Beaver Browsing Benefits Beetles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 104, NUMBER 7 THE FEEDING APPARATUS OF BITING AND SUCKING INSECTS AFFECTING MAN AND ANIMALS BY R. E. SNODGRASS Bureau of Entomology and Plant Quarantine Agricultural Research Administration U. S. Department of Agriculture (Publication 3773) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION OCTOBER 24, 1944 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 104, NUMBER 7 THE FEEDING APPARATUS OF BITING AND SUCKING INSECTS AFFECTING MAN AND ANIMALS BY R. E. SNODGRASS Bureau of Entomology and Plant Quarantine Agricultural Research Administration U. S. Department of Agriculture P£R\ (Publication 3773) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION OCTOBER 24, 1944 BALTIMORE, MO., U. S. A. THE FEEDING APPARATUS OF BITING AND SUCKING INSECTS AFFECTING MAN AND ANIMALS By R. E. SNODGRASS Bureau of Entomology and Plant Quarantine, Agricultural Research Administration, U. S. Department of Agriculture CONTENTS Page Introduction 2 I. The cockroach. Order Orthoptera 3 The head and the organs of ingestion 4 General structure of the head and mouth parts 4 The labrum 7 The mandibles 8 The maxillae 10 The labium 13 The hypopharynx 14 The preoral food cavity 17 The mechanism of ingestion 18 The alimentary canal 19 II. The biting lice and booklice. Orders Mallophaga and Corrodentia. 21 III. The elephant louse 30 IV. The sucking lice. Order Anoplura 31 V. The flies. Order Diptera 36 Mosquitoes. Family Culicidae 37 Sand flies. Family Psychodidae 50 Biting midges. Family Heleidae 54 Black flies. Family Simuliidae 56 Net-winged midges. Family Blepharoceratidae 61 Horse flies. Family Tabanidae 61 Snipe flies. Family Rhagionidae 64 Robber flies. Family Asilidae 66 Special features of the Cyclorrhapha 68 Eye gnats. -
Stress Test: Effects of Endosymbiotic Bacteria on Thermal Tolerance of a Montane Leaf
Stress test: Effects of endosymbiotic bacteria on thermal tolerance of a montane leaf beetle By Bo Zhang A thesis submitted to Sonoma State University In partial fulfillment of the requirements For the degree of Master of Science In Biology Dr. Nathan Rank, Chair Dr. Elizabeth Dahlhoff Dr. Sean Place June 29, 2018 i Copyright 2018 By Bo Zhang ii Authorization for Reproduction of Master’s Thesis/Project I grant permission for the print or digital reproduction of this thesis in its entirety, without further authorization from me, on the condition that the person or agency requesting reproduction absorb the cost and provide proper acknowledgement of authorship. Date: June 29, 2018 Bo Zhang iii Stress test: Effects of endosymbiotic bacteria on thermal tolerance of a montane leaf beetle Thesis by Bo Zhang Abstract Insects are a diverse group of organisms found in most terrestrial and aquatic ecosystems. Because insects are ectotherms, they are frequently exposed to variation in environmental temperature and thus variation in body temperature, the latter of which may cause physiological stress. Insects host a variety of microbes, including intracellular and extracellular bacteria, endosymbiotic or parasitic, which may alter how the host responds to environmental temperature variation. Physiological, biochemical and molecular responses to thermal variation have been well characterized for many species of insects, yet few studies have examined how microbes alter their response to environmental stress. In this thesis, I examined features of the microbiome of a montane insect, the leaf beetle Chrysomela aeneicollis. Prior studies of beetle populations living at high elevation in the Eastern Sierra Nevada mountains of California have shown that adult and larval beetles are exposed to both elevated and sub-zero temperatures during the summer growing season, and that exposure to these thermal extremes impacts survival, performance, and reproductive success. -
Beaver Management Technical Paper #3 Beaver Life History and Ecology Best Science Review
Beaver Management Technical Paper #3 Beaver Life History and Ecology Best Science Review April 2020 Alternate Formats Available Beaver Management Technical Paper #3 Beaver Life History and Ecology Best Science Review Submitted by: Jen Vanderhoof King County Water and Land Resources Division Department of Natural Resources and Parks Beaver Life History and Ecology Best Science Review Acknowledgements Extensive review and comments were provided by Bailey Keeler on the “Diet” and “Territoriality & Scent Mounds” sections, and she wrote a portion of the “Predation” section. Review and comments were provided by Bailey Keeler, Brandon Duncan, Matt MacDonald, and Kate O’Laughlin of King County. Dawn Duddleson, librarian for Water and Land Resources Division, obtained the majority of the papers cited in this report. Tom Ventur provided technical support and formatting for this document. Citation King County. 2020. Beaver management technical paper #3: beaver life history and ecology best science review. Prepared by Jen Vanderhoof, Water and Land Resources Division. Seattle, Washington. King County Science and Technical Support Section i April 2020 Beaver Life History and Ecology Best Science Review Table of Contents 1.0 Introduction .....................................................................................................................1 2.0 Beaver Populations .........................................................................................................3 2.1 History .........................................................................................................................3 -
Ectoparasitic Insects Genera of Veterinary Importance and Some Aspects of Their Control
American Journal of Economics, Finance and Management Vol. 4, No. 4, 2018, pp. 116-123 http://www.aiscience.org/journal/ajefm ISSN: 2381-6864 (Print); ISSN: 2381-6902 (Online) Ectoparasitic Insects Genera of Veterinary Importance and Some Aspects of Their Control Muhammad Sarwar 1, *, Arfa Rauf 2 1National Institute for Biotechnology & Genetic Engineering (NIBGE) , Faisalabad, Punjab, Pakistan 2Allied Hospital- Punjab Medical College, Faisalabad, Punjab, Pakistan Abstract Agricultural animals (those used for production of food and fibre- livestock) and companion animals (pets such as dogs and cats) may be affected by arthropod pests. Insects as veterinary ectoparasites have a significant impact on the health, wellbeing and productivity of their animal vertebrate hosts. These impacts can be either direct, through tissue damage and blood loss, or indirect, through their role as vectors of viral, bacterial, protozoa and helminth pathogens. A second category of indirect effects are those that result from the alteration of host behaviour induced by arthropod attack and blood-feeding activity. So, the present article aims to contribute fundamental scientific knowledge in the areas of insects as veterinary ectoparasites and also the processes ensuring to the public for underlying the protection from biting and diseases borne. The insect ectoparasites include flies (Diptera), lice (Mallophaga), fleas (Siphonaptera) and bugs (Hemiptera). These insects have a profound impact on the health of animals by causing annoyance, inflicting bites and stings, and transmitting of diseases. Animals can be greatly annoyed by the presence and activity of certain insects. For example, cattle will bunch up and put their lowered heads together to seek relief when fly strike is severe; scratching may be symptoms of fleas or lice; and head shaking may indicate the presence of insects in ear. -
The Evolution of Social Parasitism in Formica Ants Revealed by a Global Phylogeny – Supplementary Figures, Tables, and References
The evolution of social parasitism in Formica ants revealed by a global phylogeny – Supplementary figures, tables, and references Marek L. Borowiec Stefan P. Cover Christian Rabeling 1 Supplementary Methods Data availability Trimmed reads generated for this study are available at the NCBI Sequence Read Archive (to be submit ted upon publication). Detailed voucher collection information, assembled sequences, analyzed matrices, configuration files and output of all analyses, and code used are available on Zenodo (DOI: 10.5281/zen odo.4341310). Taxon sampling For this study we gathered samples collected in the past ~60 years which were available as either ethanol preserved or pointmounted specimens. Taxon sampling comprises 101 newly sequenced ingroup morphos pecies from all seven species groups of Formica ants Creighton (1950) that were recognized prior to our study and 8 outgroup species. Our sampling was guided by previous taxonomic and phylogenetic work Creighton (1950); Francoeur (1973); Snelling and Buren (1985); Seifert (2000, 2002, 2004); Goropashnaya et al. (2004, 2012); Trager et al. (2007); Trager (2013); Seifert and Schultz (2009a,b); MuñozLópez et al. (2012); Antonov and Bukin (2016); Chen and Zhou (2017); Romiguier et al. (2018) and included represen tatives from both the New and the Old World. Collection data associated with sequenced samples can be found in Table S1. Molecular data collection and sequencing We performed nondestructive extraction and preserved samespecimen vouchers for each newly sequenced sample. We remounted all vouchers, assigned unique specimen identifiers (Table S1), and deposited them in the ASU Social Insect Biodiversity Repository (contact: Christian Rabeling, [email protected]). -
Diptera: Syrphidae) and Their Impact on Populations of the Rose Aphid, Macrosípharn Rosoo
cl o!- 7 The ecology of Mebngyna viridíceps and Símosyrphus grandícornis (Diptera: Syrphidae) and their impact on populations of the rose aphid, Macrosípharn rosoo By: Ebrahim Soleyman-Nezhadiyan M. Sc. The University of Shahid Chamran (Ahwaz) A thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Agricultural and Natural Resource Science at the University of Adelaide Departnrent of Crop Protection The University of Adelaide July 1996 Declaration This work cont¡ins no matcrial which has besn acccptcd for rhc awa¡d of any other degrec or diploma in any univcrsity or othcr tcrdary institution an4 to tl¡c bcst of my knowledgc and bclicf, conains no matcrial previously publistrcd o'r writæn by othcr pcrson, cxccpr wherc duc rcfercnce has bcen made in ttrc æxr This thesis Eay bc madc availablc for loan or photocopying providcd that an acknowlcdgcmcnt is mads in instancc of any tefc¡cncc to this work. Ebúahim Sole¡'man-Nedradiyan, JuIy 1996 I Acknowledgement The long and tedious task of preparing a thesis cannot see the light of the day without appreciable help from supenisors, colleagues, and friends, and to all of them I extend my sincerest gratitude. There are a few, however, who deserve special appreciation. It is due to Dr. Derek Maelzer that this project ever started. His experience in insect ecology and experimental designs was an invaluable source of knowledge before and after his retirement. Dr. Peær Bailey deserves a very special appreciation for sound supervision, patience and criticism. Special thanks to Dr. Roger Laughlin who spent a lot of time reading and criticising this thesis, even though he had retired. -
A New Record of the Parasitic Beaver Beetle (Platypsyllus Castoris) (Coleoptera: Leiodidae) from Stavropol Territory (Russia)
Available online at www.easletters.com Entomology and Applied Science ISSN No: 2349-2864 Letters, 2014, 1, 4:1-3 A new record of the parasitic beaver beetle (Platypsyllus Castoris) (Coleoptera: Leiodidae) from Stavropol Territory (Russia) S.V. Pushkin North Caucasian Federal University, Institute of Live Systems, Botany, Zoology and General Biology Department; 355009 (Stavropol), Russia Correspondence: [email protected] (Received: 12/8/14 ) (Accepted:2/10/14) _____________________________________________________________________________________________ ABSTRACT Platypsyllus castoris Ritsema, 1869 previously noted only in Voronezh Region is found in Stavropol area (Russia) for the first time. This species was collected not on beaver, for which it was cited earlier, but on river otter ((Lutra lutra meridionalis (Ognev 1931)) – rare species of the North Caucasian region. Key words : Coleoptera, Leiodidae, Platypsyllus castoris , Stavropol area Russia. _____________________________________________________________________________________________ INTRODUCTION In 2013, the hairline Caucasian otter ((Lutra lutra meridionalis (Ognev, 1931)) collected near Budennovska, Pyatigorsk; Stavropol Krai (Kuban river) were collected 2 female beaver beetles Platypsyllus castoris Ritsema, 1869. This is the third discovery of this interesting parasitic insect with the European part of the former USSR, distant to the south for 300 km from the first [12] and about 100 from the second [1]. Particular interest is the fact that this is the second in the European part of the finding of this species parasitic on the otter, and not on traditional host – beaver. MATERIALS AND METHODS The material gathered the standard zoological methods. In total 2 females of a species are collected. 5 otters are examined. During researches any animal has not suffered. The account of number of an otter in territory of Stavropol territory is in passing spent. -
Beavers, Bugs and Chemistry: a Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species
Article Beavers, Bugs and Chemistry: A Mammalian Herbivore Changes Chemistry Composition and Arthropod Communities in Foundation Tree Species Rachel M. Durben 1,2, Faith M. Walker 1,2,3, Liza Holeski 1,2,4, Arthur R. Keith 1,2, Zsuzsi Kovacs 1,2, Sarah R. Hurteau 5, Richard L. Lindroth 4 , Stephen M. Shuster 1,2 and Thomas G. Whitham 1,2,* 1 The Environmental Genetics and Genomics Laboratory, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA; [email protected] (R.M.D.); [email protected] (F.M.W.); [email protected] (L.H.); [email protected] (A.R.K.); [email protected] (Z.K.); [email protected] (S.M.S.) 2 The Center for Adaptable Western Landscapes, Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA 3 School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA 4 Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] 5 Geography and Environmental Studies Department, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] * Correspondence: [email protected] Citation: Durben, R.M.; Walker, F.M.; Abstract: The North American beaver (Castor canadensis Kuhl) and cottonwoods (Populus spp.) are Holeski, L.; Keith, A.R.; Kovacs, Z.; foundation species, the interactions of which define a much larger community and affect a threatened Hurteau, S.R.; Lindroth, R.L.; riparian habitat type. Few studies have tested the effect of these interactions on plant chemistry Shuster, S.M.; Whitham, T.G. -
Literature on the Chrysomelidae from CHRYSOMELA Newsletter, Numbers 1-41 October 1979 Through April 2001 May 18, 2001 (Rev
Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-41 October 1979 through April 2001 May 18, 2001 (rev. 1)—(2,635 citations) Terry N. Seeno, Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions and additions are planned and will be numbered sequentially. Because the literature on leaf beetles is so expansive, these citations focus mainly on biosystematic references. They Adobe Acrobat® 4.0 was used to distill the list into a PDF were taken directly from the publication, reprint, or file, which is searchable using standard search procedures. author’s notes and not copied from other bibliographies. If you want to add to the literature in this bibliography, Even though great care was taken during the data entering please contact me. All contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata de Gratiana spadicea (Klug, 1829) (Coleoptera, Chrysomelidae, DuPortei, a new sub-species of the Galerucinae (Coleoptera: Chrysomel- Cassidinae) em condições de laboratório. Rev. Bras. Entomol. idae) with a review of the species of Phyllobrotica in the Lyman 30(1):105-113, 7 figs., 2 tabs. Museum Collection. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and species of European Cryptocephalus. Experientia 38:774-775, 11 figs. other structures in a female Trirhabda virgata (Chrysomelidae) with a summary of similar teratological observations in the Coleoptera. -
Parasitic Fauna of Eurasian Beavers (Castor Fiber) in Sweden (1997–1998)
Åhlen et al. Acta Vet Scand (2021) 63:23 https://doi.org/10.1186/s13028-021-00588-w Acta Veterinaria Scandinavica RESEARCH Open Access Parasitic fauna of Eurasian beavers (Castor fber) in Sweden (1997–1998) Per‑Arne Åhlen1,3, Göran Sjöberg1* and Margareta Stéen2 Abstract Background: The parasitic fauna of beavers (Castor fber and C. canadensis) has been well studied in many parts of their respective areas of distribution. In Scandinavia there have, however, been limited investigations conducted on the parasites of beavers in recent times. The present study is the frst quantitative survey of parasites on beavers living in Sweden and elsewhere in Scandinavia. We investigated the parasitic fauna of the Eurasian beaver (C. fber) in a North–South gradient in Sweden. The aim of the study was to investigate parasite distribution and prevalence in particular, related to average yearly air temperature and diferent age groups of beavers. A total of 30 beavers were sampled at eight localities, spanning a 720 km North–South gradient during the springs of 1997 and 1998. Results: Five parasite taxa were identifed. Four of these were present in all of the examined beavers, Stichorchis subtriquetrus (trematode), Travassosius rufus (nematode), Platypsyllus castoris (coleopteran), and Schizocarpus spp. (arachnid). A higher number of new infections of S. subtriquetrus, and more adults of T. rufus, were seen in beavers in southern Sweden where temperatures are higher. One‑year old beavers had a higher infestation of S. subtriquetrus, but not of T. rufus, than older individuals. Conclusions: The parasite fauna of Swedish beavers mirrored the impoverished parasite fauna of the original Norwe‑ gian population, and the high prevalence of parasites could be due to low major histocompatibility complex (MHC) polymorphism. -
Consequences of Mutualisms Between Aphids and An
CONSEQUENCES OF MUTUALISMS BETWEEN APHIDS AND AN INVASIVE ANT TO ARTHROPOD COMMUNITIES AND THEIR HOST PLANTS Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. John D. Styrsky Certificate of Approval: Kathy L. Flanders Micky D. Eubanks, Chair Associate Professor Associate Professor Entomology and Plant Pathology Entomology and Plant Pathology Henry Y. Fadamiro Sharon M. Hermann Assistant Professor Assistant Visiting Professor Entomology and Plant Pathology Biological Sciences Stephen L. McFarland Acting Dean Graduate School CONSEQUENCES OF MUTUALISMS BETWEEN APHIDS AND AN INVASIVE ANT TO ARTHROPOD COMMUNITIES AND THEIR HOST PLANTS John D. Styrsky A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 11, 2006 CONSEQUENCES OF MUTUALISMS BETWEEN APHIDS AND AN INVASIVE ANT TO ARTHROPOD COMMUNITIES AND THEIR HOST PLANTS John D. Styrsky Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions at their expense. The author reserves all publication rights. Signature of Author Date of Graduation iii DISSERTATION ABSTRACT CONSEQUENCES OF MUTUALISMS BETWEEN APHIDS AND AN INVASIVE ANT TO ARTHROPOD COMMUNITIES AND THEIR HOST PLANTS John D. Styrsky Doctor of Philosophy, May 11, 2006 (M.S., Illinois State University, 1999) (B.S., Southwestern University, 1992) 166 Typed pages Directed by Micky D. Eubanks Mutualisms between ants and honeydew-producing Hemipteran insects (e.g., aphids) are abundant and widespread in arthropod food webs, yet their ecological consequences are very poorly known. -
7/Q / 13 Date Copyright 2013
CYTONUCLEAR INTERACTIONS AMONG METABOLIC ENZYME LOCI MEDIATE REPRODUCTIVE SUCCESS AND LARVAL PERFORMANCE ALONG ENVIRONMENTAL GRADIENTS IN NATURAL POPULATIONS OF A MONTANE LEAF BEETLE by Sarah J. Heidi A thesis submitted to Sonoma State University In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Dr. Nathan E. Rank, Chair Dr. Elizabeth P. Dahlhoff • C ~ ( • L -Or. Daniei E. Cro~cker 7/q / 13 Date Copyright 2013 by Sarah J. Heidi ii AUTHORIZATION FOR REPRODUCTION OF MASTER'S THESIS/PROJECT I grant permission for the print or digital reproduction of this thesis in its entirety, without further authorization from me, on the condition that the person or agency requesting reproduction absorb the cost and provide proper acknowledgment of authorship. DATE: J/9\\3 (5ature • y :::-r:: Street Address City, State, Zip iii CYTONUCLEAR INTERACTIONS AMONG METABOLIC ENZYME LOCI MEDIATE REPRODUCTIVE SUCCESS AND LARVAL PERFORMANCE ALONG ENVIRONMENTAL GRADIENTS IN NATURAL POPULATIONS OF A MONTANE LEAF BEETLE Thesis by Sarah J. Heidi ABSTRACT Organisms in natural populations are confronted with significant challenges posed by environmental change. In order for populations to persist, individuals must overcome these challenges; however, the physiological mechanisms that enable survival and reproduction are not well understood. Here, I report the results of a field study that contributes to our understanding of how organisms respond to changing environments. I examined how environmental conditions and an interaction between two metabolic genes influences individual survival and reproduction. I focused on a nuclear gene coding for the glycolytic enzyme phosphoglucose isomerase (PG!}, and a mitochondrial gene, cytochrome oxidase II {COIi}, important for energy production during aerobic metabolism.