A Study on the Emissions of Butanol Using a Spark Ignition Engine and Their Reduction Using Electrostatically Assisted Injection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California Biobutanol Multimedia Evaluation Tier II Work Plan
California Biobutanol Multimedia Evaluation Tier II Work Plan Prepared By Butamax™ Advanced Biofuels, LLC for the California Environmental Protection Agency Multimedia Working Group July 2013 Biobutanol Multimedia Evaluation Tier II Work Plan Table of Contents Table of Contents ........................................................................... 2 Table of Tables ............................................................................... 6 Table of Figures.............................................................................. 7 1. Executive Summary ................................................................. 8 1.1. Scope ................................................................................................................. 8 1.2. Background ....................................................................................................... 8 2. Tier I Conclusions .................................................................. 10 2.1. Conclusions of the Tier I Report ..................................................................... 10 2.2. Formulation of the Tier II Work Plan ............................................................. 11 3. Impact of Biobutanol on Elastomers .................................... 12 3.1. Statement of the Knowledge Gap ................................................................... 12 3.2. Test Plan.......................................................................................................... 13 4. Impact of Biobutanol on Fiberglass Resins and Sealants -
Assessment of Bio- Ethanol and Biogas Initiatives for Transport in Sweden
Assessment of bio- ethanol and biogas initiatives for transport in Sweden Background information for the EU-project PREMIA EU Contract N° TREN/04/FP6EN/S07.31083/503081 May 2005 2 Abstract This report is the result of an assignment on assessment of bio-ethanol and biogas initiatives for transport in Sweden, granted by VTT Processes, Energy and Environment, Engines and Vehicles, Finland to Atrax Energi AB, Sweden. The report of the assignment is intended to append the literature and other information used in the “PREMIA” project The work has been carried out by Björn Rehnlund, Atrax Energi AB, Sweden, with support from Martijn van Walwijk, France. The report describes the development of the production and use of biobio-ethanol and biogas (biomass based methane) as vehicle fuels in Sweden and gives an overview of today’s situation. Besides data and information about numbers of vehicles and filling stations, the report also gives an overview of: • Stakeholders • The legal framework, including standards, specifications, type approval, taxation etc. • Financial support programs. Public acceptance, side effects and the effect off the introduction of bio-ethanol and biogas as vehicle fuels on climate gases are to some extent also discussed in this report. It can be concluded that since the early 1990’s Sweden has had a perhaps slow but steadily increasing use of bio-ethanol and biogas. Today having the EC directive on promotion of bio bio-fuels and other renewable fuels in place the development and introduction of filling stations and vehicles has started to increase rapidly. From 1994 to 2004 the number of filling stations for bio-ethanol grew from 1 to 100 and during the year 2004 until today to 160 stations. -
Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results
September 1999 • NREL/TP-540-25818 Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results K. Kelly, L. Eudy, and T. Coburn National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 September 1999 • NREL/TP-540-25818 Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results K. Kelly, L. Eudy, and T. Coburn Prepared under Task No. FU905010 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 TP-25818 ACKNOWLEDGMENTS This work was sponsored by the Office of Technology Utilization, which is part of the U.S. Department of Energy’s (DOE) Office of Transportation Technologies in Washington, D.C. Mr. Dana O’Hara is DOE’s program manager for the light-duty vehicle evaluation projects at the National Renewable Energy Laboratory. Appreciation is expressed to the three emissions laboratories that performed the testing: Environmental Research and Development, in Gaithersburg, Maryland; Automotive Testing Laboratory, in East Liberty, Ohio; and ManTech Environmental, in Denver, Colorado. We also thank Phillips Chemical Company and Compressed Gas Technologies for supplying the test fuels for this project. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, appara- tus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
Sion Technologies - from Short Time to Long Term
D3.6 Efficient, low-risk ramp- up of liquid biomass conver- sion technologies - from short time to long term Authors: Paraskevi Karka, Ivar Petersson, Stavros Papadokonstantakis, Filip Johnsson Organisation: Chalmers University of Technology City, Country: Gothenburg, Sweden Email: [email protected] Website: www.chalmers.se [Type here] Deliverable Information Grant Agreement Number 764799 Project Acronym ADVANCEFUEL Instrument CSA Start Date 1 September 2017 Duration 36 months Website www.ADVANCEFUEL.eu Deliverable Number D3.6 Deliverable Title Efficient, low-risk ramp-up of liquid biomass conversion technologies - from short time to long term Expected Submission M32 Actual Submission M34 Authors Paraskevi Karka, Ivar Petersson, Stavros Papadokonstantakis, Filip Johnsson Reviewers Yuri Kroyan, Popi Panoutsou, Ayla Uslu, Michal Wojcieszyk, Philipp von Bothmer Dissemination Level PU Public (PU), Restricted (PP), Confidential (CO) 2 ADVANCEFUEL at a glance ADVANCEFUEL (www.ADVANCEFUEL.eu) aims to facilitate the commercialisation of renewable transport fuels by providing market stakeholders with new knowledge, tools, standards and recommen- dations to help remove barriers to their uptake. The project will look into liquid advanced biofuels – defined as liquid fuels produced from lignocellulosic feedstocks from agriculture, forestry and waste – and liquid renewable alternative fuels produced from renewable hydrogen and CO2 streams. In order to support commercial development of these fuels, the project will firstly develop a framework to monitor the current status, and future perspectives, of renewable fuels in Europe in order to better understand how to overcome barriers to their market roll-out. Following this, it will investigate individ- ual barriers and advance new solutions for overcoming them. The project will examine the challenges of biomass availability for second-generation biofuels, looking at non-food crops and residues, and how to improve supply chains from providers to converters. -
Alcohol and Cellulosic Biofuel Fuels Credit General Instructions
Alcohol and Cellulosic Biofuel Fuels Credit OMB No. 1545-0231 Form 6478 2011 Department of the Treasury Attachment Internal Revenue Service ▶ Attach to your tax return. Sequence No. 83 Name(s) shown on return Identifying number Caution. You cannot claim any amounts on Form 6478 that you claimed (or will claim) on Form 720 (Schedule C), Form 8849, or Form 4136. (a) (b) (c) Type of Fuel Number of Gallons Rate Column (a) x Column (b) Sold or Used 1 Qualified ethanol fuel production for fuel sold or used before 2012 (see instructions for election) . 1 2 Alcohol 190 proof or greater and alcohol 190 proof or greater in fuel mixtures sold or used before 2012 . 2 3 Alcohol less than 190 proof but at least 150 proof and alcohol less than 190 proof but at least 150 proof in fuel mixtures sold or used before 2012 . 3 4 Qualified cellulosic biofuel production for fuel sold or used before 2012 that is alcohol (see instructions for election) . 4 5 Qualified cellulosic biofuel production for fuel sold or used before 2012 that is not alcohol (see instructions for election) . 5 6 Qualified cellulosic biofuel production for fuel sold or used after 2011 (see instructions for election) . 6 7 Add the amounts in column (c) on lines 1 through 6. Include this amount in your income for 2011 and, if you reported an amount on lines 4, 5, or 6 above, enter your IRS registration number (see instructions) . 7 8 Alcohol and cellulosic biofuel fuels credit from partnerships, S corporations, cooperatives, estates, and trusts (see instructions) . -
Alcohol Fuel Manual
The Manual for the Home and Farm Production of Alcohol Fuel by S.W. Mathewson Ten Speed Press J.A. Diaz Publications 1980 Table of Contents Chapter 1 AN OVERVIEW Alcohol Fuel Uses of Alcohol Fuel Other Alternative Fuels Chapter 2 BASIC FUEL THEORY Chemical Composition Combustion Properties Volatility Octane Ratings Water Injection Exhaust Composition Engine Performance – Straight Alcohol Engine Performance – Alcohol Blends Chapter 3 UTILIZATION OF ALCOHOL FUELS Methods of Utilization Alcohol Blends Pure Alcohol Diesel Engines Engine Modification Alcohol Injection Chapter 4 ETHANOL PRODUCTION – GENERAL DISCUSSION Raw Materials Manufacturing Steps Process Design Chapter 5 PROCESSING STEPS COMMON TO ALL MATERIALS Dilution Ph Control Backslopping Cleanliness Hydrometers 1 Chapter 6 PROCESSING STEPS SPECIFIC TO SACCHARINE MATERIALS General Description Extraction Chapter 7 PROCESSING STEPS SPECIFIC TO STARCHY MATERIALS Preparation of Starchy Materials Milling Cooking Conversion Malting Premalting Preparation of Malt Enzyme Conversion Acid Hydrolosis Mash Cooling Chapter 8 PROCESSING STEPS SPECIFIC TO CELLULOSE MATERIALS Cellulose Conversion Chapter 9 YEAST AND FERMENTATION Yeast Yeast Preparation Fermentation Fermentation By-products Note of Caution Chapter 10 INDIVIDUAL RAW MATERIALS Sugar/Starch Content vs Alcohol Saccharine Materials Fruits Molasses Cane Sorghum Sugar Beets Sugar Corn Wastes Starchy Materials Grains Jerusalem Artichokes Potatoes Sweet Potatoes Cellolose Materials Multiple Enzyme Treatment Chapter 11 DISTILLATION Distillation -
N-Butanol As Biofuel: Characteristics and Evaluation of Its Application in Internal Combustion Engines Through 1D Simulation
UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia Mecânica WAGNER ROBERTO DA SILVA TRINDADE n-Butanol as biofuel: characteristics and evaluation of its application in internal combustion engines through 1D simulation n-Butanol como biocombustível: características e avaliação de sua aplicação em motores de combustão interna através de simulação 1D CAMPINAS 2016 Agência(s) de fomento e nº(s) de processo(s): Não se aplica. Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Luciana Pietrosanto Milla - CRB 8/8129 Trindade, Wagner Roberto da Silva, 1975- T736n N-Butanol as biofuel: characteristics and evaluation of its application in internal combustion engines through 1D simulation / Wagner Roberto da Silva Trindade. – Campinas, SP: [s.n.], 2016. Orientador: Rogério Gonçalves dos Santos. Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica. 1. Butanol. 2. Biofuel. 3. Internal combustion engines. 4. Simulation. I. Santos, Rogério Gonçalves dos, 1978-. II. Universidade Estadual Campinas. Faculdade de Engenharia Mecânica. III. Título. Informações para Biblioteca Digital Título em outro idioma: N-butanol como biocombustível : características e avaliação de sua aplicação em motores de combustão interna através de simulação 1D Palavras-chave em português: Butanol Biocombustível Motores de combustão interna Simulação Área de concentração: Térmica e Fluídos Titulação: Mestre em Engenharia Mecânica Banca examinadora: Rogério Gonçalves dos Santos [Orientador] Waldyr Luiz Ribeiro Gallo Guenther Carlos Krieger Filho Data de defesa: 12-12-2016 Programa de Pós-Graduação: Engenharia Mecânica Dedicatória À Andrea, Beatriz e Helena: minha força, minha alegria e minha luz. Agradecimentos À Andrea, Beatriz e Helena – esposa e filhas queridas – que sempre estiveram ao meu lado, me apoiando e motivando e que não me deixaram desitir nos momentos mais difíceis. -
How Good Politics Results in Bad Policy: the Case of Biofuel Mandates
How Good Politics Results in Bad Policy: The Case of Biofuel Mandates Robert Z. Lawrence Harvard Kennedy School 2010 M-RCBG Faculty Working Paper Series | 2010-12 Mossavar-Rahmani Center for Business & Government Weil Hall | Harvard Kennedy School | www.hks.harvard.edu/mrcbg The views expressed in the M-RCBG Working Paper Series are those of the author(s) and do not necessarily reflect those of the Mossavar-Rahmani Center for Business & Government or of Harvard University. M-RCBG Working Papers have not undergone formal review and approval. Papers are included in this series to elicit feedback and encourage debate on important public policy challenges. Copyright belongs to the author(s). Papers may be downloaded for personal use only. How Good Politics Results in Bad Policy: The Case of Biofuel Mandates Robert Z. Lawrence Abstract Biofuels have become big policy and big business. Government targets, mandates, and blending quotas have created a growing demand for biofuels. Some say that the U.S. biofuels industry was created by government policies. But recently, biofuels have become increasingly controversial. In this paper Lawrence argues that the growing list of concerns about the impact of biofuel targets and mandates—are the predictable result of a failure to follow the basic principles of good policy-making. Good policy-making requires developing a policy goal or target (i.e., reducing greenhouse gas emissions, reducing oil consumption, or increasing rural economic development) and designing an instrument to efficiently meet that particular goal. The more precise the goal, the better. In addition, for each target, there should be at least one policy instrument. -
Methanol: a Future-Proof Fuel a Primer Prepared for the Methanol Institute
Methanol: A Future-Proof Fuel A Primer Prepared for the Methanol Institute February 2020 Tammy Klein, Project Lead Principal [email protected] / +1.703.625.1072 (M) Table of Contents Introduction & Summary ......................................................................................................................................4 Methanol’s Fuel Quality Benefits .........................................................................................................................9 Octane Contribution .......................................................................................................................................11 Improved Efficiency .......................................................................................................................................13 Vapor Pressure ..............................................................................................................................................13 Distillation ......................................................................................................................................................14 Existent Gum ................................................................................................................................................. 16 Methanol’s Biodegradability and Air Oxidation ............................................................................................... 16 Addressing Concerns about the Use of Methanol ............................................................................................. -
The Impact of Ethanol and Iso-Butanol Blends on Gaseous and Particulate
Energy 82 (2015) 168e179 Contents lists available at ScienceDirect Energy journal homepage: www.elsevier.com/locate/energy The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines * Georgios Karavalakis a, b, , Daniel Short a, b, Diep Vu a, b, Robert L. Russell a, Akua Asa-Awuku a, b, Heejung Jung a, c, Kent C. Johnson a, b, Thomas D. Durbin a, b a University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA b Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA c Department of Mechanical Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA article info abstract Article history: We examined the effects of different ethanol and iso-butanol blends on the gaseous and particulate Received 2 August 2014 emissions from two passenger cars equipped with spark ignition direct injection engines and with one Received in revised form spray-guided and one wall-guided configuration. Both vehicles were tested over triplicate FTP (Federal 3 December 2014 Test Procedure) and UC (Unified Cycles) using a chassis dynamometer. Emissions of THC (total hydro- Accepted 8 January 2015 carbons), NMHC (non-methane hydrocarbons), and CO (carbon monoxide) reduced with increasing Available online 7 February 2015 oxygen content in the blend for some of the vehicle/fuel combinations, whereas NOx (nitrogen oxide) emissions did not show strong fuel effects. -
Abstract Process Economics Program Report 264 BIOBUTANOL (December 2008)
Abstract Process Economics Program Report 264 BIOBUTANOL (December 2008) World production of biofuels has experienced phenomenal growth. Various drivers for this phenomenon include high fuel prices, concerns about the environment, energy security and rural development. The majority of the growth in biofuels has been in the production of ethanol. However there are other biofuels, so-called second-generation biofuels that may offer some advantages over ethanol. Second-generation biofuels include cellulosic ethanol, covered in the PEP Report 263 Cellulosic Ethanol and the subject of this report biobutanol. Biobutanol has a number of advantages over ethanol, has a higher heating value, it is more hydrophobic than ethanol and can be transported via pipeline integrated in the existing petroleum-based fuels infrastructure and it can be added to gasoline at higher levels without engine modification. Biobutanol has garnered the interest not only in early stage companies such as Tetravitae and Gevo, whose technologies are covered in this report, but also major oil and chemical companies. BP and DuPont have formed a JV to develop biobutanol as a gasoline additive. This report covers the technological and economic aspects of the production of biobutanol via two processes. The first one is a modification of the established acetone-butanol-ethanol (ABE) fermentation developed by the University of Illinois and a licensed to Tetravitae. It incorporates an improved microorganism (Clostridium beijerincki BA101) and a gas stripping system for in situ product removal (ISPR) originally covered in PEP Review 2007-1. The second process is based on a combination of patents from GEVO and DuPont. It incorporates a novel pathway for the production of isobutanol by a solvent-tolerant microorganism developed by Gevo and a recovery process based on a DuPont patent application. -
Biomass Energy Data Book
USEFUL WEB SITES GOVERNMENT LINKS U.S. DEPARTMENT OF AGRICULTURE www.usda.gov Agricultural Research Service www.ars.usda.gov Forest Service www.fs.fed.us National Agricultural Library www.nal.usda.gov National Agricultural Statistics Service www.nass.usda.gov U.S. DEPARTMENT OF ENERGY www.energy.gov Energy Efficiency and Renewable Energy www.eere.energy.gov Biomass Program www.eere.energy.gov/biomass Alternative Fuels Data Center www.afdc.nrel.gov Clean Cities www.ccities.doe.gov Fuel Economy www.fueleconomy.gov Biomass Energy Data Book cta.ornl.gov/bedb Buildings Energy Data Book www.btscoredatabook.net Power Technologies Data Book www.nrel.gov/analysis/power_databook Transportation Energy Data Book cta.ornl.gov/data Energy Information Administration www.eia.doe.gov OAK RIDGE NATIONAL LABORATORY www.ornl.gov Center for Transportation Analysis cta.ornl.gov FIRSTGOV www.firstgov.gov FEDERAL GOVERNMENT – FEDSTATS www.fedstats.gov U.S. BUREAU OF LABOR STATISTICS www.bls.gov U.S. CENSUS BUREAU www.census.gov U.S. DEPARTMENT OF COMMERCE www.commerce.gov Bureau of Economic Analysis www.bea.gov U.S. ENVIRONMENTAL PROTECTION AGENCY www.epa.gov NON GOVERNMENT LINKS American Corn Growers Association www.acga.org American Soybean Association soygrowers.com National Biodiesel Board www.biodiesel.org National Oilseed Processors Association www.nopa.org National Ethanol Vehicle Coalition www.e85fuel.com Pellet Fuels Institute pelletheat.org Renewable Fuels Association www.ethanolrfa.org ORNL/TM-2006/571 BIOMASS ENERGY DATA BOOK: EDITION 1 Lynn Wright Consultant Oak Ridge, Tennessee Bob Boundy Roltek Clinton, Tennessee Bob Perlack Stacy Davis Bo Saulsbury Oak Ridge National Laboratory Oak Ridge, Tennessee September 2006 Prepared for the Office of Planning, Budget and Analysis Energy Efficiency and Renewable Energy U.S.