Methanol As an Alternative Transportation Fuel in the U.S

Total Page:16

File Type:pdf, Size:1020Kb

Methanol As an Alternative Transportation Fuel in the U.S Methanol as an alternative transportation fuel in the US: Options for sustainable and/or energy-secure transportation L. Bromberg and W.K. Cheng Prepared by the Sloan Automotive Laboratory Massachusetts Institute of Technology Cambridge MA 02139 September 27, 2010 Finalized November 2, 2010 Revised November 28, 2010 Final report UT-Battelle Subcontract Number:4000096701 1 Abstract Methanol has been promoted as an alternative transportation fuel from time to time over the past forty years. In spite of significant efforts to realize the vision of methanol as a practical transportation fuel in the US, such as the California methanol fueling corridor of the 1990s, it did not succeed on a large scale. This white paper covers all important aspects of methanol as a transportation fuel. Keywords: methanol; transportation;use; production 2 EXECUTIVE SUMMARY • Methanol has been used as a transportation fuel in US and in China. Flexible fuel vehicles and filling stations for blends of methanol from M3 to M85 have been deployed. It has not become a substantial fuel in the US because of its introduction in a period of rapidly falling petroleum price which eliminates the economic incentive, and of the absence of a strong methanol advocacy. Methanol has been displaced by ethanol as oxygenate of choice in gasoline blends. Nevertheless, these programs have demonstrated that methanol is a viable transportation fuel. • Large scale production of methanol from natural gas and coal is a well developed technology. Methanol prices today are competitive with hydrocarbon fuels (on an energy basis). There is progress on the economic conversion of biomass to methanol using thermo-chemical processes. Sufficient feedstock of natural gas and coal exists to enable the use of non-renewable methanol as a transition fuel to renewable methanol from biomass. A variety of renewable feedstock is available in the US for sustainable transportation with bio-methanol. • Analysis of the life cycle biomass-to-fuel tank energy utilization efficiency shows that methanol is better than Fischer-Tropsch diesel and methanol-to-gasoline fuels; it is significantly better than ethanol if a thermo-chemical process is used for both fuels. • The thermo-chemical plants for generation of methanol are expensive — they are approximately 1.8 times that of an equivalent (in terms of same annual fuel energy output) bio-chemical ethanol plant. • Methanol has attractive features for use in transportation: ¾ It is a liquid fuel which can be blended with gasoline and ethanol and can be used with today’s vehicle technology at minimal incremental costs. ¾ It is a high octane fuel with combustion characteristics that allow engines specifically designed for methanol fuel to match the best efficiencies of diesels while meeting current pollutant emission regulations. ¾ It is a safe fuel. The toxicity (mortality) is comparable to or better than gasoline. It also biodegrades quickly (compared to petroleum fuels) in case of a spill. ¾ Produced from renewable biomass, methanol is an attractive green house gas reduction transportation fuel option in the longer term. 3 ¾ Multiple ways exist for introduction of methanol into the fuel infrastructure (light blends or heavy blends) and into vehicles (light duty or heavy duty applications). The optimal approaches are different in different countries and in different markets. • To introduce methanol significantly into the market place, both methanol vehicles and fuel infra structure have to be deployed simultaneously. While significant investment needs to be made for large scale methanol deployment in the transportation sector, there are no technical hurdles either in terms of vehicle application or of distribution infrastructure. In comparison, the technology for bio-chemical ethanol production from cellulosic biomass is not sufficiently developed yet. Methanol from non-renewable coal or natural gas could be used as a bridging option towards transition to renewable methanol for sustainable transportation. Methanol can readily be made from natural gas or coal (there is plentiful supply in the US of both) so that large scale domestic production, infrastructure, and vehicle use could be developed. The resulting transportation system could then be transitioned to the renewable methanol. It should be further noted that such system is also amenable to the use of renewable ethanol, should large scale bio-production of cellulosic ethanol be realized in the future. 4 TABLE OF CONTENTS I. HISTORY OF METHANOL AS A TRANSPORTATION FUEL IN THE U.S. ............. 7 A. VEHICLES ..................................................................................................................................................... 10 B. FUELS ........................................................................................................................................................... 11 II. RELEVANT EXPERIENCES OF OTHER COUNTRIES ............................................. 13 A. CHINA .......................................................................................................................................................... 13 B. EUROPEAN UNION METHANOL EXPERIENCE ................................................................................................16 III. U.S. PRODUCTION VOLUMES AND PRIMARY CURRENT USES ......................... 18 A. PRODUCTION PROCESSES .............................................................................................................................22 B. RESOURCES .................................................................................................................................................. 23 1) Natural gas .............................................................................................................................................. 23 2) Coal ......................................................................................................................................................... 25 C. RESERVE/PRODUCTION METHANOL POTENTIAL OF US FOSSIL RESOURCES...................................................25 D. OTHER REQUIREMENTS (CATALYSTS). ..........................................................................................................26 IV. FEASIBILITY OF PRODUCTION FROM RENEWABLE SOURCES ....................... 27 A. BIOMASS RESOURCES IN THE US ..................................................................................................................27 B. METHANOL PRODUCTION EFFICIENCY ..........................................................................................................30 C. LIFE CYCLE ENERGY EFFICIENCY ANALYSIS .................................................................................................32 D. METHANOL FROM BIOMASS: CAPITAL COST OF METHANOL PLANTS. ..........................................................34 E. METHANOL FROM BIOMASS: FEEDSTOCK COSTS .........................................................................................35 F. METHANOL FROM BIOMASS: PRODUCTION COSTS .......................................................................................36 G. METHANOL FROM BIOMASS: WATER REQUIREMENTS..................................................................................38 H. R&D IN THE US AND WORLDWIDE ...............................................................................................................39 V. PHYSICAL AND CHEMICAL PROPERTIES OF METHANOL FUEL .................... 44 VI. REGULATED AND UNREGULATED EMISSIONS IMPACTS .................................. 46 A. COLD START EMISSION ................................................................................................................................. 47 B. GREEN HOUSE GAS EMISSIONS ....................................................................................................................47 VII. ENVIRONMENTAL AND HEALTH IMPACTS ............................................................ 50 A. HEALTH IMPACT ........................................................................................................................................... 50 B. ENVIRONMENTAL IMPACT ............................................................................................................................53 VIII. FUEL HANDLING AND SAFETY ISSUES .............................................................. 55 A. FUEL HANDLING: VAPOR PRESSURE AND PHASE STABILITY ..........................................................................55 B. SAFETY ......................................................................................................................................................... 55 IX. OTHER END USE ISSUES FOR TRANSPORTATION ................................................ 56 A. FEDERAL INCENTIVES FOR METHANOL VEHICLES .........................................................................................56 B. MATERIAL COMPATIBILITY ..........................................................................................................................56 X. RELATIVE PROMISE AS A WIDELY USED TRANSPORTATION FUEL ............. 58 A. VEHICLES PERFORMANCE .............................................................................................................................58 B. BLENDING STRATEGIES ................................................................................................................................ 60 C. CHANGES REQUIRED IN LDV ........................................................................................................................62
Recommended publications
  • What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
    applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs.
    [Show full text]
  • The Sustainability of Cellulosic Biofuels
    The Sustainability of Cellulosic Biofuels All biofuels, by definition, are made from plant material. The main biofuel on the U.S. market is corn ethanol, a type of biofuel made using the starch in corn grain. But only using grain to produce biofuels can lead to a tug of war between food and fuel sources, as well as other environmental and economic challenges. Biofuels made from cellulosic sources – the leaves, stems, and other fibrous parts of a plant – have been touted as a promising renewable energy source. Not only is cellulose the most abundant biological material on Earth, but using cellulose to produce biofuels instead of grain can have environmental benefits. Cellulosic biofuel sources offer a substantially greater energy return on investment compared to grain-based sources. However, environmental benefits are not guaranteed. The environmental success of cellulosic biofuels will depend on 1) which cellulosic crops are grown, 2) the practices used to manage them, and 3) the geographic location of crops. Both grain-based and cellulosic biofuels can help lessen our use of fossil fuels and can help offset carbon dioxide emissions. But cellulosic biofuels are able to offset more gasoline than can grain-based biofuels – and they do so with environmental co-benefits. Cellulosic Biofuels Help Reduce Competition for Land Cellulosic fuel crops can grow on lands that are not necessarily suitable for food crops and thereby reduce or avoid food vs. fuel competition. If grown on land that has already been cleared, cellulosic crops do not further contribute to the release of carbon to the atmosphere. Because many cellulosic crops are perennial and roots are always present, they guard against soil erosion and better retain nitrogen fertilizer.
    [Show full text]
  • HYDROGEN ECONOMY VS. METHANOL ECONOMY SARTHAK TIBDEWAL, UTSAV SAXENA and ANAND V
    Int. J. Chem. Sci.: 12(4), 2014, 1478-1486 ISSN 0972-768X www.sadgurupublications.com HYDROGEN ECONOMY VS. METHANOL ECONOMY SARTHAK TIBDEWAL, UTSAV SAXENA and ANAND V. P. GURUMOORTHY* Chemical Engineering Division, School of Mechanical and Building Sciences, VIT University, VELLORE – 632014 (T.N.) INDIA ABSTRACT Today, the human civilization is very much dependent on fossil fuels, which make the blood and bone of this modern world. These precious natural resources, which form over the course of hundreds of years, are being consumed swiftly. In this alarming situation, it is very much necessary to think for a replacement, which fulfils the social needs without disturbing the environmental stability. One such approach discussed most over the years is ‘Hydrogen economy-Producing and using hydrogen as a clean fuel’, but there is no infrastructure for it. As it is a volatile gas, so it needs to be handled and stored at high a pressure. Moreover, it is an inflammable gas, which makes its usage as a transportation fuel difficult. A more potential and reasonable alternative, which is gaining importance is ‘Methanol Economy’ where methanol can be used as a source for transportation, energy storage and raw material for artificial hydrocarbons and their commodities. It is an excellent fuel. Methanol prices today are competitive with hydrocarbon fuels (on energy basis). Development is noted on the commercial conversion of biomass to methanol by means of thermochemical mechanism. Adequate feedstock of natural gas and coal lies to empower the handling of exhaustible methanol as transition fuel to renewable methanol from biomass. This paper discusses methanol’s potential as an alternate of the hydrogen economy.
    [Show full text]
  • Advanced Biofuel Policies in Select Eu Member States: 2018 Update
    © INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION POLICY UPDATE NOVEMBER 2018 ADVANCED BIOFUEL POLICIES IN SELECT EU MEMBER STATES: 2018 UPDATE This policy update provides details on the latest measures that select European ICCT POLICY UPDATES Union (EU) member states, namely Denmark, Germany, Italy, the Netherlands, SUMMARIZE Sweden, and the United Kingdom, are taking to support advanced alternative fuels. REGULATORY AND OTHER EU POLICY BACKGROUND DEVELOPMENTS In 2018, the European Union (EU) set its climate and energy objectives for 2030. RELATED TO CLEAN They included a greenhouse gas (GHG) reduction of at least 40% and a minimum of a TRANSPORTATION 32% share of renewable energy consumption across all sectors.1 GHG emissions in the WORLDWIDE. European transportation sector have declined by only 3.8% since 2008, compared to an 18% decrease, or more, in all other sectors, indicating that the decarbonization of transportation should be a priority for the future.2 Biofuels are one of the options considered to increase renewable energy and decrease the carbon intensity of the transportation sector. Through the use of directives and national legislation, the EU has incentivized both the adoption of conventional food-based biofuels and advanced biofuels, which are made from non-food feedstocks. Such incentives date to 2009, when the EU Renewable Energy Directive (RED) mandated that by 2020, 10% of energy used in the transportation sector should come from renewable energy sources (RES).3 In 2015, the RED was 1 Jacopo Giuntoli, Final recast Renewable Energy Directive for 2021-2030 in the European Union, (ICCT: Washington, DC, 2018), https://www.theicct.org/publications/final-recast-renewable-energy-directive- 2021-2030-european-union 2 EUROSTAT (Greenhouse gas emissions by source sector (env_air_gge), accessed November 2018), https://ec.europa.eu/eurostat.
    [Show full text]
  • For Cellulosic Ethanol Production 1 DESCRIPTION of the Formicobio
    Appendix 1 formicobio™ technology 1 (2) for cellulosic ethanol production 1 DESCRIPTION OF THE formicobio™ TECHNOLOGY Chempolis’ formicobio™ is a technology for the production of cellulosic sugars and further ethanol. The technology has been specially developed for non-food raw materials (e.g. bamboo, bagasse, straws, oil palm biomass, and other agricultural residues), and it is based on selective fractionation of biomass with fully recoverable biosolvent containing formic acid. The formicobio™ technology avoids the main problems associated with other technologies developed for non-food raw materials and represents a true third- generation (3G) technology for the production of cellulosic sugars and further ethanol. The technology enables co-production of platform chemicals, such as acetic acid and furfural, which are used as raw materials in the production of paints, adhesives, and plastics, and as solvent and raw material for resins. Furfural can also be converted into synthetic diesel or gasoline ingredient by hydrogenation. In addition, combustion of co-produced solid biofuel (biocoal) can generate all the energy needed in biorefinery, with some surplus to be used in other production. The formicobio™ technology offers two principal options for the production of cellulosic ethanol: a) Production of ethanol from cellulose and chemicals from hemicelluloses b) Production of ethanol from cellulose and hemicelluloses with co-production of chemicals from hemicelluloses The principle of the technology (Option a) has been described as a simple block diagram in the picture below. The main steps in the process are the following: ‐ Selective fractionation of biomass with a fully recoverable biosolvent (i.e. formicodeli™). Fractionation takes place in a much lower temperature and pressure than pretreatment in typical 2G technologies.
    [Show full text]
  • Assessment of Bio- Ethanol and Biogas Initiatives for Transport in Sweden
    Assessment of bio- ethanol and biogas initiatives for transport in Sweden Background information for the EU-project PREMIA EU Contract N° TREN/04/FP6EN/S07.31083/503081 May 2005 2 Abstract This report is the result of an assignment on assessment of bio-ethanol and biogas initiatives for transport in Sweden, granted by VTT Processes, Energy and Environment, Engines and Vehicles, Finland to Atrax Energi AB, Sweden. The report of the assignment is intended to append the literature and other information used in the “PREMIA” project The work has been carried out by Björn Rehnlund, Atrax Energi AB, Sweden, with support from Martijn van Walwijk, France. The report describes the development of the production and use of biobio-ethanol and biogas (biomass based methane) as vehicle fuels in Sweden and gives an overview of today’s situation. Besides data and information about numbers of vehicles and filling stations, the report also gives an overview of: • Stakeholders • The legal framework, including standards, specifications, type approval, taxation etc. • Financial support programs. Public acceptance, side effects and the effect off the introduction of bio-ethanol and biogas as vehicle fuels on climate gases are to some extent also discussed in this report. It can be concluded that since the early 1990’s Sweden has had a perhaps slow but steadily increasing use of bio-ethanol and biogas. Today having the EC directive on promotion of bio bio-fuels and other renewable fuels in place the development and introduction of filling stations and vehicles has started to increase rapidly. From 1994 to 2004 the number of filling stations for bio-ethanol grew from 1 to 100 and during the year 2004 until today to 160 stations.
    [Show full text]
  • Black Liquor Gasification
    Black Liquor Gasification Summary and Conclusions from the IEA Bioenergy ExCo54 Workshop This publication provides Wood and Wastes the record of a workshop organised by IEA Bioenergy. CO2 Pool Black liquor gasification is an interesting option for production of synthesis gas that can subsequently be converted to a variety of motor fuels. The technology can be integrated into modern, Carbon ecocyclic, kraft pulp mill Dioxide Pulp and Paper biorefineries. USA and Sweden lead developments in this field. It is of interest primarily among countries with strong pulp and paper industries and national policies which promote substitution of petrol and diesel by biofuels. IEA Bioenergy IEA BIOENERGY: ExCo:2007:03 INTRODUCTION a large pulp and paper industry. It is thus of great interest to convert the primary energy in the black liquor to an This publication provides a summary and the conclusions energy carrier of high value. from a workshop organised by IEA Bioenergy. It was held in conjunction with the 54th meeting of the Executive Worldwide, the pulp and paper industry currently processes Committee in Ottawa on 6 October 2004. The purpose of the about 170 million tonnes of black liquor (measured as dry workshop was to present the developments of black liquor solids) per year, with a total energy content of about 2EJ, gasification for the production of energy and/or biofuels making black liquor a very significant biomass source (see for transport and discuss the remaining barriers, either Figure 1). In comparison with other potential biomass technical or strategic, that need to be overcome in order sources for chemicals production, black liquor has the to accelerate the successful demonstration of black liquor great advantage that it is already partially processed and gasification technologies and subsequently their penetration exists in a pumpable, liquid form.
    [Show full text]
  • Fiorelli Et Al V. Volkswagen Group of America, Inc
    Case 2:15-cv-07330-JLL-JAD Document 1 Filed 10/06/15 Page 1 of 98 PageID: 1 Joseph F. Rice James E. Cecchi Jodi Westbrook Flowers CARELLA, BYRNE, CECCHI, WOLF Kevin R. Dean OLSTEIN, BRODY &ANGELO, P.C. MOTLEY RICE LLC 5 Becker Farm Road 28 Bridgeside Blvd. Roseland, NJ 07068 Mt. Pleasant, SC 29464 (973) 994-1700 (843) 216-9000 Christopher M. Placitella, Esquire Michael Coren, Esquire COHEN, PLACITELLA & ROTH, P.C. 127 Maple Ave. Red Bank, NJ, 07701 (732) 747-9003 Attorneys for Plaintiffs UNITED STATES DISTRICT COURT FOR THE DISTRICT OF NEW JERSEY KAREN FIORELLI, STEVEN C. ) MENDOZA, MARTIN SCHMIDT, ) Case No. PAUL SACAMANO, DEBORAH ) MCCROHON and WENDY ) BRANZBURG, Individually and on ) behalf of others similarly situated, ) ) CLASS ACTION Plaintiffs, ) ) CLASS ACTION COMPLAINT v. ) ) JURY TRIAL DEMANDED VOLKSWAGEN GROUP OF AMERICA, ) INC., A New Jersey Corporation, and ) VOLKSWAGEN AG, A German ) Corporation. ) ) ) Defendants. ) ______________________________________ Case 2:15-cv-07330-JLL-JAD Document 1 Filed 10/06/15 Page 2 of 98 PageID: 2 Plaintiffs Karen Fiorelli, Steven C. Mendoza, Martin Schmidt, Paul Sacamano, Deborah McCrohon and Wendy Branzburg (“Plaintiffs”), individually and on behalf of all others similarly situated (the “Class”), allege the following: I. INTRODUCTION 1. As Volkswagen USA CEO, Michael Horn, publicly admitted on September 21, 2015, “Volkswagen has broken the trust of our customers, and the public here in America.” Horn further publicly admitted on behalf of Volkswagen: “So let's be clear about this: our company was dishonest with the EPA and the California Air Resources Board, and with all of you," Horn continued.
    [Show full text]
  • A Study on the Emissions of Butanol Using a Spark Ignition Engine and Their Reduction Using Electrostatically Assisted Injection
    A STUDY ON THE EMISSIONS OF BUTANOL USING A SPARK IGNITION ENGINE AND THEIR REDUCTION USING ELECTROSTATICALLY ASSISTED INJECTION BY BENJAMIN R. WIGG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Adviser: Professor Dimitrios C. Kyritsis Abstract Butanol is a potential alternative to ethanol and offers many benefits including a much higher heating value and lower latent heat of vaporization. It also has a higher cetane number than ethanol and improved miscibility in diesel fuel. Additionally, butanol is less corrosive and less prone to water absorption than ethanol, which allows it to be transported using the existing fuel supply pipelines. However, while some previous research on the emissions of butanol-gasoline blends is available, little research exists on the emissions of neat butanol. This thesis focuses on two areas of study. The first area relates to on the comparison of UHC, NOx, and CO emissions of several butanol-gasoline and ethanol-gasoline blended fuels during combustion in an SI engine. The objective was to compare the emissions of butanol combustion to the ones of ethanol and gasoline. The second part of the study relates to the use of electrostatically assisted injection as a means of reducing the UHC emissions of butanol by decreasing the fuel droplet size using a charge electrode and extraction ring designed for a port fuel injector. Emissions measurements taken with and without a charge applied to the injector were used to determine the effect of applying a voltage to the fuel spray on engine emissions.
    [Show full text]
  • Renewable Methanol Report Renewable Methanol Report
    In association with: Renewable Methanol Report Renewable Methanol Report Renewable Methanol Report This report has been produced by ATA Markets Intelligence S.L. on behalf of the Methanol Institute. The information and opinions in this report were prepared by ATA Markets Intelligence and its partners. ATA Markets Intelligence has no obligation to tell you when opinions or information in this report change. Publication Date: December 2018 ATA Markets Intelligence makes every effort to use reliable, comprehensive information, but we make no representation that it is accurate or complete. In no event shall ATA Markets Intelligence and its partners be liable for any damages, Authors: losses, expenses, loss of data, loss of opportunity or profit caused by the use of the material or contents of this report. Charlie Hobson ATA Insights is a brand of ATA Markets Intelligence, whose registered office is located in Calle Serrano, 8, 3º izquierda, Carlos Márquez (editor) Post-code 28001, Madrid, Spain. Registered in the Mercantile Registry of Madrid, CIF number B87725198. Design: © Methanol Institute 2018 Henrik Williams www.methanol.org 2 Renewable Methanol Report CONTENTS Executive Summary................................................................................. 5 Why consider renewable methanol? .................................................7 Legislation drives change.....................................................................................7 Report structure ..................................................................................................8
    [Show full text]
  • H3 AP201607080016477620 1.Pdf
    Global Research 6 July 2016 Geely Automobile Equities Driving into a fast lane China Automobile Manufacturers 12-month rating Buy Upgrade to Buy on better than expected sales of Boyue and Emgrand GS Prior: Neutral We upgrade our 16/17 earnings estimates for Geely by 24% to reflect faster than 12m price target HK$5.00 expected sales momentum of Boyue and Emgrand GS which sales have already reached Prior: HK$4.10 over 8k/4.6k units in June, higher than UBSe of 6k/ 4k units. We expect the current Price HK$4.30 strong industry SUV growth (45% in 5M) to continue in 2H 2016, thus we are less concerned about the competition from intensive product launches. We expect Boyue's RIC: 0175.HK BBG: 175 HK monthly sales to reach 20k units once Baoji factory commenced production in Oct. Trading data and key metrics Meanwhile, we also forecast the Emgrand GS's monthly sales to reach 10k units by end 52-wk range HK$4.46-2.51 of 2016 given its strong performance to price. Market cap. HK$37.8bn/US$4.88bn High earnings visibility in 2016; 2 more new models to be launched in 2H16 Shares o/s 8,801m (ORD) Besides from Boyue and Emgrand GS, Geely will also launch the new Yuanjing SUV Free float 60% (Compact SUV) in Aug with MSRP of Rmb80-100k and Emgrand GL (A-class sedan) in Avg. daily volume ('000) 44,376 Q4. We have concerns over the high procurement cost for Boyue, however we believe Avg.
    [Show full text]
  • Compressed Natural Gas Not Subject to Motor Fuel Tax
    External Multistate Tax Alert External Multistate Tax Alert January 18, 2018 IL Appellate Court – compressed natural gas not subject to motor fuel tax Overview In a unanimous, unpublished order issued on December 29, 2017, the Illinois First District Appellate Court (“Appellate Court”) reversed an earlier Illinois Independent Tax Tribunal (“Tax Tribunal”) order which had granted summary judgment in favor of the Illinois Department of Revenue (“Department”).1 Ruling in favor of the taxpayer, the Appellate Court held that compressed natural gas (“CNG”) is not a taxable motor fuel under the Illinois Motor Fuel Tax Law Act (“Motor Fuel Tax”).2 The Appellate Court’s order is subject to discretionary review by the Illinois Supreme Court upon the Illinois Department of Revenue filing an appeal. This tax alert summarizes the factual background of the case, the Tax Tribunal’s and Appellate Court’s decisions, and provides taxpayer refund considerations. Background Illinois imposes a per gallon excise tax on “all motor fuel used in motor vehicles operating on [Illinois] public highways.”3 For purposes of the Motor Fuel Tax Law Act, “motor fuel” is defined as: [A]ll volatile and inflammable liquids produced, blended or compounded for the purpose of, or which are suitable or practicable for, operating motor vehicles. Among other things, “Motor Fuel” includes “Special Fuel” as defined in Section 1.13 of this Act.4 “Special fuel,” in turn, is defined as: [A]ll volatile and inflammable liquids capable of being used for the generation of power in an internal combustion engine except that it does not include gasoline as defined in Section 5, example (A), of this Act, or combustible gases as defined in Section 5, example (B), of this Act .
    [Show full text]