Parasites and Population Change of Rock Ptarmigan in Iceland

Total Page:16

File Type:pdf, Size:1020Kb

Parasites and Population Change of Rock Ptarmigan in Iceland Parasites and population change of rock ptarmigan in Iceland Ute Stenkewitz Faculty of Life and Environmental Sciences University of Iceland 2017 Parasites and population change of rock ptarmigan in Iceland Ute Stenkewitz Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Biology Advisor Ólafur Karl Nielsen PhD Committee Karl Skírnisson Gunnar Stefánsson Departmental Coordinator Páll Hersteinsson† Snæbjörn Pálsson Opponents Steve Albon José Alves Faculty of Life and Environmental Sciences University of Iceland Reykjavik, May 2017 Title: Parasites and population change of rock ptarmigan in Iceland Short title: Parasites and population change of ptarmigan Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Biology Citation: Ute Stenkewitz. 2017. Parasites and population change of rock ptarmigan in Iceland. PhD dissertation. Faculty of Life and Environmental Sciences, University of Iceland. 172 pp. Copyright © 2017 Ute Stenkewitz All rights reserved Faculty of Life and Environmental Sciences University of Iceland 101 Reykjavik Iceland Telephone: +354 525 4000 ISBN 978-9935-9344-3-7 Printed by: Háskólaprent ehf. Reykjavik, Iceland, May 2017 ABstract The parasite fauna of the Icelandic rock ptarmigan Lagopus muta had just been described when engaging in this project in 2010. The purpose was to study the influence that parasites exhibit on ptarmigan population change over a period of 7 years (2006–2012). The cycles that the Icelandic ptarmigan population has recently been undergoing peak every 5–6 years. Host-parasite interactions are known as one possible regulator of cycling host populations. Measures of the parasite community and pathogenic parasites were analysed. Ptarmigan population density was particularly associated with the prevalence of a coccidian parasite named Eimeria muta. Annual aggregation levels of this eimerid fluctuated inversely with its prevalence, with lows at prevalence peak and vice versa. Both prevalence and aggregation of E. muta tracked ptarmigan population density with a 1.5 year time lag. The time lag could be explained by the host specificity of this eimerid, host density dependent shedding of oocysts, and their persistence in the environment from one year to the next. E. muta prevalence was also negatively associated with ptarmigan body condition, marginally negatively with fecundity, and positively with mortality, indicating their pathogenicity. Further, there were significant associations between fecundity and the chewing louse Amyrsidea lagopi prevalence (negative), excess juvenile mortality and the nematode Capillaria caudinflata prevalence (positive), and adult mortality and the skin mite Metamicrolichus islandicus prevalence (negative). Though this study is correlational, it provides strong evidence that the microparasite E. muta has the potential to destabilize rock ptarmigan population dynamics in Iceland. Útdráttur Sníkjudýrafánu íslensku rjúpunnar Lagopus muta hafði nýlega verið lýst þegar rannsóknir mínar hófust árið 2010. Markmið mitt var að rannsaka hvaða áhrif sníkjudýr hafa á stofnbreytingar rjúpunnar og rannsóknatíminn var 7 ár (2006-2012). Stofnsveifla rjúpunnar hefur breyst á síðustu árum og nú líða um 5-6 ár á milli hámarka. Einn af þeim þáttum sem vitað er að hafa áhrif á stofnsveiflur eru tengsl hýsils og sníkjudýrs. Við greininguna voru skoðuð lýsigildi fyrir sníkjudýrasamfélagið í heild sinni og einstakar meinvirkar sníkjudýrategundir. Þéttleiki rjúpna sýndi sterkt samband við smittíðni hnísilsins Eimeria muta. Dreifing þessarar hníslategundar innan rjúpnastofnsins breyttist í tengslum við breytingar á smittíðni, hnappdreifing þeirra var mest þegar smittíðnin var lægst og svo öfugt. Ferlarnir sem lýsa breytingum á bæði smittíðni og dreifingu E. muta fylgdu ferlinum sem lýsti stofnbreytingum rjúpunnar en með eins og hálfs árs töf. Töfin endurspeglar hýsilsérhæfingu þessa sníkjudýrs, þéttleikháðum útskilnaði þolhjúpa hnísilsins, og langtíma virkni þolhjúpanna, en þeir geta lifað á milli ára í umhverfinu. Meinvirkni E. muta lýsti sér m.a. í neikvæðu sambandi við holdafar fuglanna, og nær marktæku neikvæðu sambandi við frjósemi þeirra annars vegar og jákvæðu sambandi við afföll þeirra hins vegar. Enn fremur voru marktæk neikvæð tengsl á milli frjósemi og smittíðni naglúsarinnar Amyrsidea lagopi, jákvæð tengsl á milli umframaffalla ungfugla og smittíðni þráðormsins Capillaria caudinflata, og neikvæð tengsl á milli smittíðni húðmítilsins Metamicrolichus islandicus og affalla fullorðinna fugla. Þó svo að þessi rannsókn byggi á fylgni þá bendir hún sterklega til þess að sníkjudýrið E. muta hafi alla burði til að skapa óstöðugleika í stofnstærðarstjórnun rjúpunnar á Íslandi. hoc opus, hic labor Virgil Acknowledgements In the first place I would like to express my deep gratitude to Ólafur K. Nielsen from my PhD committee for his support of my PhD study, for his immense knowledge and wisdom, and for letting me see my edges. His guidance and giving me space motivated and helped me most through this endeavor. I often feel deeply happy and joyful for having made this choice as mentor. My sincere thanks go to Karl Skírnisson from my PhD committee for sharing his specialist knowledge in parasitology, as well as insightful comments, support, and stimulating discussions in the course of my PhD study. His support was crucial to conduct this research. I thank Gunnar Stefánsson from my PhD committee, for sharing his expertise in statistics, for his insightful comments and support very necessary at certain stages of my PhD study. I am very grateful for having been provided with data in excess to the duration of my PhD study which allowed me to study the different phases of a full ptarmigan population cycle. I am sincerely grateful for the office space, use of facilities, and supply with beverages provided at the Icelandic Institute of Natural History and the Institute for Experimental Pathology (Keldur). Especially Natural History Institute has been my main place to conduct research and write. It has been very important to me in providing order, structure, and a place to belong to. The environment of the Natural History Institute can be very inspiring; facilities are newly founded and there is much space to conduct research in the diverse field of natural sciences. I thank the financial supporters of my PhD without who this study would not have taken place: Icelandic Research Fund (Grant Number 090207021; 2010–2012), Icelandic Hunting Card Fund (2012, 2013, 2015), Landsvirkjun Energy Research Fund (2013, 2015), University of Iceland Research Fund (2014), Icelandic Institute of Natural History (2010– 2016), and Erwin B. Stenkewitz (2015–2016). Sincere thanks to all the people (30+), and my colleagues and friends who have assisted in the field and laboratory in sampling and examining rock ptarmigan, in data analyses, and to all reviewers for their valuable comments on manuscripts of this study. I am grateful for the logistical support provided by the Mývatn Research Station in northeast Iceland, in particular Árni Einarsson for letting me use facilities at Skútusstaðir at varying stages of my PhD. I have been feeling a strong urge to return to Mývatn and the northeast again and again. I thank my new friends we met along this path and got to share some time together; how very precious. Most if not all of you went back to settle in home country or are yet travelling in other places, especially: Sonja & family, Chrissi & Olli, Joca, Chloé, Andreas & Zach, Kera, Silke. I thank my good old friends who kept on sharing also this path with me, for staying in touch, for your sincere interest in staying updated, for your support, your visits, for each shared memory: Katja & Mila, Beate & family, Fanny, Sina, Inga Dagmar, Anja & Chris. I thank in particular Jan Kamler for his encouragement to start these studies and support especially in the beginning of this endeavour, and for our shared memories; thank you deeply. What made me come back to this place was Iceland’s natural beauty and wilderness and the fact that Óli and Þór provided me with an unforgettable experience during my first internship in 2005. Upon my return in 2010 some thing happened and this, only this made me endure these studies. I feel deeply grateful for my family, my parents and brother, for their continuous support throughout and sharing the varying stages of my life, for always being there; immeasurable. These studies allowed me to intensely focus on one subject without much distraction; this space has been provided unceasingly by Ólafur K. Nielsen. But it also means to be able to vouch for self. Throughout all that has been happening, this in itself has made me gain freedom often without the feeling of missing out. I dearly wish to hold this space while engaging in new more shared activities and build upon this strong fundament to add more puzzle pieces and solve new mysteries J Contents Abstract l Útdráttur Acknowledgements Tables xiii Figures xv Synopsis 1 The Scene 3 2 Rock Ptarmigan 5 3 Population cycles and host-parasite interactions 9 3.1 Theory 9 3.2 The Icelandic system 11 4 Parasites of rock ptarmigan 13 5 Methods 19 5.1 Study area 19 5.2 Parasite collection and quantification 21 5.3 Body measures 25 5.4 Demographic parameters 27 5.5 Ptarmigan spring densities 29 6 Host-parasite interactions and population change of ptarmigan 31 7 Conclusions & Outlook 37 Publications Clarification of contribution 41 I The relationship between parasites and spleen and bursa mass in rock ptarmigan Lagopus muta 43 II Feather holes of rock ptarmigan are associated with amblyceran chewing lice 61 III Host-parasite interactions and population dynamics of rock ptarmigan 75 IV The parasite fauna of rock ptarmigan in Iceland: Community structure and co-occurrence within the host population 97 References 131 Appendix A 147 Appendix B 157 Appendix C 165 Appendix D 169 Tables Synopsis Table 4.1 Habitat, size, and life cycles of the ectoparasites of Icelandic rock ptarmigan. 15 Table 4.2 Habitat, size, and life cycles of the endoparasites of Icelandic rock ptarmigan. 15 Table 5.1 Plots where rock ptarmigan were censused in spring in northeast Iceland.
Recommended publications
  • Royal Entomological Society
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL , SOCIETY OF LONDON Vol. I. Part 1 (). HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS SIPHONAPTERA 13y F. G. A. M. SMIT LONDON Published by the Society and Sold at its Rooms - 41, Queen's Gate, S.W. 7 21st June, I9S7 Price £1 os. od. ACCESSION NUMBER ....... ................... British Entomological & Natural History Society c/o Dinton Pastures Country Park, Davis Street, Hurst, OTS - Reading, Berkshire RG 10 OTH .•' Presented by Date Librarian R EGULATIONS I.- No member shall be allowed to borrow more than five volumes at a time, or to keep any of tbem longer than three months. 2.-A member shall at any time on demand by the Librarian forthwith return any volumes in his possession. 3.-Members damaging, losing, or destroying any book belonging to the Society shall either provide a new copy or pay such sum as tbe Council shall tbink fit. ) "1' > ) I .. ··•• · ·• "V>--· .•. .t ... -;; ·· · ·- ~~- -~· · · ····· · · { · · · l!i JYt.11'ian, ,( i-es; and - REGU--LATIONS dthougll 1.- Books may b - ~dapted, ; ~ 2 -~ . e borrowed at . !.l :: - --- " . ~ o Member shall b . all Meeflfll(s of the So J t Volumes at a time o; ,IJJowed to borrow more c e y . 3.- An y Mem ber r t '. to keep them lonl{er th than three b.ecorn_e SPecified f e a Jn!ng a \'oJume a n one m on th.
    [Show full text]
  • THE BRITISH LIST the Official List of Bird Species Recorded in Britain
    THE BRITISH LIST The official list of bird species recorded in Britain This document summarises the Ninth edition of the British List (BOU, 2017. Ibis 160: 190-240) and subsequent changes to the List included in BOURC Reports and announcements (bou.org.uk/british-list/bourc-reports-and- papers/). Category A, B, C species Total no. of species on the British List (Cats A, B, C) = 623 at 8 June 2021 Category A 605 • Category B 8 • Category C 10 Other categories see p.13. The list below includes both the vernacular name used by British ornithologists and the IOC World Bird List international English name (see www.worldbirdnames.org) where these are different to the English vernacular name. British (English) IOC World Bird List Scientific name Category vernacular name international English name Capercaillie Western Capercaillie Tetrao urogallus C3E* Black Grouse Lyrurus tetrix AE Ptarmigan Rock Ptarmigan Lagopus muta A Red Grouse Willow Ptarmigan Lagopus lagopus A Red-legged Partridge Alectoris rufa C1E* Grey Partridge Perdix perdix AC2E* Quail Common Quail Coturnix coturnix AE* Pheasant Common Pheasant Phasianus colchicus C1E* Golden Pheasant Chrysolophus pictus C1E* Lady Amherst’s Pheasant Chrysolophus amherstiae C6E* Brent Goose Brant Goose Branta bernicla AE Red-breasted Goose † Branta ruficollis AE* Canada Goose ‡ Branta canadensis AC2E* Barnacle Goose Branta leucopsis AC2E* Cackling Goose † Branta hutchinsii AE Snow Goose Anser caerulescens AC2E* Greylag Goose Anser anser AC2C4E* Taiga Bean Goose Anser fabalis AE* Pink-footed Goose Anser
    [Show full text]
  • The Sleeping Habit of the Willow Ptarmigan
    638 GeneralNotes [Oct.[Auk day the bird was found dead by Mr. Wilkin at the edge of the marsh. It had been shot and left by someoneunknown. The bird was turned over to New York Con- servation Department officers and has now been placed in the New York State Museum collection. The bird was a female in excellentbreeding-plumage condition and contained eggs. It weighed 11s/{ pounds, had a wing-spreadof 97 inches,and a length of 54 inches. It was examined in the flesh by both authors of this note.-- GORDO• M. M•AD•, M.D., Strong Memorial Hospital, Rochester,New York, A•D C•,a¾•ro• B. S•ao•ms, Supt. of ConservationEducation, Albany, New York. The sleeping habit of the Willow Ptarmigan.--A frequent statement regard- ing the Willow Ptarmigan (Lagopuslagopus) is that in winter when it goesto roost it drops from flight into the snow, completely burying itself and leaving no tracks that might lead predators to it. E. W. Nelson made this observation years ago in Alaska, and it is given also by Sandys and Van Dyke in their book, 'Upland Game Birds.' Bent (U.S. Nat. Mus. Bull., 162: 194, 1932) in writing on Allen's Ptarmigan of Newfoundland, quotes •I. R. Whitaker as stating that they roost in a shallow scratchingin the snow and are frequently buried by drifts and imprisonedto their death. On Southampton Island, Sutton records the Willow Ptarmigan as roosting and feeding in the same area without attempt at concealment. One night seven slept for the night in sevenconsecutive footprints of his track acrossthe snow.
    [Show full text]
  • First Report of Rickettsia Raoultii and R. Slovaca in Melophagus Ovinus, The
    Liu et al. Parasites & Vectors (2016) 9:600 DOI 10.1186/s13071-016-1885-7 SHORT REPORT Open Access First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked Dan Liu1†, Yuan-Zhi Wang2†, Huan Zhang1†, Zhi-Qiang Liu3†, Ha-zi Wureli1, Shi-Wei Wang4, Chang-Chun Tu5 and Chuang-Fu Chen1* Abstract Background: Melophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. Methods: In this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA). Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa), 16S rRNA gene (rrs),surfacecellantigen4gene(sca4),citratesynthasegene(gltA), and outer membrane protein A and B genes (ompA and ompB). The amplified products were confirmed by sequencing and BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_ LOC=blasthome). Results: According to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus,with100%identitytoM.
    [Show full text]
  • Alaska Birds & Wildlife
    Alaska Birds & Wildlife Pribilof Islands - 25th to 27th May 2016 (4 days) Nome - 28th May to 2nd June 2016 (5 days) Barrow - 2nd to 4th June 2016 (3 days) Denali & Kenai Peninsula - 5th to 13th June 2016 (9 days) Scenic Alaska by Sid Padgaonkar Trip Leader(s): Forrest Rowland and Forrest Davis RBT Alaska – Trip Report 2016 2 Top Ten Birds of the Tour: 1. Smith’s Longspur 2. Spectacled Eider 3. Bluethroat 4. Gyrfalcon 5. White-tailed Ptarmigan 6. Snowy Owl 7. Ivory Gull 8. Bristle-thighed Curlew 9. Arctic Warbler 10. Red Phalarope It would be very difficult to accurately describe a tour around Alaska - without drowning the narrative in superlatives to the point of nuisance. Not only is it an inconceivably huge area to describe, but the habitats and landscapes, though far north and less biodiverse than the tropics, are completely unique from one portion of the tour to the next. Though I will do my best, I will fail to encapsulate what it’s like to, for example, watch a coastal glacier calving into the Pacific, while being observed by Harbour Seals and on-looking Murrelets. I can’t accurately describe the sense of wilderness felt looking across the vast glacial valleys and tundra mountains of Nome, with Long- tailed Jaegers hovering overhead, a Rock Ptarmigan incubating eggs near our feet, and Muskoxen staring at us strangers to these arctic expanses. Finally, there is Denali: squinting across jagged snowy ridges that tower above 10,000 feet, mere dwarfs beneath Denali standing 20,300 feet high, making everything else in view seem small, even toy-like, by comparison.
    [Show full text]
  • Anchorage Birding Map ❏ Common Redpoll* C C C C ❄ ❏ Hoary Redpoll R ❄ ❏ Pine Siskin* U U U U ❄ Additional References: Anchorage Audubon Society
    BIRDS OF ANCHORAGE (Knik River to Portage) SPECIES SP S F W ❏ Greater White-fronted Goose U R ❏ Snow Goose U ❏ Cackling Goose R ? ❏ Canada Goose* C C C ❄ ❏ Trumpeter Swan* U r U ❏ Tundra Swan C U ❏ Gadwall* U R U ❄ ❏ Eurasian Wigeon R ❏ American Wigeon* C C C ❄ ❏ Mallard* C C C C ❄ ❏ Blue-winged Teal r r ❏ Northern Shoveler* C C C ❏ Northern Pintail* C C C r ❄ ❏ Green-winged Teal* C C C ❄ ❏ Canvasback* U U U ❏ Redhead U R R ❄ ❏ Ring-necked Duck* U U U ❄ ❏ Greater Scaup* C C C ❄ ❏ Lesser Scaup* U U U ❄ ❏ Harlequin Duck* R R R ❄ ❏ Surf Scoter R R ❏ White-winged Scoter R U ❏ Black Scoter R ❏ Long-tailed Duck* R R ❏ Bufflehead U U ❄ ❏ Common Goldeneye* C U C U ❄ ❏ Barrow’s Goldeneye* U U U U ❄ ❏ Common Merganser* c R U U ❄ ❏ Red-breasted Merganser u R ❄ ❏ Spruce Grouse* U U U U ❄ ❏ Willow Ptarmigan* C U U c ❄ ❏ Rock Ptarmigan* R R R R ❄ ❏ White-tailed Ptarmigan* R R R R ❄ ❏ Red-throated Loon* R R R ❏ Pacific Loon* U U U ❏ Common Loon* U R U ❏ Horned Grebe* U U C ❏ Red-necked Grebe* C C C ❏ Great Blue Heron r r ❄ ❏ Osprey* R r R ❏ Bald Eagle* C U U U ❄ ❏ Northern Harrier* C U U ❏ Sharp-shinned Hawk* U U U R ❄ ❏ Northern Goshawk* U U U R ❄ ❏ Red-tailed Hawk* U R U ❏ Rough-legged Hawk U R ❏ Golden Eagle* U R U ❄ ❏ American Kestrel* R R ❏ Merlin* U U U R ❄ ❏ Gyrfalcon* R ❄ ❏ Peregrine Falcon R R ❄ ❏ Sandhill Crane* C u U ❏ Black-bellied Plover R R ❏ American Golden-Plover r r ❏ Pacific Golden-Plover r r ❏ Semipalmated Plover* C C C ❏ Killdeer* R R R ❏ Spotted Sandpiper* C C C ❏ Solitary Sandpiper* u U U ❏ Wandering Tattler* u R R ❏ Greater Yellowlegs*
    [Show full text]
  • Hybridization & Zoogeographic Patterns in Pheasants
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Johnsgard Collection Papers in the Biological Sciences 1983 Hybridization & Zoogeographic Patterns in Pheasants Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/johnsgard Part of the Ornithology Commons Johnsgard, Paul A., "Hybridization & Zoogeographic Patterns in Pheasants" (1983). Paul Johnsgard Collection. 17. https://digitalcommons.unl.edu/johnsgard/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Johnsgard Collection by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HYBRIDIZATION & ZOOGEOGRAPHIC PATTERNS IN PHEASANTS PAUL A. JOHNSGARD The purpose of this paper is to infonn members of the W.P.A. of an unusual scientific use of the extent and significance of hybridization among pheasants (tribe Phasianini in the proposed classification of Johnsgard~ 1973). This has occasionally occurred naturally, as for example between such locally sympatric species pairs as the kalij (Lophura leucol11elana) and the silver pheasant (L. nycthelnera), but usually occurs "'accidentally" in captive birds, especially in the absence of conspecific mates. Rarely has it been specifically planned for scientific purposes, such as for obtaining genetic, morphological, or biochemical information on hybrid haemoglobins (Brush. 1967), trans­ ferins (Crozier, 1967), or immunoelectrophoretic comparisons of blood sera (Sato, Ishi and HiraI, 1967). The literature has been summarized by Gray (1958), Delacour (1977), and Rutgers and Norris (1970). Some of these alleged hybrids, especially those not involving other Galliformes, were inadequately doculnented, and in a few cases such as a supposed hybrid between domestic fowl (Gallus gal/us) and the lyrebird (Menura novaehollandiae) can be discounted.
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Human Dermatitis Caused by the Flying Squirrel's Flea, Ceratophyllus
    〔Med. Entomol. Zool. Vol. 72 No. 1 p. 33‒34 2021〕 33 reference DOI: 10.7601/mez.72.33 Note Human dermatitis caused by the ying squirrel’s ea, Ceratophyllus indages indages (Siphonaptera: Ceratophyllidae) in Hokkaido, Japan Takeo Y*, 1), Hayato K2) and Tatsuo O2) * Corresponding author: [email protected] 1) Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho Nishi 2‒11, Obihiro, Hokkaido 080‒8555, Japan 2) Laboratory of Wildlife Biology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho Nishi 2‒11, Obihiro, Hokkaido 080‒8555, Japan (Received: 28 September 2020; Accepted: 31 October 2020) Abstract: is report describes human dermatitis that is caused by the bite of Ceratophyllus (Monopsyllus) indages indages (Siphonaptera: Ceratophyllidae) from the Siberian ying squirrel Pteromys volans orii in Hokkaido, Japan. is case represents the rst description of human dermatitis caused by the bite of C. i. indages. Key words: Ceratophyllus indages indages, ectoparasite, human dermatitis, Pteromys volans orii, Siberian ying squirrel, Siphonaptera I C R e patient was a 25-year-old male postgraduate Fleas (Siphonaptera) are small, bloodsucking or student living in Obihiro City, Hokkaido. He had been hematophagous ectoparasites that may transmit studying the ecology of wild Siberian ying squirrels in pathogens (Eisen and Gage, 2012). e cat ea, Obihiro City and had been capturing squirrels in the Ctenocephalides felis (Bouché), is the most common eld one to three times each week since 2019. Before cause of ea-related dermatitis in humans in he touched squirrels, he applied an insect repellent Japan (Ohtaki et al., 1999).
    [Show full text]
  • Investigations on the Abundance of Ectoparasites and Vector-Borne Pathogens in Southwest Madagascar
    Investigations on the abundance of ectoparasites and vector-borne pathogens in southwest Madagascar Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Biology University of Hamburg submitted by Julian Ehlers Hamburg, 2020 Reviewers: Prof. Dr. Jörg Ganzhorn, Universität Hamburg PD Dr. Andreas Krüger, Centers for Disease Control and Prevention Date of oral defense: 19.06.2020 TABLE OF CONTENTS Table of contents Summary 1 Zusammenfassung 3 Chapter 1: General introduction 5 Chapter 2: Ectoparasites of endemic and domestic animals in 33 southwest Madagascar Chapter 3: Molecular detection of Rickettsia spp., Borrelia spp., 63 Bartonella spp. and Yersinia pestis in ectoparasites of endemic and domestic animals in southwest Madagascar Chapter 4: General discussion 97 SUMMARY Summary Human encroachment on natural habitats is steadily increasing due to the rapid growth of the worldwide population. The consequent expansion of agricultural land and livestock husbandry, accompanied by spreading of commensal animals, create new interspecific contact zones that are major regions of risk of the emergence of diseases and their transmission between livestock, humans and wildlife. Among the emerging diseases of the recent years those that originate from wildlife reservoirs are of outstanding importance. Many vector-borne diseases are still underrecognized causes of fever throughout the world and tend to be treated as undifferentiated illnesses. The lack of human and animal health facilities, common in rural areas, bears the risk that vector-borne infections remain unseen, especially if they are not among the most common. Ectoparasites represent an important route for disease transmission besides direct contact to infected individuals.
    [Show full text]
  • Revision of Molt and Plumage
    The Auk 124(2):ART–XXX, 2007 © The American Ornithologists’ Union, 2007. Printed in USA. REVISION OF MOLT AND PLUMAGE TERMINOLOGY IN PTARMIGAN (PHASIANIDAE: LAGOPUS SPP.) BASED ON EVOLUTIONARY CONSIDERATIONS Peter Pyle1 The Institute for Bird Populations, P.O. Box 1346, Point Reyes Station, California 94956, USA Abstract.—By examining specimens of ptarmigan (Phasianidae: Lagopus spp.), I quantifi ed three discrete periods of molt and three plumages for each sex, confi rming the presence of a defi nitive presupplemental molt. A spring contour molt was signifi cantly later and more extensive in females than in males, a summer contour molt was signifi cantly earlier and more extensive in males than in females, and complete summer–fall wing and contour molts were statistically similar in timing between the sexes. Completeness of feather replacement, similarities between the sexes, and comparison of molts with those of related taxa indicate that the white winter plumage of ptarmigan should be considered the basic plumage, with shi s in hormonal and endocrinological cycles explaining diff erences in plumage coloration compared with those of other phasianids. Assignment of prealternate and pre- supplemental molts in ptarmigan necessitates the examination of molt evolution in Galloanseres. Using comparisons with Anserinae and Anatinae, I considered a novel interpretation: that molts in ptarmigan have evolved separately within each sex, and that the presupplemental and prealternate molts show sex-specifi c sequences within the defi nitive molt cycle. Received 13 June 2005, accepted 7 April 2006. Key words: evolution, Lagopus, molt, nomenclature, plumage, ptarmigan. Revision of Molt and Plumage Terminology in Ptarmigan (Phasianidae: Lagopus spp.) Based on Evolutionary Considerations Rese.—By examining specimens of ptarmigan (Phasianidae: Lagopus spp.), I quantifi ed three discrete periods of molt and three plumages for each sex, confi rming the presence of a defi nitive presupplemental molt.
    [Show full text]
  • Peregrine Falcon from Wikipedia, the Free Encyclopedia Jump To: Navigation, Search Peregrine Falcon
    HISTORY OF AMBULANCE Posted by HeArt BeaT ^_^ at 12:34 AM Selama Perang Salib abad ke-11, Knights of St John menerima pengajaran dalam perawatan pertolongan pertama dari dokter Arab dan Yunani. The Knights of St John kemudian bertindak sebagai pekerja darurat pertama, mengobati tentara di kedua sisi perang di medan perang dan membawa yang terluka ke tenda terdekat untuk perawatan lebih lanjut. Konsep layanan ambulans dimulai di Eropa dengan Knights of St John, pada saat yang sama itu juga menjadi praktik umum yang dihadiahi reward kecil yang harus dibayarkan kepada prajurit yang membawa prajurit yang terluka lainnya untuk perawatan medis. GUNUNG VESUVIUS PEMUSNAH PERADABAN POMPEII Posted by HeArt BeaT ^_^ at 11:42 PM Hari ini hampir 2000 tahun yang lalu, tepatnya tanggal 24 Agustus tahun 79, terjadi letusan dahsyat gunung Vesuvius tak jauh dari ujung selatan Italia. Konon letusan itu adalah yang pertama setelah gunung api tersebut tertidur lelap selama berabad-abad. Letak Vesuvius, dari http://volcano.und.nodak.edu Gunung Vesuvius yang menurut legenda berarti “Putra Ves/Zeus” alias Hercules, terletak di kawasan Campagnia dekat Teluk Napoli, tak jauh dari kota industri dan perdagangan Pompeii yang ketika itu berpenduduk lebih dari 20 ribu jiwa. Tak jauh dari sana juga terdapat kota peristirahatan musim panas, Herculaneum, yang dipenuhi villa, pemandian ala Romawi, dan tak lupa perjudian. Di sekitarnya dapat dijumpai perkebunan anggur yang luas, juga beberapa kota kecil seperti Stabiae. Letusan pada tahun 79 ini diawali oleh sebuah gempa besar pada tahun 62. Tetapi bangsa Romawi pada masa itu tidak menghubungkan gempa dengan aktivitas gunung berapi. Mungkin ini karena mereka, terutama di Campagnia, sudah terbiasa dengan banyaknya getaran dan goncangan bumi, kecil dan besar.
    [Show full text]