The Evolution of Myiasis in Blowflies (Calliphoridae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Calyptratae)
Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment. -
(Diptera: Calliphoridae) from India
International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758 Impact Factor: RJIF 5.24 www.entomologyjournals.com Volume 3; Issue 1; January 2018; Page No. 43-48 Taxonomic studies on the genus Calliphora robineau-desvoidy (Diptera: Calliphoridae) from India 1 Inderpal Singh Sidhu, *2 Rashmi Gupta, 3 Devinder Singh 1, 2 Department of Zoology, SGGS College, Sector 26, Chandigarh, Punjab, India 3 Department of Zoology and Environment Sciences, Punjabi University, Patiala, Punjab, India Abstract Four Indian species belonging to the genus Calliphora Robineau-Desvoidy have been studied and detailed descriptions have been written for each of them that include synonymy, morphological attributes, colouration, chaetotaxy, wing venation, illustrations of male and female genitalia, material examined, distribution, holotype depository and remarks. A key to the Indian species has also been provided. Keywords: India, Calliphora, calliphorinae, calliphoridae, diptera Introduction . Calliphora rufifacies Macquart, 1851. Dipt. Exot. Suppl., The genus Calliphora Robineau-Desvoidy is represented by 4: 216. four species in India (Bharti, 2011) [2]. They are medium to . Musca aucta Walker, 1853. Insect. Saund. Dipt., 1: 334. large sized flies commonly called the blue bottles. The . Calliphora insidiosa Robineau-Desvoidy, 1863 Insect. diagnostic characters of the genus include: eyes holoptic or Saund. Dipt., 1: 334. subholoptic in male, dichoptic in female; jowls about half eye . Calliphora insidiosa Robineau-Desvoidy, 1863. Posth. 2: height; facial carina absent; length of 3rd antennal segment less 695. than 4X that of 2nd; arista long plumose; propleuron and . Calliphora turanica Rohdeau-Desvoidy, 1863. Posth., 2: prosternum hairy; postalar declivity hairy; acrostichals 1-3+3; 695. -
Insect Orders V: Panorpida & Hymenoptera
Insect Orders V: Panorpida & Hymenoptera • The Panorpida contain 5 orders: the Mecoptera, Siphonaptera, Diptera, Trichoptera and Lepidoptera. • Available evidence clearly indicates that the Lepidoptera and the Trichoptera are sister groups. • The Siphonaptera and Mecoptera are also closely related but it is not clear whether the Siponaptera is the sister group of all of the Mecoptera or a group (Boreidae) within the Mecoptera. If the latter is true, then the Mecoptera is paraphyletic as currently defined. • The Diptera is the sister group of the Siphonaptera + Mecoptera and together make up the Mecopteroids. • The Hymenoptera does not appear to be closely related to any of the other holometabolous orders. Mecoptera (Scorpionflies, hangingflies) • Classification. 600 species worldwide, arranged into 9 families (5 in the US). A very old group, many fossils from the Permian (260 mya) onward. • Structure. Most distinctive feature is the elongated clypeus and labrum that together form a rostrum. The order gets its common name from the gential segment of the male in the family Panorpodiae, which is bulbous and often curved forward above the abdomen, like the sting of a scorpion. Larvae are caterpillar-like or grub- like. • Natural history. Scorpionflies are most common in cool, moist habitats. They get the name “hangingflies” from their habit of hanging upside down on vegetation. Larvae and adult males are mostly predators or scavengers. Adult females are usually scavengers. Larvae and adults in some groups may feed on vegetation. Larvae of most species are terrestrial and caterpillar-like in body form. Larvae of some species are aquatic. In the family Bittacidae males attract females for mating by releasing a sex pheromone and then presenting the female with a nuptial gift. -
Do Longer Sequences Improve the Accuracy of Identification of Forensically Important Calliphoridae Species?
Do longer sequences improve the accuracy of identification of forensically important Calliphoridae species? Sara Bortolini1, Giorgia Giordani2, Fabiola Tuccia2, Lara Maistrello1 and Stefano Vanin2 1 Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy 2 School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom ABSTRACT Species identification is a crucial step in forensic entomology. In several cases the calculation of the larval age allows the estimation of the minimum Post-Mortem Interval (mPMI). A correct identification of the species is the first step for a correct mPMI estimation. To overcome the difficulties due to the morphological identification especially of the immature stages, a molecular approach can be applied. However, difficulties in separation of closely related species are still an unsolved problem. Sequences of 4 different genes (COI, ND5, EF-1α, PER) of 13 different fly species collected during forensic experiments (Calliphora vicina, Calliphora vomitoria, Lu- cilia sericata, Lucilia illustris, Lucilia caesar, Chrysomya albiceps, Phormia regina, Cyno- mya mortuorum, Sarcophaga sp., Hydrotaea sp., Fannia scalaris, Piophila sp., Megaselia scalaris) were evaluated for their capability to identify correctly the species. Three concatenated sequences were obtained combining the four genes in order to verify if longer sequences increase the probability of a correct identification. The obtained results showed that this rule does not work for the species L. caesar and L. illustris. Future works on other DNA regions are suggested to solve this taxonomic issue. Subjects Entomology, Taxonomy Submitted 19 March 2018 Keywords ND5, COI, PER, Diptera, EF-1α, Maximum-likelihood, Phylogeny Accepted 17 October 2018 Published 17 December 2018 Corresponding author INTRODUCTION Stefano Vanin, [email protected] Species identification is a crucial step in forensic entomology. -
The Blowflies of California
BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 4,NO. 1 THE BLOWFLIES OF CALIFORNIA (Diptera: Calliphoridae) BY MAURICE T. JAMES (Department of Zo'dlogy, State College of Washington, Pullman) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1955 BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. G. Linsley, S. B. Freeborn, R. L. Usinger Volume 4, No. 1, pp. 1-34, plates 1-2, 1 figure in text Submitted by Editors, January 13, 1955 Issued October 28, 1955 Price, 50 cents UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON. ENGLAND PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA THE BLOWFLIES OF CALIFORNIA (Diptera: Calliphoridae) by Maurice T. James Identification of the blowflies of North America Blowflies are important from a medical and has been made much easier and more secure in veterinary standpoint. Some are obligatory or recent years by the publication of the monograph facultative parasites on man or on domestic or of that family by Hall (1948). However, there other useful animals. In our area, the primary exists ti0 regional treatment that covers any screwworm, Callitroga hominivorax (Coquerel), definite part of the United States. Hall's mono- 'is the only obligatory parasite that invades graph gives only general information about the living tissue, although larvae of Pmtocalliphora, geographical distribution of most of the species. represented in the Califdrnia fauna by seven These considerations, together with the fact that known species, feed on the blood of nesting Hall had obviously examined an insufficient birds, often with fatal results. Of the facultative amount of material from the western states, parasites, Callitroga macellaria (Fabricius), makes a review of the California species partic- Phaenicia sericata (Meigen), and Phormia regina ularly desirable. -
Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N. -
Protophormia Terraenovae (Robineau-Desvoidy, 1830) (Diptera, Calliphoridae) a New Forensic Indicator to South-Western Europe
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Alicante Ciencia Forense, 12/2015: 137–152 ISSN: 1575-6793 PROTOPHORMIA TERRAENOVAE (ROBINEAU-DESVOIDY, 1830) (DIPTERA, CALLIPHORIDAE) A NEW FORENSIC INDICATOR TO SOUTH-WESTERN EUROPE Anabel Martínez-Sánchez1 Concepción Magaña2 Martin Toniolo Paola Gobbi Santos Rojo Abstract: Protophormia terraenovae larvae are found frequently on corpses in central and northern Europe but are scarce in the Mediterranean area. We present the first case in the Iberian Peninsula where P. terraenovae was captured during autopsies in Madrid (Spain). In the corpse other nec- rophagous flies were found, Lucilia sericata, Chrysomya albiceps and Sarcopha- ga argyrostoma. To calculate the posmortem interval, the life cycle of P. ter- raenovae was studied at constant temperature, room laboratory and natural fluctuating conditions. The total developmental time was 16.61±0.09 days, 16.75±4.99 days in the two first cases. In natural conditions, developmental time varied between 31.22±0.07 days (average temperature: 15.6oC), 15.58±0.08 days (average temperature: 21.5oC) and 14.9±0.10 days (average temperature: 23.5oC). Forensic importance and the implications of other necrophagous Diptera presence is also discussed. Key words: Calliphoridae, forensic entomology, accumulated degrees days, fluctuating temperatures, competition, postmortem interval, Spain. Resumen: Las larvas de Protophormia terraenovae se encuentran con frecuen- cia asociadas a cadáveres en el centro y norte de Europa pero son raras en el área Mediterránea. Presentamos el primer caso en la Península Ibérica don- 1 Departamento de Ciencias Ambientales/Instituto Universitario CIBIO-Centro Iberoame- ricano de la Biodiversidad. -
A Global Study of Forensically Significant Calliphorids: Implications for Identification
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) A global study of forensically significant calliphorids: Implications for identification M.L. Harveya, S. Gaudieria, M.H. Villet and I.R. Dadoura Abstract A proliferation of molecular studies of the forensically significant Calliphoridae in the last decade has seen molecule-based identification of immature and damaged specimens become a routine complement to traditional morphological identification as a preliminary to the accurate estimation of post-mortem intervals (PMI), which depends on the use of species-specific developmental data. Published molecular studies have tended to focus on generating data for geographically localised communities of species of importance, which has limited the consideration of intraspecific variation in species of global distribution. This study used phylogenetic analysis to assess the species status of 27 forensically important calliphorid species based on 1167 base pairs of the COI gene of 119 specimens from 22 countries, and confirmed the utility of the COI gene in identifying most species. The species Lucilia cuprina, Chrysomya megacephala, Ch. saffranea, Ch. albifrontalis and Calliphora stygia were unable to be monophyletically resolved based on these data. Identification of phylogenetically young species will require a faster-evolving molecular marker, but most species could be unambiguously characterised by sampling relatively few conspecific individuals if they were from distant localities. Intraspecific geographical variation was observed within Ch. rufifacies and L. cuprina, and is discussed with reference to unrecognised species. 1. Introduction The advent of DNA-based identification techniques for use in forensic entomology in 1994 [1] saw the beginning of a proliferation of molecular studies into the forensically important Calliphoridae. -
Diptera: Brachycera: Calyptratae) Inferred from Mitochondrial Genomes
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2015 The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Shuangmei Ding China Agricultural University Xuankun Li China Agricultural University Ning Wang China Agricultural University Stephen L. Cameron Queensland University of Technology Meng Mao University of Wollongong, [email protected] See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Ding, Shuangmei; Li, Xuankun; Wang, Ning; Cameron, Stephen L.; Mao, Meng; Wang, Yuyu; Xi, Yuqiang; and Yang, Ding, "The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes" (2015). Faculty of Science, Medicine and Health - Papers: part A. 3178. https://ro.uow.edu.au/smhpapers/3178 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Abstract Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc)e ar both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. -
Species-Specific Behavioral Differences in Tsetse Fly Genital
Chapter 15 Species-Specific Behavioral Differences in Tsetse Fly Genital Morphology and Probable Cryptic Female Choice R.D. Briceño and W.G. Eberhard Abstract A long-standing mystery in morphological evolution is why male geni- talia tend to diverge more rapidly than other structures. One possible explana- tion of this trend is that male genitalia function as “internal courtship devices,” and are under sexual selection by cryptic female choice (CFC) to induce female responses that improve the male’s chances of fathering her offspring. Males of closely related species, which have species-specific genital structures, are thought to provide divergent stimulation. Testing this hypothesis has been difficult; the pre- sumed genital courtship behavior is hidden from view inside the female; appropri- ate experimental manipulations of male and female genitalia are often technically difficult and seldom performed; and most studies of how the male’s genitalia inter- act with those of the female are limited to a single species in a given group, thus limiting opportunities for comparisons of species-specific structures. In this chap- ter, we summarize data from morphological, behavioral, and experimental studies of six species in the tsetse fly genus Glossina, including new X-ray recordings that allowed visualization of events inside the female during real time. Species-specific male genital structures perform dramatic, stereotyped, rhythmic movements, some on the external surface of the female’s abdomen and others within her reproduc- tive tract. Counting conservatively, a female Glossina may sense stimuli from the male’s genitalia at up to 8 sites on her body during some stages of copulation. -
External Parasites Around Animal Facilities1 P
ENY-255 External Parasites around Animal Facilities1 P. E. Kaufman, P. G. Koehler, and J. F. Butler2 Flies Several kinds of non-biting flies can be found in and around animal facilities. These flies can be harmful to animal health and cause annoyance and discomfort. All filth flies have an egg, larva (maggot), pupa, and adult stage in their life cycle. The adult fly has 2 developed wings (the hind pair is reduced to a knobbed balancing organ). Filth flies are usually scavengers in nature and many are capable of transmitting diseases to man. Filth flies can usu- ally be grouped according to their habits and appearance as house flies and their relatives; flesh flies, blow flies and bottle flies, filter flies, soldier flies, and vinegar (fruit) flies. Figure 1. Blow fly. Blow Flies and Bottle Flies Credits: J. F. Butler, UF/IFAS There are many species of blow flies (Figure 1) and bottle Blow flies and bottle flies can breed on dead rodents and flies which are found in and around animal facilities. The birds in attics or wall voids of barns. They usually breed greenbottle (Figure 2), bluebottle (Figure 3), and bronze- in meat scraps, animal excrement, and decaying animal bottle flies are particularly abundant in Florida. matter around houses. The adult flies are active inside and are strongly attracted to light. The mature larvae are often a The blow flies and bottle flies usually have a metallic blue problem when they migrate from breeding areas to pupate. or green color or both on the thorax and abdomen. -
Insecta Diptera) in Freshwater (Excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel
Entomology Publications Entomology 2008 Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel Miroslav Barták Czech University of Agriculture Art Borkent Salmon Arm Gregory W. Courtney Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs BoudewPart ofijn the GoBddeeiodivrisersity Commons, Biology Commons, Entomology Commons, and the TRoyerarle Bestrlgiialan a Indnstit Aquaute of Nticat uErcaol Scienlogyce Cs ommons TheSee nex tompc page forle addte bitioniblaiol agruthorapshic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/41. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Abstract Today’s knowledge of worldwide species diversity of 19 families of aquatic Diptera in Continental Waters is presented. Nevertheless, we have to face for certain in most groups a restricted knowledge about distribution, ecology and systematic,