2406 Research Article In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum François Pouthas, Philippe Girard, Virginie Lecaudey, Thi Bach Nga Ly, Darren Gilmour, Christian Boulin, Rainer Pepperkok and Emmanuel G. Reynaud* Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany *Author for correspondence (e-mail:
[email protected]) Accepted 9 April 2008 Journal of Cell Science 121, 2406-2414 Published by The Company of Biologists 2008 doi:10.1242/jcs.026849 Summary Although cells migrate in a constrained 3D environment in vivo, primordium as an in-vivo model of cells migrating in a in-vitro studies have mainly focused on the analysis of cells constrained environment and observe a similar localization of moving on 2D substrates. Under such conditions, the Golgi both the Golgi and the centrosome in the leading cells. We complex is always located towards the leading edge of the cell, propose that the positioning of the Golgi complex and the suggesting that it is involved in the directional movement. centrosome depends on the geometrical constraints applied to However, several lines of evidence indicate that this location the cell rather than on a precise migratory function in the can vary depending on the cell type, the environment or the leading region. developmental processes. We have used micro contact printing (μCP) to study the migration of cells that have a geometrically constrained shape within a polarized phenotype. Cells migrating Supplementary material available online at on micropatterned lines of fibronectin are polarized and migrate http://jcs.biologists.org/cgi/content/full/121/14/2406/DC1 in the same direction.