304 Isaev Layout 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forest Fires and Climate in Alaska and Sakha Forest Fires Near Yakutsk
Forest Fires and Climate in Alaska and Sakha Forest Fires Near Yakutsk Hiroshi Hayasaka*, ** * Graduate School of Engineering, Hokkaido University, JAPAN ** CREST, JST (Japan Science and Technology Corporation) ABSTRACT This paper describes forest fires and weather in Alaska, North America and Sakha, Eastern part or Far East Siberia. Number of forest fires in Sakha is three times greater than that of Alaska. On the other hand, the mean annual burnt area in both places is almost the same and is about 2,400 km-2. Mean air temperature rise from 1830 in Yakutsk, Sakha was about 3OC. In Yakutsk, remarkable temperature rise begun from 1970’s. On the contrary, precipitation trend from 1890 shows gradual decreasing trend begun from 1970’s. Forest fire histories from the middle of 1950’s in Alaska and Sakha show that average burnt area become larger and larger from 1990’s. These climate trends push boreal forest very flammable. Under climate condition of higher air temperature and lower precipitation, large forest fires occurred near Yakustk, Sakha, in 2002. The cause of large forest fires is discussed from the climate point of view. Key words: Forest Fires, Hot Spot, Global Warming, Climate, Precipitation 1. INTRODUCTION The boreal forest or so-called Taiga is one of the largest contiguous forest areas in the world. Taiga becomes very flammable from spring to fall because total precipitation amount is only less than about 300mm. In addition, temperature rise due to global warming will make good conditions for forest fire. Fire incidence in high latitude may become to increase due to ongoing global warming because precipitation is low. -
The Fluvial Geochemistry of the Rivers of Eastern Siberia: I. Tributaries Of
Geochimica et Cosmochimica Acta, Vol. 62, No. 10, pp. 1657–1676, 1998 Copyright © 1998 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/98 $19.00 1 .00 PII S0016-7037(98)00107-0 The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton 1, 1 2 1 YOUNGSOOK HUH, *MAI-YIN TSOI, ALEXANDR ZAITSEV, and JOHN M. EDMONd 1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Laboratory of Erosion and Fluvial Processes, Department of Geography, Moscow State University, Moscow, Russia (Received June 11, 1997; accepted in revised form February 12, 1998) ABSTRACT—The response of continental weathering rates to changing climate and atmospheric PCO2 is of considerable importance both to the interpretation of the geological sedimentary record and to predictions of the effects of future anthropogenic influences. While comprehensive work on the controlling mechanisms of contemporary chemical and mechanical weathering has been carried out in the tropics and, to a lesser extent, in the strongly perturbed northern temperate latitudes, very little is known about the peri-glacial environments in the subarctic and arctic. Thus, the effects of climate, essentially temperature and runoff, on the rates of atmospheric CO2 consumption by weathering are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large rivers of Eastern Siberia, the Lena, Yana, Indigirka, Kolyma, Anadyr, and numerous lesser streams which drain a pristine, high-latitude region that has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts common to western Eurasia and North America. -
Quantifying the Northward Spread of Ticks (Ixodida) As Climate Warms in Northern Russia
atmosphere Article Quantifying the Northward Spread of Ticks (Ixodida) as Climate Warms in Northern Russia Leonid N. Vladimirov 1, Grigory N. Machakhtyrov 1, Varvara A. Machakhtyrova 1 , Albertus S. Louw 2 , Netrananda Sahu 3 , Ali P. Yunus 4 and Ram Avtar 2,5,* 1 Yakut Scientific Research Institute of Agriculture, Yakutsk 677001, Russia; [email protected] (L.N.V.); [email protected] (G.N.M.); [email protected] (V.A.M.) 2 Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; [email protected] 3 Department of Geography, Delhi School of Economics, University of Delhi, Delhi 110007, India; [email protected] 4 Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; [email protected] 5 Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan * Correspondence: [email protected]; Tel.: +81-011-706-2261 Abstract: Climate change is affecting human health worldwide. In particular, changes to local and global climate parameters influence vector and water-borne diseases like malaria, dengue fever, and tick-borne encephalitis. The Republic of Sakha in northern Russia is no exception. Long-term trends of increasing annual temperatures and thawing permafrost have corresponded with the northward range expansion of tick-species in the Republic. Indigenous communities living in these remote areas may be severely affected by human and livestock diseases introduced by disease vectors like ticks. To better understand the risk of vector-borne diseases in Sakha, we aimed to describe the Citation: Vladimirov, L.N.; increase and spatial spread of tick-bite cases in the Republic. -
Golden Eagle Trans-Siberian Express Via the BAM and Yakutsk
Golden Eagle Trans-Siberian Express via the BAM and Yakutsk https://www.irtsociety.com/journey/golden-eagle-trans-siberian-express-bam-line/ Overview The Highlights - Explore smaller and remote towns of Russia, rarely visited by tourists - Grand Moscow’s Red Square, the Kremlin Armoury Chamber, St. Basil's Cathedral and Cafe Pushkin - Yekaterinburg, infamous execution site of Tsar Nicholas II, his wife Alexandra, their son, daughters and servants, by the Bolsheviks in 1918 - Fantastic Sayan Mountain scenery, including the Dzheb double horse-shoe curves The Society of International Railway Travelers | irtsociety.com | (800) 478-4881 Page 1/7 - Visit one of the biggest hydro-electric dams in the world in Bratsk and one of the world’s largest open cast mines in Neryungri - Stop at the unique and mysterious 3.7-mile (6km) long Chara Sand Dunes - Learn about the history and building of the BAM line at the local museum in Tynda - Marvel at Komsomolsk's majestic and expansive urban architecture of the Soviet era, including the stupendous Pervostroitelei Avenue, lined with Soviet store fronts and signage intact - City tour of Vladivostok, including a preserved World War II submarine - All meals, fine wine with lunch and dinner, hotels, gratuities, off-train tours and arrival/departure transfers included The Tour Travel by private train through an outstanding area of untouched natural beauty of Siberia, along the Baikal-Amur Magistral (BAM) line, visiting some of the lesser known places and communities of remote Russia. The luxurious Golden Eagle will transport you from Moscow to Vladivostok along the less-traveled, northerly Trans-Siberian BAM line. -
THE BRITISH LIST the Official List of Bird Species Recorded in Britain
THE BRITISH LIST The official list of bird species recorded in Britain This document summarises the Ninth edition of the British List (BOU, 2017. Ibis 160: 190-240) and subsequent changes to the List included in BOURC Reports and announcements (bou.org.uk/british-list/bourc-reports-and- papers/). Category A, B, C species Total no. of species on the British List (Cats A, B, C) = 623 at 8 June 2021 Category A 605 • Category B 8 • Category C 10 Other categories see p.13. The list below includes both the vernacular name used by British ornithologists and the IOC World Bird List international English name (see www.worldbirdnames.org) where these are different to the English vernacular name. British (English) IOC World Bird List Scientific name Category vernacular name international English name Capercaillie Western Capercaillie Tetrao urogallus C3E* Black Grouse Lyrurus tetrix AE Ptarmigan Rock Ptarmigan Lagopus muta A Red Grouse Willow Ptarmigan Lagopus lagopus A Red-legged Partridge Alectoris rufa C1E* Grey Partridge Perdix perdix AC2E* Quail Common Quail Coturnix coturnix AE* Pheasant Common Pheasant Phasianus colchicus C1E* Golden Pheasant Chrysolophus pictus C1E* Lady Amherst’s Pheasant Chrysolophus amherstiae C6E* Brent Goose Brant Goose Branta bernicla AE Red-breasted Goose † Branta ruficollis AE* Canada Goose ‡ Branta canadensis AC2E* Barnacle Goose Branta leucopsis AC2E* Cackling Goose † Branta hutchinsii AE Snow Goose Anser caerulescens AC2E* Greylag Goose Anser anser AC2C4E* Taiga Bean Goose Anser fabalis AE* Pink-footed Goose Anser -
The Sleeping Habit of the Willow Ptarmigan
638 GeneralNotes [Oct.[Auk day the bird was found dead by Mr. Wilkin at the edge of the marsh. It had been shot and left by someoneunknown. The bird was turned over to New York Con- servation Department officers and has now been placed in the New York State Museum collection. The bird was a female in excellentbreeding-plumage condition and contained eggs. It weighed 11s/{ pounds, had a wing-spreadof 97 inches,and a length of 54 inches. It was examined in the flesh by both authors of this note.-- GORDO• M. M•AD•, M.D., Strong Memorial Hospital, Rochester,New York, A•D C•,a¾•ro• B. S•ao•ms, Supt. of ConservationEducation, Albany, New York. The sleeping habit of the Willow Ptarmigan.--A frequent statement regard- ing the Willow Ptarmigan (Lagopuslagopus) is that in winter when it goesto roost it drops from flight into the snow, completely burying itself and leaving no tracks that might lead predators to it. E. W. Nelson made this observation years ago in Alaska, and it is given also by Sandys and Van Dyke in their book, 'Upland Game Birds.' Bent (U.S. Nat. Mus. Bull., 162: 194, 1932) in writing on Allen's Ptarmigan of Newfoundland, quotes •I. R. Whitaker as stating that they roost in a shallow scratchingin the snow and are frequently buried by drifts and imprisonedto their death. On Southampton Island, Sutton records the Willow Ptarmigan as roosting and feeding in the same area without attempt at concealment. One night seven slept for the night in sevenconsecutive footprints of his track acrossthe snow. -
Sources and Pathways 4.1
Chapter 4 Persistant toxic substances (PTS) sources and pathways 4.1. Introduction Chapter 4 4.1. Introduction 4.2. Assessment of distant sources: In general, the human environment is a combination Longrange atmospheric transport of the physical, chemical, biological, social and cultur- Due to the nature of atmospheric circulation, emission al factors that affect human health. It should be recog- sources located within the Northern Hemisphere, par- nized that exposure of humans to PTS can, to certain ticularly those in Europe and Asia, play a dominant extent, be dependant on each of these factors. The pre- role in the contamination of the Arctic. Given the spa- cise role differs depending on the contaminant con- tial distribution of PTS emission sources, and their cerned, however, with respect to human intake, the potential for ‘global’ transport, evaluation of long- chain consisting of ‘source – pathway – biological avail- range atmospheric transport of PTS to the Arctic ability’ applies to all contaminants. Leaving aside the region necessarily involves modeling on the hemi- biological aspect of the problem, this chapter focuses spheric/global scale using a multi-compartment on PTS sources, and their physical transport pathways. approach. To meet these requirements, appropriate modeling tools have been developed. Contaminant sources can be provisionally separated into three categories: Extensive efforts were made in the collection and • Distant sources: Located far from receptor sites in preparation of input data for modeling. This included the Arctic. Contaminants can reach receptor areas the required meteorological and geophysical informa- via air currents, riverine flow, and ocean currents. tion, and data on the physical and chemical properties During their transport, contaminants are affected by of both the selected substances and of their emissions. -
Hunting in SWEDEN
www.face-europe.org Page 1 of 14 Hunting in SWEDEN SURFACE AREA Total surface area 449,964 km² Woodlands 62 % Farming area 9 % Huntable area n.a. average huntable area n.a. HUNTER/POPULATION Population 9,000,000 Number of Hunters 290,000 % Hunters 3.2 % Hunters / Inhabitants 1:31 Population density inhabitants/km² 22 Source: http:www.jagareforbundet.se, 2005 Handbook of Hunting in Europe, FACE, 1995 www.face-europe.org Page 2 of 14 HUNTING SYSTEM Competent authorities The Parliament has overall responsibility for legislation. The Government - the Ministry of Agriculture - is responsible for questions concerning hunting. The Swedish Environmental Protection Agency is responsible for supervision and monitoring developments in hunting and game management. The County Administrations are responsible for hunting and game management questions on the county level, and are advised by County Game Committees - länsviltnämnd - with representatives of forestry, agriculture, hunting, recreational and environmental protection interests. } Ministry of Agriculture (Jordbruksdepartementet) S-10333 Stockholm Phone +46 (0) 8 405 10 00 - Fax +46 (0)8 20 64 96 } Swedish Environmental Protection Agency (Naturvårdsverket) SE-106 48 Stockholm Phone +46 (0)8 698 10 00 - Fax +46 (0)8 20 29 25 Hunters’ associations Hunting is a popular sport in Sweden. There are some 290.000 hunters, of whom almost 195.000 are affiliated to the Swedish Association for Hunting and Wildlife Management (Svenska Jägareförbundet). The association is a voluntary body whose main task is to look after the interests of hunting and hunters. The Parliament has delegated responsibility SAHWM for, among other things, practical game management work. -
Alaska Birds & Wildlife
Alaska Birds & Wildlife Pribilof Islands - 25th to 27th May 2016 (4 days) Nome - 28th May to 2nd June 2016 (5 days) Barrow - 2nd to 4th June 2016 (3 days) Denali & Kenai Peninsula - 5th to 13th June 2016 (9 days) Scenic Alaska by Sid Padgaonkar Trip Leader(s): Forrest Rowland and Forrest Davis RBT Alaska – Trip Report 2016 2 Top Ten Birds of the Tour: 1. Smith’s Longspur 2. Spectacled Eider 3. Bluethroat 4. Gyrfalcon 5. White-tailed Ptarmigan 6. Snowy Owl 7. Ivory Gull 8. Bristle-thighed Curlew 9. Arctic Warbler 10. Red Phalarope It would be very difficult to accurately describe a tour around Alaska - without drowning the narrative in superlatives to the point of nuisance. Not only is it an inconceivably huge area to describe, but the habitats and landscapes, though far north and less biodiverse than the tropics, are completely unique from one portion of the tour to the next. Though I will do my best, I will fail to encapsulate what it’s like to, for example, watch a coastal glacier calving into the Pacific, while being observed by Harbour Seals and on-looking Murrelets. I can’t accurately describe the sense of wilderness felt looking across the vast glacial valleys and tundra mountains of Nome, with Long- tailed Jaegers hovering overhead, a Rock Ptarmigan incubating eggs near our feet, and Muskoxen staring at us strangers to these arctic expanses. Finally, there is Denali: squinting across jagged snowy ridges that tower above 10,000 feet, mere dwarfs beneath Denali standing 20,300 feet high, making everything else in view seem small, even toy-like, by comparison. -
Spanning the Bering Strait
National Park service shared beringian heritage Program U.s. Department of the interior Spanning the Bering Strait 20 years of collaborative research s U b s i s t e N c e h UN t e r i N c h UK o t K a , r U s s i a i N t r o DU c t i o N cean Arctic O N O R T H E L A Chu a e S T kchi Se n R A LASKA a SIBERIA er U C h v u B R i k R S otk S a e i a P v I A en r e m in i n USA r y s M l u l g o a a S K S ew la c ard Peninsu r k t e e r Riv n a n z uko i i Y e t R i v e r ering Sea la B u s n i CANADA n e P la u a ns k ni t Pe a ka N h las c A lf of Alaska m u a G K W E 0 250 500 Pacific Ocean miles S USA The Shared Beringian Heritage Program has been fortunate enough to have had a sustained source of funds to support 3 community based projects and research since its creation in 1991. Presidents George H.W. Bush and Mikhail Gorbachev expanded their cooperation in the field of environmental protection and the study of global change to create the Shared Beringian Heritage Program. -
Late Quaternary Environment of Central Yakutia (NE' Siberia
Late Quaternary environment of Central Yakutia (NE’ Siberia): Signals in frozen ground and terrestrial sediments Spätquartäre Umweltentwicklung in Zentral-Jakutien (NO-Sibirien): Hinweise aus Permafrost und terrestrischen Sedimentarchiven Steffen Popp Steffen Popp Alfred-Wegener-Institut für Polar- und Meeresforschung Forschungsstelle Potsdam Telegrafenberg A43 D-14473 Potsdam Diese Arbeit ist die leicht veränderte Fassung einer Dissertation, die im März 2006 dem Fachbereich Geowissenschaften der Universität Potsdam vorgelegt wurde. 1. Introduction Contents Contents..............................................................................................................................i Abstract............................................................................................................................ iii Zusammenfassung ............................................................................................................iv List of Figures...................................................................................................................vi List of Tables.................................................................................................................. vii Acknowledgements ........................................................................................................ vii 1. Introduction ...............................................................................................................1 2. Regional Setting and Climate...................................................................................4 -
Climate Change and Human Mobility in Indigenous Communities of the Russian North
Climate Change and Human Mobility in Indigenous Communities of the Russian North January 30, 2013 Susan A. Crate George Mason University Cover image: Winifried K. Dallmann, Norwegian Polar Institute. http://www.arctic-council.org/index.php/en/about/maps. TABLE OF CONTENTS Acknowledgements .......................................................................................................................... i Executive Summary ........................................................................................................................ ii 1. Introduction and Purpose ............................................................................................................ 1 1.1 Focus of paper and author’s approach................................................................................... 2 1.2 Human mobility in the Russian North: Physical and Cultural Forces .................................. 3 1.2.1 Mobility as the Historical Rule in the Circumpolar North ............................................. 3 1.2.2. Changing the Rules: Mobility and Migration in the Russian and Soviet North ............ 4 1.2.3 Peoples of the Russian North .......................................................................................... 7 1.2.4 The contemporary state: changes affecting livelihoods ................................................. 8 2. Overview of the physical science: actual and potential effects of climate change in the Russian North ..............................................................................................................................................