Single-byte Character set Double-byte Character set A single-byte character set (SBCS) is a A double-byte character set (DBCS), also known mapping of 256 individual characters to as an "expanded 8-bit character set", is an their identifying code values, implemented extended single-byte character set (SBCS), as a code page. implemented as a code page. An SBCS can correspond either to a A DBCS can correspond either to a Windows Windows code page or an OEM code page. code page or an OEM code page. A DBCS code An SBCS code page can also include a non- page can also include a non-native code page, for native code page, for example, an EBCDIC example, an EBCDIC code page code page. To help identify an SBCS code page, an To interpret a DBCS string, an application must application can use the GetCPInfo or start at the beginning of the string and scan GetCPInfoEx functions forward. It keeps track when it encounters a lead byte in the string, and treats the next byte as the trailing part of the same character.Applications that support a DBCS must use special functions, such as _mbsstr, Substring searches are not complicated Substring searches are much more complicated with SBCS. with a DBCS. Solution: By default, double-byte character sets are disabled in the Fin.stx file in Microsoft Dynamics NAV. To enable double-byte character sets, you must replace the Fin.stx files in the Microsoft Dynamics NAV client installation folder. This can be done by changing the content 00093-00400-010-2: 0 to 00093-00400-010-2: 1 in the fin.stx file. This should be done both in the Client installation folder and in the ENU sub folder. The fin.stx file is a configuration file that is available when you install the Microsoft Dynamics NAV client. This is an important file and it is the starting point of execution of Navision. The file extensions and protocols are listed in the fin.stx file, where you can customize them. Whenever you install Navision this file will be available in “C:\Program Files\Microsoft Business Solutions-Navision\Client”. Please note that if you are using SQL server, one more fin.stx file will be created. This file is equivalent to DNA and contains all the determining parameters of the installation. The contents of the file varies according to the selection you make during the installation In this file the language character set is determined by the following line: // The following entry is for double-byte character set (DBCS) clients (code pages 932, 936, 949, 950) For// Adouble-byte value of 0 indicatescharacters that system a client (NAV DBCS Japanese, is disallowed Korean version) this value is defaulted to 1. So,// dependingA value of upon1 indic theates NAV that version, a client this D BCSvalue is is allowed, defaulted provided to 0 or 1. thatOnly the in thedatabase case of code single bpageyte Navision is a non-DBCS version, code to bepage run in double byte operating system (vice versa) this problem arises. So, the solution is to change this value depending upon the Operating System in which the0009 Microsoft3-00400 -D010ynamics-2: 0 NAV is installed Conclusion: This is a new learning for the entire team and the team enjoyed both in investigating and solving the iss u e. Authors: Mohammed Raffe, Senior Consultant, Microsoft Dynamics Practice, Infosys Technologies Ltd, Mail to: [email protected] Bharathi Rengarajan, Project Manager, Microsoft Dynamics Practice, Infosys Technologies Ltd, Mail to: [email protected] Krishnaveni, Software Engineer, Microsoft Dynamics Practice, Infosys Technologies Ltd, Mail to: [email protected] .
Recommended publications
  • Unicode Ate My Brain
    UNICODE ATE MY BRAIN John Cowan Reuters Health Information Copyright 2001-04 John Cowan under GNU GPL 1 Copyright • Copyright © 2001 John Cowan • Licensed under the GNU General Public License • ABSOLUTELY NO WARRANTIES; USE AT YOUR OWN RISK • Portions written by Tim Bray; used by permission • Title devised by Smarasderagd; used by permission • Black and white for readability Copyright 2001-04 John Cowan under GNU GPL 2 Abstract Unicode, the universal character set, is one of the foundation technologies of XML. However, it is not as widely understood as it should be, because of the unavoidable complexity of handling all of the world's writing systems, even in a fairly uniform way. This tutorial will provide the basics about using Unicode and XML to save lots of money and achieve world domination at the same time. Copyright 2001-04 John Cowan under GNU GPL 3 Roadmap • Brief introduction (4 slides) • Before Unicode (16 slides) • The Unicode Standard (25 slides) • Encodings (11 slides) • XML (10 slides) • The Programmer's View (27 slides) • Points to Remember (1 slide) Copyright 2001-04 John Cowan under GNU GPL 4 How Many Different Characters? a A à á â ã ä å ā ă ą a a a a a a a a a a a Copyright 2001-04 John Cowan under GNU GPL 5 How Computers Do Text • Characters in computer storage are represented by “small” numbers • The numbers use a small number of bits: from 6 (BCD) to 21 (Unicode) to 32 (wchar_t on some Unix boxes) • Design choices: – Which numbers encode which characters – How to pack the numbers into bytes Copyright 2001-04 John Cowan under GNU GPL 6 Where Does XML Come In? • XML is a textual data format • XML software is required to handle all commercially important characters in the world; a promise to “handle XML” implies a promise to be international • Applications can do what they want; monolingual applications can mostly ignore internationalization Copyright 2001-04 John Cowan under GNU GPL 7 $$$ £££ ¥¥¥ • Extra cost of building-in internationalization to a new computer application: about 20% (assuming XML and Unicode).
    [Show full text]
  • Character Set Migration Best Practices For
    Character Set Migration Best Practices $Q2UDFOH:KLWH3DSHU October 2002 Server Globalization Technology Oracle Corporation Introduction - Database Character Set Migration Migrating from one database character set to another requires proper strategy and tools. This paper outlines the best practices for database character set migration that has been utilized on behalf of hundreds of customers successfully. Following these methods will help determine what strategies are best suited for your environment and will help minimize risk and downtime. This paper also highlights migration to Unicode. Many customers today are finding Unicode to be essential to supporting their global businesses. Oracle provides consulting services for very large or complex environments to help minimize the downtime while maximizing the safe migration of business critical data. Why migrate? Database character set migration often occurs from a requirement to support new languages. As companies internationalize their operations and expand services to customers all around the world, they find the need to support data storage of more World languages than are available within their existing database character set. Historically, many legacy systems required support for only one or possibly a few languages; therefore, the original character set chosen had a limited repertoire of characters that could be supported. For example, in America a 7-bit character set called ASCII is satisfactory for supporting English data exclusively. While in Europe a variety of 8 bit European character sets can support specific subsets of European languages together with English. In Asia, multi byte character sets that could support a given Asian language and English were chosen. These were reasonable choices that fulfilled the initial requirements and provided the best combination of economy and performance.
    [Show full text]
  • Unicode and Code Page Support
    Natural for Mainframes Unicode and Code Page Support Version 4.2.6 for Mainframes October 2009 This document applies to Natural Version 4.2.6 for Mainframes and to all subsequent releases. Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions. Copyright © Software AG 1979-2009. All rights reserved. The name Software AG, webMethods and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA, Inc. Other company and product names mentioned herein may be trademarks of their respective owners. Table of Contents 1 Unicode and Code Page Support .................................................................................... 1 2 Introduction ..................................................................................................................... 3 About Code Pages and Unicode ................................................................................ 4 About Unicode and Code Page Support in Natural .................................................. 5 ICU on Mainframe Platforms ..................................................................................... 6 3 Unicode and Code Page Support in the Natural Programming Language .................... 7 Natural Data Format U for Unicode-Based Data ....................................................... 8 Statements .................................................................................................................. 9 Logical
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,689,723 Lim Et Al
    US005689723A United States Patent (19) 11 Patent Number: 5,689,723 Lim et al. 45) Date of Patent: Nov. 18, 1997 (54) METHOD FOR ALLOWINGSINGLE-BYTE 5,091,878 2/1992 Nagasawa et al. ..................... 364/419 CHARACTER SET AND DOUBLE-BYTE 5,257,351 10/1993 Leonard et al. ... ... 395/150 CHARACTER SET FONTS IN ADOUBLE 5,287,094 2/1994 Yi....................... ... 345/143 BYTE CHARACTER SET CODE PAGE 5,309,358 5/1994 Andrews et al. ... 364/419.01 5,317,509 5/1994 Caldwell ............................ 364/419.08 75 Inventors: Chan S. Lim, Potomac; Gregg A. OTHER PUBLICATIONS Salsi, Germantown, both of Md.; Isao Nozaki, Yamato, Japan Japanese PUPA number 1-261774, Oct. 18, 1989, pp. 1-2. Inside Macintosh, vol. VI, Apple Computer, Inc., Cupertino, (73) Assignee: International Business Machines CA, Second printing, Jun. 1991, pp. 15-4 through 15-39. Corp, Armonk, N.Y. Karew Acerson, WordPerfect: The Complete Reference, Eds., p. 177-179, 1988. 21) Appl. No.: 13,271 IBM Manual, "DOSBunsho (Language) Program II Opera 22 Filed: Feb. 3, 1993 tion Guide” (N:SH 18-2131-2) (Partial Translation of p. 79). 51 Int. Cl. ... G09G 1/00 Primary Examiner-Phu K. Nguyen 52) U.S. Cl. .................. 395/805; 395/798 Assistant Examiner-Cliff N. Vo (58) Field of Search ..................................... 395/144-151, Attorney, Agent, or Firm-Edward H. Duffield 395/792, 793, 798, 805, 774; 34.5/171, 127-130, 23-26, 143, 116, 192-195: 364/419 57 ABSTRACT The method of the invention allows both single-byte char 56) References Cited acter set (SBCS) and double-byte character set (DBCS) U.S.
    [Show full text]
  • Legacy Character Sets & Encodings
    Legacy & Not-So-Legacy Character Sets & Encodings Ken Lunde CJKV Type Development Adobe Systems Incorporated bc ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/unicode/iuc15-tb1-slides.pdf Tutorial Overview dc • What is a character set? What is an encoding? • How are character sets and encodings different? • Legacy character sets. • Non-legacy character sets. • Legacy encodings. • How does Unicode fit it? • Code conversion issues. • Disclaimer: The focus of this tutorial is primarily on Asian (CJKV) issues, which tend to be complex from a character set and encoding standpoint. 15th International Unicode Conference Copyright © 1999 Adobe Systems Incorporated Terminology & Abbreviations dc • GB (China) — Stands for “Guo Biao” (国标 guóbiâo ). — Short for “Guojia Biaozhun” (国家标准 guójiâ biâozhün). — Means “National Standard.” • GB/T (China) — “T” stands for “Tui” (推 tuî ). — Short for “Tuijian” (推荐 tuîjiàn ). — “T” means “Recommended.” • CNS (Taiwan) — 中國國家標準 ( zhôngguó guójiâ biâozhün) in Chinese. — Abbreviation for “Chinese National Standard.” 15th International Unicode Conference Copyright © 1999 Adobe Systems Incorporated Terminology & Abbreviations (Cont’d) dc • GCCS (Hong Kong) — Abbreviation for “Government Chinese Character Set.” • JIS (Japan) — 日本工業規格 ( nihon kôgyô kikaku) in Japanese. — Abbreviation for “Japanese Industrial Standard.” — 〄 • KS (Korea) — 한국 공업 규격 (韓國工業規格 hangug gongeob gyugyeog) in Korean. — Abbreviation for “Korean Standard.” — ㉿ — Designation change from “C” to “X” on August 20, 1997. 15th International Unicode Conference Copyright © 1999 Adobe Systems Incorporated Terminology & Abbreviations (Cont’d) dc • TCVN (Vietnam) — Tiu Chun Vit Nam in Vietnamese. — Means “Vietnamese Standard.” • CJKV — Chinese, Japanese, Korean, and Vietnamese. 15th International Unicode Conference Copyright © 1999 Adobe Systems Incorporated What Is A Character Set? dc • A collection of characters that are intended to be used together to create meaningful text.
    [Show full text]
  • AIX Globalization
    AIX Version 7.1 AIX globalization IBM Note Before using this information and the product it supports, read the information in “Notices” on page 233 . This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2010, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document............................................................................................vii Highlighting.................................................................................................................................................vii Case-sensitivity in AIX................................................................................................................................vii ISO 9000.....................................................................................................................................................vii AIX globalization...................................................................................................1 What's new...................................................................................................................................................1 Separation of messages from programs..................................................................................................... 1 Conversion between code sets.............................................................................................................
    [Show full text]
  • Data Encoding: All Characters for All Countries
    PhUSE 2015 Paper DH03 Data Encoding: All Characters for All Countries Donna Dutton, SAS Institute Inc., Cary, NC, USA ABSTRACT The internal representation of data, formats, indexes, programs and catalogs collected for clinical studies is typically defined by the country(ies) in which the study is conducted. When data from multiple languages must be combined, the internal encoding must support all characters present, to prevent truncation and misinterpretation of characters. Migration to different operating systems with or without an encoding change make it impossible to use catalogs and existing data features such as indexes and constraints, unless the new operating system’s internal representation is adopted. UTF-8 encoding on the Linux OS is used by SAS® Drug Development and SAS® Clinical Trial Data Transparency Solutions to support these requirements. UTF-8 encoding correctly represents all characters found in all languages by using multiple bytes to represent some characters. This paper explains transcoding data into UTF-8 without data loss, writing programs which work correctly with MBCS data, and handling format catalogs and programs. INTRODUCTION The internal representation of data, formats, indexes, programs and catalogs collected for clinical studies is typically defined by the country or countries in which the study is conducted. The operating system on which the data was entered defines the internal data representation, such as Windows_64, HP_UX_64, Solaris_64, and Linux_X86_64.1 Although SAS Software can read SAS data sets copied from one operating system to another, it impossible to use existing data features such as indexes and constraints, or SAS catalogs without converting them to the new operating system’s data representation.
    [Show full text]
  • JFP Reference Manual 5 : Standards, Environments, and Macros
    JFP Reference Manual 5 : Standards, Environments, and Macros Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 817–0648–10 December 2002 Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
    [Show full text]
  • SAP IQ Administration: Globalization Company
    ADMINISTRATION GUIDE | PUBLIC SAP IQ 16.1 SP 02 Document Version: 1.0.0 – 2018-12-10 SAP IQ Administration: Globalization company. All rights reserved. All rights company. affiliate THE BEST RUN 2019 SAP SE or an SAP SE or an SAP SAP 2019 © Content 1 SAP IQ Administration: Globalization.............................................4 2 About International Language Data..............................................5 2.1 International Languages and Character Sets..........................................5 What is ICU, and when is it needed?............................................. 6 2.2 Character sets...............................................................7 Code Pages in Windows......................................................8 How the Collation Sequence Sorts Characters......................................11 2.3 Collations..................................................................12 SQL Anywhere Collation Algorithm (SACA)........................................14 Unicode Collation Algorithm (UCA).............................................15 Collations in a database.....................................................16 Alternate collations........................................................ 17 Turkish character sets and collations............................................20 2.4 Locales...................................................................23 Locale language...........................................................23 Locale character set........................................................24
    [Show full text]
  • Addendum 135-2008K-1
    ANSI/ASHRAE Addendum k to ANSI/ASHRAE Standard 135-2008 ASHRAEASHRAE STANDARDSTANDARD BACnet®—A Data Communication Protocol for Building Automation and Control Networks Approved by the ASHRAE Standards Committee on January 23, 2010; by the ASHRAE Board of Directors on January 27, 2010; and by the American National Standards Institute on January 28, 2010. This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revi- sions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edi- tion of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 404-321-5478. Telephone: 404-636-8400 (world- wide), or toll free 1-800-527-4723 (for orders in US and Canada). © Copyright 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ISSN 1041-2336 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org ASHRAE Standing Standard Project Committee 135 Cognizant TC: TC 1.4, Control Theory and Application SPLS Liaison: Douglas T. Reindl David Robin, Chair* Coleman L. Brumley, Jr.* John J. Lynch Carl Neilson, Vice-Chair Bernhard Isler* Ted Sunderland Sharon E. Dinges, Secretary* Stephen Karg* David B.
    [Show full text]
  • Windows NLS Considerations Version 2.1
    Windows NLS Considerations version 2.1 Radoslav Rusinov [email protected] Windows NLS Considerations Contents 1. Introduction ............................................................................................................................................... 3 1.1. Windows and Code Pages .................................................................................................................... 3 1.2. CharacterSet ........................................................................................................................................ 3 1.3. Encoding Scheme ................................................................................................................................ 3 1.4. Fonts ................................................................................................................................................... 4 1.5. So Why Are There Different Charactersets? ........................................................................................ 4 1.6. What are the Difference Between 7 bit, 8 bit and Unicode Charactersets? ........................................... 4 2. NLS_LANG .............................................................................................................................................. 4 2.1. Setting the Character Set in NLS_LANG ............................................................................................ 4 2.2. Where is the Character Conversion Done? .........................................................................................
    [Show full text]
  • LG Programmer’S Reference Manual
    LG Programmer’s Reference Manual Line Matrix Series Printers Trademark Acknowledgements ANSI is a registered trademark of American National Standards Institute, Inc. Code V is a trademark of Quality Micro Systems. Chatillon is a trademark of John Chatillon & Sons, Inc. Ethernet is a trademark of Xerox Corporation. IBM is a registered trademark of International Business Machines Corporation. IGP is a registered trademark of Printronix, LLC. Intelligent Printer Data Stream and IPDS are trademarks of International Business Machines Corporation. LinePrinter Plus is a registered trademark of Printronix, LLC. MS-DOS is a registered trademark of Microsoft Corporation. PC-DOS is a trademark of International Business Machines Corporation. PGL is a registered trademark of Printronix, LLC. PrintNet is a registered trademark of Printronix, LLC. Printronix is a registered trademark of Printronix, LLC. PSA is a trademark of Printronix, LLC. QMS is a registered trademark of Quality Micro Systems. RibbonMinder is a trademark of Printronix, LLC. Torx is a registered trademark of Camcar/Textron Inc. Utica is a registered trademark of Cooper Power Tools. Printronix, LLC. makes no representations or warranties of any kind regarding this material, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. Printronix, LLC. shall not be held responsible for errors contained herein or any omissions from this material or for any damages, whether direct, indirect, incidental or consequential, in connection with the furnishing, distribution, performance or use of this material. The information in this manual is subject to change without notice. This document contains proprietary information protected by copyright. No part of this document may be reproduced, copied, translated or incorporated in any other material in any form or by any means, whether manual, graphic, electronic, mechanical or otherwise, without the prior written consent of Printronix, LLC.
    [Show full text]