Molecular Phylogenetic Analysis of Nycteribiid and Streblid Bat Flies (Diptera: Brachycera, Calyptratae): Implications for Host
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Calyptratae)
Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment. -
Evolutionary History of Stomach Bot Flies in the Light of Mitogenomics
Evolutionary history of stomach bot flies in the light of mitogenomics Yan, Liping; Pape, Thomas; Elgar, Mark A.; Gao, Yunyun; Zhang, Dong Published in: Systematic Entomology DOI: 10.1111/syen.12356 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Yan, L., Pape, T., Elgar, M. A., Gao, Y., & Zhang, D. (2019). Evolutionary history of stomach bot flies in the light of mitogenomics. Systematic Entomology, 44(4), 797-809. https://doi.org/10.1111/syen.12356 Download date: 28. Sep. 2021 Systematic Entomology (2019), 44, 797–809 DOI: 10.1111/syen.12356 Evolutionary history of stomach bot flies in the light of mitogenomics LIPING YAN1, THOMAS PAPE2 , MARK A. ELGAR3, YUNYUN GAO1 andDONG ZHANG1 1School of Nature Conservation, Beijing Forestry University, Beijing, China, 2Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark and 3School of BioSciences, University of Melbourne, Melbourne, Australia Abstract. Stomach bot flies (Calyptratae: Oestridae, Gasterophilinae) are obligate endoparasitoids of Proboscidea (i.e. elephants), Rhinocerotidae (i.e. rhinos) and Equidae (i.e. horses and zebras, etc.), with their larvae developing in the digestive tract of hosts with very strong host specificity. They represent an extremely unusual diver- sity among dipteran, or even insect parasites in general, and therefore provide sig- nificant insights into the evolution of parasitism. The phylogeny of stomach botflies was reconstructed -
The Occurrence of Stalk-Eyed Flies (Diptera, Diopsidae) in the Arabian Peninsula, with a Review of Cluster Formation in the Diopsidae Hans R
Tijdschrift voor Entomologie 160 (2017) 75–88 The occurrence of stalk-eyed flies (Diptera, Diopsidae) in the Arabian Peninsula, with a review of cluster formation in the Diopsidae Hans R. Feijen*, Ralph Martin & Cobi Feijen Catalogue and distribution data are presented for the six Diopsidae species known to occur in the Arabian Peninsula: Sphyracephala beccarii, Chaetodiopsis meigenii, Diasemopsis aethiopica, Diopsis arabica, Diopsis mayae and Diopsis sp. (ichneumonea species group). The biogeographical aspects of their distribution are discussed. Records of Diopsis apicalis and Diopsis collaris are removed from the list for Arabia as these were based on misidentifications. Synonymies involving Diasemopsis aethiopica and Diasemopsis varians are discussed. Only one out of four specimens in the D. elegantula type series proved conspecific with D. aethiopica. The synonymy of D. aethiopica and D. varians is rejected. A lectotype for Diasemopsis elegantula is now designated. D. elegantula is proposed as junior synonym of D. varians. A fly cluster of more than 80,000 Sphyracephala beccarii, observed in Oman, is described. The occurrence of cluster formations in the Diopsidae is reviewed, while a possible explanation is indicated. Hans R. Feijen*, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. [email protected] Ralph Martin, University of Freiburg, Münchhofstraße 14, 79106 Freiburg, Germany Cobi Feijen, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Introduction catalogue for Diopsidae, Steyskal (1972) only re- Westwood (1837b) described Diopsis arabica as ferred to Westwood and Hennig as far as Diopsidae the first stalk-eyed fly from the Arabian Peninsula. in Arabia was concerned. -
First Report of Rickettsia Raoultii and R. Slovaca in Melophagus Ovinus, The
Liu et al. Parasites & Vectors (2016) 9:600 DOI 10.1186/s13071-016-1885-7 SHORT REPORT Open Access First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked Dan Liu1†, Yuan-Zhi Wang2†, Huan Zhang1†, Zhi-Qiang Liu3†, Ha-zi Wureli1, Shi-Wei Wang4, Chang-Chun Tu5 and Chuang-Fu Chen1* Abstract Background: Melophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. Methods: In this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA). Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa), 16S rRNA gene (rrs),surfacecellantigen4gene(sca4),citratesynthasegene(gltA), and outer membrane protein A and B genes (ompA and ompB). The amplified products were confirmed by sequencing and BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_ LOC=blasthome). Results: According to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus,with100%identitytoM. -
Redalyc.New Records of Three Hippoboscid Species on Newly Captured Birds from Nature in Paraná, Brazil
Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Fontanelli Vaz, Frederico; Natascha Teixeira, Valéria New records of three hippoboscid species on newly captured birds from nature in Paraná, Brazil Revista Brasileira de Parasitologia Veterinária, vol. 25, núm. 4, octubre-diciembre, 2016, pp. 501-503 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397848910019 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Research Note Braz. J. Vet. Parasitol., Jaboticabalv. 25, n. 4, p. 501-503, out.-dez. 2016 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612016056 New records of three hippoboscid species on newly captured birds from nature in Paraná, Brazil Novos registros de três espécies de hipoboscídeos em aves recém-capturadas da natureza no Paraná, Brasil Frederico Fontanelli Vaz1*; Valéria Natascha Teixeira2 1 Centro de Triagem de Animais Silvestres, Pontifícia Universidade Católica do Paraná – PUCPR, Tijucas do Sul, PR, Brasil 2 Laboratório de Parasitologia Veterinária, Escola de Ciências Agrárias e Medicina Veterinária, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, PR, Brasil Received April 4, 2015 Accepted August 23, 2016 Abstract The aims of this study was to provide new records of hippoboscid flies collected over an one-year period on newly captured birds from nature in the state of Paraná, Brazil. -
The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution
Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S1 of S11 Supplementary Materials: The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution Vanessa Schendel, Lachlan D. Rash, Ronald A. Jenner, and Eivind A. B. Undheim Table S1. Independently evolved venomous animal lineages and the primary ecological roles of their venoms. Taxa for which no direct support of their venomous nature could be found are shown in grey font. General Venom System Animal Group Venomous Lineage Primary Role References Morphology Predation, defense, Cnidarians All Nematocysts [1] intraspecific competition Coleoid Posterior and anterior glands, cephalopods, venom injected through salivary Predation [2,3] including octopus papilla. and squid Long duct/venom gland, venom Cone snails and injected through hollow radular Predation, [4] relatives (Conoidea) tooth on proboscis by a distal defense venom pump. Tritons, helmet Two-lobed salivary (venom) Molluscs shells, etc. glands that open through Predation [5] (Tonnoidea) common duct into buccal mass. Dwarf tritons, Single-lobed salivary (venom) including vampire glands that open through Predation [6] snails common duct into buccal mass. (Colubrariidae) Primary and accessory salivary Murex snails (venom) glands that open Predation [7] (Muricidae) through common duct into buccal mass. Proboscis with venom secreting cells, sometimes with stylet to Nemerteans Ribbon worms facilitate venom delivery Predation [8] (Enopla), or pseudocnidae with a potential role in venom delivery. Toxin-producing “lappets” secreting venom into large Blood worms muscular and glandular venom Predation [9] (Glyceridae) reservoir, which is presumably Annelids also involved in venom expulsion. Secretory cells dispersed along Predation, Leeches (Hirudinea) the buccal cavity in jawed [10–12] blood feeding leeches (Arhynchobdellida); Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S2 of S11 presence of two paired salivary glands in jawless leeches (Glossiphoniidae). -
Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. -
Scientific Note
Journal of the American Mosquito Control Association, 2l(4):474-476,2OO5 Copyright @ 2005 by the American Mosquito Control Association, Inc. SCIENTIFIC NOTE DETECTION OF WEST NILE VIRUS RNA FROM THE LOUSE FLY ICO STA AMERICANA (DIPTERA: HIPPOBOSCIDAE) ARY FARAJOLLAHI,'.' WAYNE J. CRANS,I DIANE NICKERSON,3 PATRICIA BRYANT4 BRUCE WOLE4 AMY GLASER,5 INn THEODORE G. ANDREADIS6 ABSTRACT West Nile virus (WNV) was detected by Taqman reverse transcription-polymerase chain reaction in 4 of 85 (4.7Vo) blood-engorged (n : 2) and unengorged (n : 2) Icosta americana (Leach) hippoboscid flies that were collected from wild raptors submitted to a wildlife rehabilitation center in Mercer County, NJ, in 2003. This report represents an additional detection of WNV in a nonculicine arthropod in North America and the first documented detection of the virus in unengorged hippoboscid flies, further suggesting a possible role that this species may play in the transmission of WNV in North America. KEY WORDS West Nile vrrns, Icosta americana, Hippoboscidae, raptors West Nile virus (WNV) is a flavivirus that rs blood feeders that are commonly associated with principally maintained in an enzootic cycle between birds of prey. Both sexes readily take blood (Be- Culex mosquitoes and avian amplifying hosts. To quaert 1952, 1953; Maa and Peterson 1987) and date, the virus has been detected in or isolated from females are viviparous, exhibiting a high frequency 59 species of mosquitoes in the United States and of blood feeding due to nutritional demands of de- Canada (CDC 2004) and the importance of mos- veloping larvae (Bequaert 1952). Host speciflcity quitoes as enzootic and epidemic vectors of WNV varies greatly among bird-feeding species (Lloyd in North America is well established (Andreadis et 2OO2),bult most species remain and feed on the host al. -
Do Tsetse Flies Only Feed on Blood?
Infection, Genetics and Evolution 36 (2015) 184–189 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Do tsetse fliesonlyfeedonblood? Philippe Solano a,ErnestSaloub,c, Jean-Baptiste Rayaisse c, Sophie Ravel a, Geoffrey Gimonneau d,e,f,g, Ibrahima Traore c, Jérémy Bouyer d,e,f,g,h,⁎ a IRD, UMR INTERTRYP, F-34398 Montpellier, France b Université Polytechnique de Bobo Dioulasso (UPB), Burkina Faso c CIRDES, BP454 Bobo-Dioulasso, Burkina Faso d CIRAD, UMR CMAEE, Dakar-Hann, Sénégal e INRA, UMR1309 CMAEE, F-34398 Montpellier, France f CIRAD, UMR INTERTRYP, F-34398 Montpellier, France g ISRA, LNERV, Dakar-Hann, Sénégal h CIRAD, UMR CMAEE, F-34398 Montpellier, France article info abstract Article history: Tsetse flies (Diptera: Glossinidae) are the vectors of trypanosomes causing sleeping sickness in humans, and Received 17 June 2015 nagana (animal trypanosomosis) in domestic animals, in Subsaharan Africa. They have been described as being Received in revised form 15 September 2015 strictly hematophagous, and transmission of trypanosomes occurs when they feed on a human or an animal. Accepted 16 September 2015 There have been indications however in old papers that tsetse may have the ability to digest sugar. Available online 25 September 2015 Here we show that hungry tsetse (Glossina palpalis gambiensis) in the lab do feed on water and on water with sugar when no blood is available, and we also show that wild tsetse have detectable sugar residues. We showed Keywords: Tsetse in laboratory conditions that at a low concentration (0.1%) or provided occasionally (0.1%, 0.5%, 1%), glucose Hematophagous had no significant impact on female longevity and fecundity. -
Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2. -
Diptera: Brachycera: Calyptratae) Inferred from Mitochondrial Genomes
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2015 The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Shuangmei Ding China Agricultural University Xuankun Li China Agricultural University Ning Wang China Agricultural University Stephen L. Cameron Queensland University of Technology Meng Mao University of Wollongong, [email protected] See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Ding, Shuangmei; Li, Xuankun; Wang, Ning; Cameron, Stephen L.; Mao, Meng; Wang, Yuyu; Xi, Yuqiang; and Yang, Ding, "The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes" (2015). Faculty of Science, Medicine and Health - Papers: part A. 3178. https://ro.uow.edu.au/smhpapers/3178 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Abstract Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc)e ar both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. -
External Parasites Around Animal Facilities1 P
ENY-255 External Parasites around Animal Facilities1 P. E. Kaufman, P. G. Koehler, and J. F. Butler2 Flies Several kinds of non-biting flies can be found in and around animal facilities. These flies can be harmful to animal health and cause annoyance and discomfort. All filth flies have an egg, larva (maggot), pupa, and adult stage in their life cycle. The adult fly has 2 developed wings (the hind pair is reduced to a knobbed balancing organ). Filth flies are usually scavengers in nature and many are capable of transmitting diseases to man. Filth flies can usu- ally be grouped according to their habits and appearance as house flies and their relatives; flesh flies, blow flies and bottle flies, filter flies, soldier flies, and vinegar (fruit) flies. Figure 1. Blow fly. Blow Flies and Bottle Flies Credits: J. F. Butler, UF/IFAS There are many species of blow flies (Figure 1) and bottle Blow flies and bottle flies can breed on dead rodents and flies which are found in and around animal facilities. The birds in attics or wall voids of barns. They usually breed greenbottle (Figure 2), bluebottle (Figure 3), and bronze- in meat scraps, animal excrement, and decaying animal bottle flies are particularly abundant in Florida. matter around houses. The adult flies are active inside and are strongly attracted to light. The mature larvae are often a The blow flies and bottle flies usually have a metallic blue problem when they migrate from breeding areas to pupate. or green color or both on the thorax and abdomen.