Insulin Products and the Cost of Diabetes Treatment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protection of Insulin‑Like Growth Factor 1 on Experimental Peripheral Neuropathy in Diabetic Mice
MOLECULAR MEDICINE REPORTS 18: 4577-4586, 2018 Protection of insulin‑like growth factor 1 on experimental peripheral neuropathy in diabetic mice HUA WANG, HAO ZHANG, FUMING CAO, JIAPING LU, JIN TANG, HUIZHI LI, YIYUN ZHANG, BO FENG and ZHAOSHENG TANG Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China Received December 24, 2017; Accepted July 19, 2018 DOI: 10.3892/mmr.2018.9435 Abstract. The present study investigated whether insulin-like the IGF-1-PPP group compared with the IGF-1 group; however, growth factor-1 (IGF-1) exerts a protective effect against no significant difference was observed in the expression neuropathy in diabetic mice and its potential underlying levels of p-p38 following treatment with IGF-1. The results mechanisms. Mice were divided into four groups: Db/m of the present study demonstrated that IGF-1 may improve (control), db/db (diabetes), IGF-1-treated db/db and neuropathy in diabetic mice. This IGF-1-induced neurotrophic IGF-1-picropodophyllin (PPP)-treated db/db. Behavioral effect may be associated with the increased phosphorylation studies were conducted using the hot plate and von Frey levels of JNK and ERK, not p38; however, it was attenuated by methods at 6 weeks of age prior to treatment. The motor nerve administration of an IGF-1R antagonist. conduction velocity (NCV) of the sciatic nerve was measured using a neurophysiological method at 8 weeks of age. The Introduction alterations in the expression levels of IGF-1 receptor (IGF-1R), c-Jun N-terminal kinase (JNK), extracellular signal-regulated An epidemiological survey demonstrated that the prevalence kinase (ERK), p38 and effect of IGF-1 on the sciatic nerve of diabetes in adults ≥18 years old in China was ≤11.6% (1). -
LANTUS® (Insulin Glargine [Rdna Origin] Injection)
Rev. March 2007 Rx Only LANTUS® (insulin glargine [rDNA origin] injection) LANTUS® must NOT be diluted or mixed with any other insulin or solution. DESCRIPTION LANTUS® (insulin glargine [rDNA origin] injection) is a sterile solution of insulin glargine for use as an injection. Insulin glargine is a recombinant human insulin analog that is a long-acting (up to 24-hour duration of action), parenteral blood-glucose-lowering agent. (See CLINICAL PHARMACOLOGY). LANTUS is produced by recombinant DNA technology utilizing a non- pathogenic laboratory strain of Escherichia coli (K12) as the production organism. Insulin glargine differs from human insulin in that the amino acid asparagine at position A21 is replaced by glycine and two arginines are added to the C-terminus of the B-chain. Chemically, it is 21A- B B Gly-30 a-L-Arg-30 b-L-Arg-human insulin and has the empirical formula C267H404N72O78S6 and a molecular weight of 6063. It has the following structural formula: LANTUS consists of insulin glargine dissolved in a clear aqueous fluid. Each milliliter of LANTUS (insulin glargine injection) contains 100 IU (3.6378 mg) insulin glargine. Inactive ingredients for the 10 mL vial are 30 mcg zinc, 2.7 mg m-cresol, 20 mg glycerol 85%, 20 mcg polysorbate 20, and water for injection. Inactive ingredients for the 3 mL cartridge are 30 mcg zinc, 2.7 mg m-cresol, 20 mg glycerol 85%, and water for injection. The pH is adjusted by addition of aqueous solutions of hydrochloric acid and sodium hydroxide. LANTUS has a pH of approximately 4. CLINICAL PHARMACOLOGY Mechanism of Action: The primary activity of insulin, including insulin glargine, is regulation of glucose metabolism. -
Insulin Aspart Sanofi, If It Is Coloured Or It Has Solid Pieces in It
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions. 1. NAME OF THE MEDICINAL PRODUCT Insulin aspart Sanofi 100 units/ml solution for injection in vial Insulin aspart Sanofi 100 units/ml solution for injection in cartridge Insulin aspart Sanofi 100 units/ml solution for injection in pre-filled pen 2. QUALITATIVE AND QUANTITATIVE COMPOSITION One ml solution contains 100 units insulin aspart* (equivalent to 3.5 mg). Insulin aspart Sanofi 100 units/ml solution for injection in vial Each vial contains 10 ml equivalent to 1,000 units insulin aspart. Insulin aspart Sanofi 100 units/ml solution for injection in cartridge Each cartridge contains 3 ml equivalent to 300 units insulin aspart. Insulin aspart Sanofi 100 units/ml solution for injection in pre-filled pen Each pre-filled pen contains 3 ml equivalent to 300 units insulin aspart. Each pre-filled pen delivers 1-80 units in steps of 1 unit. *produced in Escherichia coli by recombinant DNA technology. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Solution for injection (injection). Clear, colourless, aqueous solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Insulin aspart Sanofi is indicated for the treatment of diabetes mellitus in adults, adolescents and children aged 1 year and above. 4.2 Posology and method of administration Posology The potency of insulin analogues, including insulin aspart, is expressed in units, whereas the potency of human insulin is expressed in international units. -
Receptor Activity Modifying Proteins (Ramps) Interact with the VPAC2 Receptor and CRF1 Receptors and Modulate Their Function
British Journal of DOI:10.1111/j.1476-5381.2012.02202.x www.brjpharmacol.org BJP Pharmacology RESEARCH PAPER Correspondence David R Poyner, School of Life and Health Sciences, Aston University, Birmingham, Receptor activity modifying B4 7ET, UK. E-mail: [email protected] ---------------------------------------------------------------- proteins (RAMPs) interact Current address: *Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 with the VPAC2 receptor Royal Parade, Parkville, Victoria 3052 Australia; †Discovery Sciences, AstraZeneca R&D, and CRF1 receptors and Mölndal, Sweden; ‡R&I iMED, AstraZeneca R&D, Mölndal, Sweden. modulate their function ---------------------------------------------------------------- Keywords D Wootten1*, H Lindmark2†, M Kadmiel3, H Willcockson3, KM Caron3, receptor activity-modifying proteins (RAMPs); RAMP1; J Barwell1, T Drmota2‡ and DR Poyner1 RAMP2; RAMP3; VPAC2 receptor; +/- CRF1 receptor; Ramp2 mice; 1 2 School of Life and Health Sciences, Aston University, Birmingham, UK, Department of Lead G-protein coupling; biased Generation, AstraZeneca R&D, Mölndal, Sweden, and 3Department of Cellular and Molecular agonism Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA ---------------------------------------------------------------- Received 10 July 2012 Revised 15 August 2012 Accepted 28 August 2012 BACKGROUND AND PURPOSE Although it is established that the receptor activity modifying proteins (RAMPs) can interact with a number of GPCRs, little is known about the consequences of these interactions. Here the interaction of RAMPs with the glucagon-like peptide 1 receptor (GLP-1 receptor), the human vasoactive intestinal polypeptide/pituitary AC-activating peptide 2 receptor (VPAC2) and the type 1 corticotrophin releasing factor receptor (CRF1) has been examined. EXPERIMENTAL APPROACH GPCRs were co-transfected with RAMPs in HEK 293S and CHO-K1 cells. -
OZEMPIC (Semaglutide) Injection, for Subcutaneous Use Initial U.S
HIGHLIGHTS OF PRESCRIBING INFORMATION ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙CONTRAINDICATIONS∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ These highlights do not include all the information needed to use Personal or family history of medullary thyroid carcinoma or in patients OZEMPIC® safely and effectively. See full prescribing information with Multiple Endocrine Neoplasia syndrome type 2 (4). for OZEMPIC. Known hypersensitivity to OZEMPIC or any of the product components (4). OZEMPIC (semaglutide) injection, for subcutaneous use Initial U.S. Approval: 2017 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙WARNINGS AND PRECAUTIONS∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Pancreatitis: Has been reported in clinical trials. Discontinue promptly if WARNING: RISK OF THYROID C-CELL TUMORS pancreatitis is suspected. Do not restart if pancreatitis is confirmed (5.2). See full prescribing information for complete boxed warning. Diabetic Retinopathy Complications: Has been reported in a clinical trial. Patients with a history of diabetic retinopathy should be monitored (5.3). In rodents, semaglutide causes thyroid C-cell tumors. It is Never share an OZEMPIC pen between patients, even if the needle is unknown whether OZEMPIC causes thyroid C-cell tumors, changed (5.4). including medullary thyroid carcinoma (MTC), in humans as Hypoglycemia: When OZEMPIC is used with an insulin secretagogue or the human relevance of semaglutide-induced rodent thyroid C- insulin, consider lowering the dose of the secretagogue or insulin to reduce cell tumors has not been determined (5.1, 13.1). the risk of hypoglycemia (5.5). OZEMPIC is contraindicated in patients with a personal or Acute Kidney Injury: Monitor renal function in patients with renal family history of MTC or in patients with Multiple Endocrine impairment reporting severe adverse gastrointestinal reactions (5.6). Neoplasia syndrome type 2 (MEN 2). -
Alteration in Phosphorylation of P20 Is Associated with Insulin Resistance Yu Wang,1 Aimin Xu,1 Jiming Ye,2 Edward W
Alteration in Phosphorylation of P20 Is Associated With Insulin Resistance Yu Wang,1 Aimin Xu,1 Jiming Ye,2 Edward W. Kraegen,2 Cynthia A. Tse,1 and Garth J.S. Cooper1,3 We have recently identified a small phosphoprotein, P20, insulin action, such as the activation of insulin receptors, as a common intracellular target for insulin and several postreceptor signal transduction, and the glucose trans- of its antagonists, including amylin, epinephrine, and cal- port effector system, have been implicated in this disease citonin gene-related peptide. These hormones elicit phos- (3,4). Defective insulin receptor kinase activity, reduced phorylation of P20 at its different sites, producing three insulin receptor substrate-1 tyrosine phosphorylation, and phosphorylated isoforms: S1 with an isoelectric point (pI) decreased phosphatidylinositol (PI)-3 kinase activity were value of 6.0, S2 with a pI value of 5.9, and S3 with a pI observed in both human type 2 diabetic patients as well as value of 5.6 (FEBS Letters 457:149–152 and 462:25–30, animal models, such as ob/ob mice (5,6). 1999). In the current study, we showed that P20 is one In addition to the intrinsic defects of the insulin receptor of the most abundant phosphoproteins in rat extensor digitorum longus (EDL) muscle. Insulin and amylin an- and postreceptor signaling components, other circulating tagonize each other’s actions in the phosphorylation of factors, such as tumor necrosis factor-␣, leptin, free fatty this protein in rat EDL muscle. Insulin inhibits amylin- acids, and amylin, may also contribute to the pathogenesis evoked phosphorylation of S2 and S3, whereas amylin of insulin resistance (7–11). -
Type 2 Diabetes Adult Outpatient Insulin Guidelines
Diabetes Coalition of California TYPE 2 DIABETES ADULT OUTPATIENT INSULIN GUIDELINES GENERAL RECOMMENDATIONS Start insulin if A1C and glucose levels are above goal despite optimal use of other diabetes 6,7,8 medications. (Consider insulin as initial therapy if A1C very high, such as > 10.0%) 6,7,8 Start with BASAL INSULIN for most patients 1,6 Consider the following goals ADA A1C Goals: A1C < 7.0 for most patients A1C > 7.0 (consider 7.0-7.9) for higher risk patients 1. History of severe hypoglycemia 2. Multiple co-morbid conditions 3. Long standing diabetes 4. Limited life expectancy 5. Advanced complications or 6. Difficult to control despite use of insulin ADA Glucose Goals*: Fasting and premeal glucose < 130 Peak post-meal glucose (1-2 hours after meal) < 180 Difference between premeal and post-meal glucose < 50 *for higher risk patients individualize glucose goals in order to avoid hypoglycemia BASAL INSULIN Intermediate-acting: NPH Note: NPH insulin has elevated risk of hypoglycemia so use with extra caution6,8,15,17,25,32 Long-acting: Glargine (Lantus®) Detemir (Levemir®) 6,7,8 Basal insulin is best starting insulin choice for most patients (if fasting glucose above goal). 6,7 8 Start one of the intermediate-acting or long-acting insulins listed above. Start insulin at night. When starting basal insulin: Continue secretagogues. Continue metformin. 7,8,20,29 Note: if NPH causes nocturnal hypoglycemia, consider switching NPH to long-acting insulin. 17,25,32 STARTING DOSE: Start dose: 10 units6,7,8,11,12,13,14,16,19,20,21,22,25 Consider using a lower starting dose (such as 0.1 units/kg/day32) especially if 17,19 patient is thin or has a fasting glucose only minimally above goal. -
Clinical Policy: Mecasermin (Increlex) Reference Number: ERX.SPA.209 Effective Date: 01.11.17 Last Review Date: 11.17 Revision Log
Clinical Policy: Mecasermin (Increlex) Reference Number: ERX.SPA.209 Effective Date: 01.11.17 Last Review Date: 11.17 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Mecasermin (Increlex®) is an insulin growth factor-1 (IGF-1) analogue. FDA Approved Indication(s) Increlex is indicated for the treatment of growth failure in children with severe primary IGF-1 deficiency or with growth hormone (GH) gene deletion who have developed neutralizing antibodies to GH. Limitation(s) of use: Increlex is not a substitute to GH for approved GH indications. Policy/Criteria Provider must submit documentation (which may include office chart notes and lab results) supporting that member has met all approval criteria It is the policy of health plans affiliated with Envolve Pharmacy Solutions™ that Increlex is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Severe Primary IGF-1 Deficiency (must meet all): 1. Diagnosis of IGF-1 deficiency growth failure and associated growth failure with one of the following (a or b): a. Severe primary IGF-1 deficiency as defined by all (i through iii): i. Height standard deviation score (SDS) ≤ –3.0; ii. Basal IGF-1 SDS ≤ –3.0; iii. Normal or elevated GH level; b. GH gene deletion with development of neutralizing antibodies to GH; 2. Prescribed by or in consultation with an endocrinologist; 3. Age ≥ 2 and <18 years; 4. At the time of request, member does not have closed epiphyses; 5. Dose does not exceed 0.12 mg/kg twice daily. -
Insulin Aspart (Nvolog): Important Patient Information
What is most important to remember? If you have questions: Strong Internal Medicine • Insulin aspart (Novolog®) is used to lower blood sugar. It is Ask your doctor, nurse or pharmacist for important to use this medicine as more information about insulin aspart directed by your doctor (Novolog®) • Do not start any new medicines, over-the-counter drugs or herbal remedies without talking to your doctor • Tell all doctors, dentists and pharmacists that you are using insulin aspart (Novolog®) • insulin aspart (Novolog®) can cause low blood sugar. Always Strong Internal Medicine keep a source of sugar handy for 601 Elmwood Avenue times when your blood sugar gets Ambulatory Care Facility, 5th Floor too low Rochester, NY 14642 Phone: (585) 275 -7424 Insulin Aspart • Do not use your insulin if it (Novolog®): Visit our website at: becomes cloudy or has particles www.urmc.rochester.edu/medicine/ - Important Patient Information in it general-medicine/patientcare/ • Throw away all opened insulin after 28 days, even if it is not used up What does insulin aspart (Novolog®) do? Are there any interactions with other drugs that I need What are some things that I need to be aware of when to worry about? taking insulin aspart (Novolog®)? • It is used to lower blood sugar in patient with high blood sugar (diabetes) • There are many drug interactions that may increase • Tell your doctor or pharmacist if you have an allergy to How should insulin aspart (Novolog®) be used? your risk of side effects insulin, or any other drugs, foods, or substances • Use this -
Safety of Insulin Lispro and a Biosimilar Insulin Lispro When
DSTXXX10.1177/1932296817753644Journal of Diabetes Science and TechnologyThrasher et al 753644research-article2018 Original Article Journal of Diabetes Science and Technology 2018, Vol. 12(3) 680 –686 Safety of Insulin Lispro and a Biosimilar © 2018 Diabetes Technology Society Insulin Lispro When Administered Reprints and permissions: sagepub.com/journalsPermissions.nav Through an Insulin Pump DOI:https://doi.org/10.1177/1932296817753644 10.1177/1932296817753644 journals.sagepub.com/home/dst James Thrasher, MD1, Howard Surks, MD2, Irene Nowotny, PhD3, Suzanne Pierre, MSc4, Baerbel Rotthaeuser, PhD3, Karin Wernicke-Panten, MD3, and Satish Garg, MD5 Abstract Background: SAR342434 (U100; SAR-Lis; insulin lispro) is a biosimilar/follow-on to insulin lispro (U100; Ly-Lis). Similar pharmacokinetics/pharmacodynamics between the two products has been demonstrated in a hyperinsulinemic euglycemic clamp study. The current study evaluated the safety of SAR-Lis and Ly-Lis when administered by continuous subcutaneous insulin infusion (CSII; insulin pumps). Methods: This was a randomized, open-label, 2 × 4-week, two-arm crossover study in 27 patients with type 1 diabetes mellitus (NCT02603510). The main outcome was the incidence of infusion set occlusions (ISOs), defined as failure to correct hyperglycemia (plasma glucose ≥≥ 300 mg/dl) by 50 mg/dl within 60 minutes by insulin bolus via the pump. Secondary outcomes included intervals between infusion set changes, treatment-emergent adverse events (TEAEs) including infusion site, hypersensitivity reactions and hypoglycemic events, and safety. Results: The number of patients reporting at least one ISO was small: 6/25 patients on SAR-Lis reported 14 ISOs and 4/27 on Ly-Lis reported nine ISOs. The estimated difference in ISO risk for SAR-Lis versus Ly-Lis was 7.9% (95% CI, –1.90 to 17.73). -
Insulin Glargine (HOE901) First Responsibilities: Understanding the Data and Ensuring Safety
EDITORIAL Insulin Glargine (HOE901) First responsibilities: understanding the data and ensuring safety n this issue, Heinemann et al. (1) and Rat- decline in activity through the duration of other journals. They leave the reader with ner et al. (2) provide the results of stud- the 30-h study. The authors conclude that a sense of promise, but without the firm Iies of insulin glargine (formerly known as insulin glargine provides a flatter metabolic conviction that insulin glargine is clearly HOE901), the most recent addition to the profile than NPH insulin. Theoretically, this superior to other long-acting forms of growing family of insulin analogs and for- could prove to be advantageous in accom- insulin. The pharmacodynamic study sug- mulations. The authors report insulin modating the basal insulin requirements of gests that the peakless profile of action glargine’s pharmacodynamic characteristics patients with diabetes. should provide an advantage that can be (1) and data concerning its safety and effi- Ratner et al. (2) report initial results for used to produce clinically meaningful cacy when administered to subjects with the U.S. Study Group of Insulin Glargine in improvements in glycemic control. The type 1 diabetes who were treated with reg- Type 1 Diabetes. In their article, they clinical trial’s demonstration of a reduction ular insulin (2). Insulin glargine is produced describe the results of a large randomized in hypoglycemia and in fasting plasma glu- by recombinant DNA technology with 2 prospective 28-week trial of insulin cose levels appears to provide an opportu- modifications of the native human insulin glargine versus NPH insulin. -
Insulin-Induced Hypoglycemia Stimulates Corticotropin-Releasing
Insulin-induced hypoglycemia stimulates corticotropin-releasing factor and arginine vasopressin secretion into hypophysial portal blood of conscious, unrestrained rams. A Caraty, … , B Conte-Devolx, C Oliver J Clin Invest. 1990;85(6):1716-1721. https://doi.org/10.1172/JCI114626. Research Article Insulin-induced hypoglycemia (IIH) is a strong stimulator of pituitary ACTH secretion. The mechanisms by which IIH activates the corticotrophs are still controversial. Indeed, in rats the variations of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) secretion in hypophysial portal blood (HPB) during IIH have been diversely appreciated. This may be due to the stressful conditions required for portal blood collection in rats. We studied the effects of IIH on the secretion of CRF and AVP in HPB and on the release of ACTH and cortisol in peripheral plasma in conscious, unrestrained, castrated rams. After the injection of a low (0.2 IU/kg) or high dose (2 IU/kg) of insulin, ACTH and cortisol levels in peripheral plasma increased in a dose-related manner. After injection of the low dose of insulin, CRF and AVP secretion in HPB were equally stimulated. After injection of the high dose of insulin, CRF secretion was further stimulated, while AVP release was dramatically increased. These results suggest that when the hypoglycemia is moderate, CRF is the main factor triggering ACTH release, and that the increased AVP secretion potentiates the stimulatory effect of CRF. When hypoglycemia is deeper, AVP secretion becomes predominant and may by itself stimulate ACTH release. Find the latest version: https://jci.me/114626/pdf Insulin-induced Hypoglycemia Stimulates Corticotropin-releasing Factor and Arginine Vasopressin Secretion into Hypophysial Portal Blood of Conscious, Unrestrained Rams A.