Long-Term Effect of Inoculating Lodgepole Pine Seedlings with Plant Growth-Promoting Bacteria Originating from Disturbed Gravel Mining Ecosystem

Total Page:16

File Type:pdf, Size:1020Kb

Long-Term Effect of Inoculating Lodgepole Pine Seedlings with Plant Growth-Promoting Bacteria Originating from Disturbed Gravel Mining Ecosystem Canadian Journal of Forest Research Long-term effect of inoculating lodgepole pine seedlings with plant growth-promoting bacteria originating from disturbed gravel mining ecosystem Journal: Canadian Journal of Forest Research Manuscript ID cjfr-2020-0333.R1 Manuscript Type: Article Date Submitted by the 09-Sep-2020 Author: Complete List of Authors: Padda, Kiran Preet; The University of British Columbia, Forest and Conservation Sciences Puri, Akshit; The University of British Columbia, Forest and Conservation Sciences Draft Chanway, Christopher; The University of British Columbia, Forest and Conservation Sciences <i>Pinus</i>, <i>Pseudomonas</i>, Gravel mining, Lodgepole pine, Keyword: ACC deaminase Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjfr-pubs Page 1 of 35 Canadian Journal of Forest Research 1 Long-term effect of inoculating lodgepole pine seedlings with plant growth- 2 promoting bacteria originating from disturbed gravel mining ecosystem 3 Kiran Preet Padda1, 2*, Akshit Puri1, 2 and Chris P Chanway1, 2 4 1 Faculty of Land and Food Systems, The University of British Columbia, 3041 – 2424 Main Mall, 5 Vancouver, BC V6T 1Z4, Canada 6 2 Faculty of Forestry, The University of British Columbia, 3041 – 2424 Main Mall, Vancouver, BC V6T 7 1Z4, Canada 8 *Corresponding author ([email protected]) Draft 1 https://mc06.manuscriptcentral.com/cjfr-pubs Canadian Journal of Forest Research Page 2 of 35 9 Abstract 10 Gravel mining is prevalent in forest landscapes of Canada, typically resulting in complete loss of vegetation 11 and topsoil. Despite such extreme disturbance, lodgepole pine (Pinus contorta var. latifolia) trees are 12 thriving at unreclaimed gravel pits located in central-interior British Columbia, possibly due, at least in 13 part, to the association of pine trees with their endophytic bacteria. Testing this possibility, several bacterial 14 strains were previously isolated from pine trees growing at these pits, of which 14 were identified as 15 effective nitrogen-fixers. In this study, we evaluated the inoculation effect of these 14 strains on lodgepole 16 pine growth under nitrogen-poor conditions. Each strain colonized the rhizosphere and internal tissues of 17 pine seedlings and significantly enhanced their length (24–65%) and biomass (100–300%), 18 months after 18 sowing and inoculation. Notably, three Pseudomonas strains increased pine seedling length by 1.6-fold and 19 biomass by 4-fold. Most strains also demonstratedDraft substantial potential to promote plant growth via 20 phosphorus solubilization, siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase 21 activity, indole-3-acetic acid production, lytic enzyme activity and catalase activity. Our results suggest that 22 such effective bacteria could be sustaining pine growth on bare gravel, indicating a possible ecological 23 association that may explain natural tree regeneration in such a disturbed ecosystem. 24 Keywords: Pinus, Pseudomonas, Gravel mining, Lodgepole pine, ACC deaminase 2 https://mc06.manuscriptcentral.com/cjfr-pubs Page 3 of 35 Canadian Journal of Forest Research 25 Introduction 26 Natural and anthropogenic land disturbances, such as wildfires, resource mining and land-use changes, 27 induce severe soil degradation and represent major forms of environmental stress for re-establishing plant 28 communities (Small and Degenhardt 2018). In particular, the forest landscapes around North America, 29 including Canada, are severely altered during gravel mining – a resource widely used in construction 30 activities (LeMay 1999). Restoration or reclamation of forest landscapes after gravel extraction present 31 substantial challenges because these mining operations typically leave large disturbed areas that lack natural 32 vegetation cover and the medium for plant growth (i.e. topsoil). In other words, the bare gravel substrate 33 left after mining mimics primary succession conditions (LeMay 1999). In order to effectively reclaim such 34 disturbed ecosystems, it is crucial to re-establish land-form complexity and natural soil type, which would 35 otherwise develop only over long periods ofDraft time (Macdonald et al. 2015). Thus, efficient, sustainable and 36 cost-effective reclamation technologies need to be investigated and implemented to restore soil and native 37 vegetation. One possible strategy is the use of plant-beneficial microbes that can help restore natural plant 38 communities and ecosystem functioning (de-Bashan et al. 2012; Glick 2012). 39 Plant growth-promoting bacteria (PGPB) are bacterial strains isolated from diverse environments 40 (such as the rhizosphere, endosphere or bulk soil) with the potential to positively influence plant growth 41 and yield (de-Bashan et al. 2012). Several studies have revealed that in both natural and managed 42 ecosystems, rhizospheric and endophytic (living asymptomatically within plant tissues) bacteria can confer 43 considerable benefits to their host plants via one or more plant growth-promoting mechanisms. These 44 include facilitating nutrient acquisition via nitrogen-fixation, phosphorus solubilization and siderophore 45 production; modulating plant hormone levels via indole-3-acetic acid (IAA) production and 1- 46 aminocyclopropane-1-carboxylicacid (ACC) deaminase activity; and reducing the inhibitory effects of 47 phytopathogens via lytic enzyme production (Chaiharn and Lumyong 2009; Glick 2012; Khan et al. 2015; 48 Kandel et al. 2017; Padda et al. 2017a, b; Puri et al. 2020c, d). In disturbed environments, where plants 3 https://mc06.manuscriptcentral.com/cjfr-pubs Canadian Journal of Forest Research Page 4 of 35 49 encounter growth limiting conditions, PGPB may employ one or more of these strategies to effectively 50 overcome such limitations and support plant growth. Though under-studied, recent research has provided 51 convincing evidence that PGPB can significantly influence the growth of boreal forest trees in nutrient- 52 poor ecosystems affected by severe biotic and abiotic stresses (reviewed by Puri et al. 2017a; Witzell and 53 Martín 2018). Substantial growth-enhancement by PGPB has been reported in limber pine (Pinus flexilis) 54 (Moyes et al. 2016), lodgepole pine (Pinus contorta var. latifolia) (Yang et al. 2016; Tang et al. 2017), 55 Engelmann spruce (Picea engelmannii) (Carrell and Frank 2014), hybrid white spruce (Picea glauca x 56 engelmannii) (Puri et al. 2018a) and Douglas-fir (Pseudotsuga menziesii) (Aghai et al. 2019) growing under 57 degraded soil environments. 58 Gravel mining pits located in the Sub-Boreal Pine-Spruce dry-cool (SBPSdc) biogeoclimatic zone 59 of British Columbia (BC), Canada – characterizedDraft by the absence of topsoil and forest floor as well as the 60 prevalence of gravelly parent material (glacial till) and harsh climatic conditions (cold, dry winters and 61 cool, dry summers) – signify one of the most nutrient-poor and disturbed environments where trees have 62 been observed to grow (Steen and Coupé 1997; Chapman and Paul 2012). Apparently unaffected by such 63 disturbances, lodgepole pine trees are naturally regenerating at these gravel-dominated sites with tissue 64 nitrogen content and growth rates comparable to pine trees growing at nearby undisturbed forest sites with 65 intact topsoil (Chapman and Paul 2012). Tree height, leader length and root collar diameter of lodgepole 66 pine trees at both disturbed and undisturbed sites were found to be similar whereas a significant disparity 67 in soil nutrient status was reported, with soil nitrogen levels being six-fold lower at the gravel sites 68 (Chapman and Paul 2012). These findings raise an intriguing question – how do lodgepole pine trees grow 69 on bare gravel with no topsoil and extremely limited plant-available nutrients, particularly nitrogen? To 70 address this question, we previously sampled young lodgepole pine trees from two gravel mining pits 71 located in the SBPSdc zone of BC and isolated 77 potential nitrogen-fixing bacteria from the internal tissues 72 of pine trees (Padda et al. 2018). Of these, 14 bacteria were identified as effective nitrogen-fixers on the 73 basis of acetylene reduction assay and 15N isotope dilution assay (Padda et al. 2019). In the current study, 4 https://mc06.manuscriptcentral.com/cjfr-pubs Page 5 of 35 Canadian Journal of Forest Research 74 our primary objective was to evaluate the longer term response of inoculation of these 14 bacteria on the 75 growth of lodgepole pine seedlings under extremely nitrogen-poor soil conditions with future implications 76 of selecting highly-effective bacteria for field testing at gravel mining pits. A secondary objective was to 77 investigate the potential ability of these bacteria to support plant growth via phosphorus solubilization, 78 siderophore production, ACC deaminase activity, IAA production, lytic enzyme activity and catalase 79 activity. 80 Materials and methods 81 Fourteen bacterial strains tested in this study were originally isolated from needle, stem and root tissues of 82 lodgepole pine trees growing at gravel mining pits located in the SBPSdc biogeoclimatic zone of BC, 83 Canada – namely, Anah pit (52°09’42.7’ N,Draft 123°10’24.3’ W, 1132 m a.s.l.) and Skulow pit (52°18’54.1’ 84 N, 121°53’39.3’ W, 1064 m a.s.l.) (Padda et al. 2018). For the greenhouse experiment, antibiotic-resistant 85 derivatives of these strains were raised by growing each strain on combined carbon medium (CCM)
Recommended publications
  • Evaluating the Diversity and Phylogeny of Plant Growth Promoting Bacteria Associated with Wheat (Triticum Aestivum) Growing in Central Zone of India
    Int.J.Curr.Microbiol.App.Sci (2014) 3(5): 432-447 ISSN: 2319-7706 Volume 3 Number 5 (2014) pp. 432-447 http://www.ijcmas.com Original Research Article Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India Priyanka Verma1,2, Ajar Nath Yadav1, Sufia Khannam Kazy2, Anil Kumar Saxena1 and Archna Suman1* 1Division of Microbiology, Indian Agricultural Research Institute, New Delhi- 110012, India 2Department of Biotechnology, National Institute of Technology, Durgapur-713209, India *Corresponding author A B S T R A C T The diversity of plant growth promoting bacteria was investigated from wheat growing in different sites in central zone of India. Epiphytic, endophytic and rhizospheric bacteria were isolated using different growth medium. Bacterial diversity was analysed through amplified ribosomal DNA restriction analysis K e y w o r d s (ARDRA) using three restriction enzymes Alu I, Hae III, and Msp I which led to the grouping of 348 isolates into 24-29 clusters at >75% similarity index. 16S Epiphytic; rRNA gene based phylogenetic analysis, revealed that 134 strains belonged to three Endophytic; phyla namely actinobacteria, firmicutes and proteobacteria with 38 distinct species of 17 genera. Bacillus and Pseudomonas were dominant in rhizosphere while Rhizospheric; Methylobacterium were in phyllosphere. Endophytic niche specific bacteria were PGPB; identified as Delftia and Micrococcus. Sampling of different sites showed variation Drought in diversity indices. In vitro plant growth promoting activities of bacteria exposed stress; more than three beneficial traits which may act independently or concurrently. Biocontrol Phosphate solubilization and siderophores production are the predominant traits exhibited by these microbes.
    [Show full text]
  • Pseudomonas Helmanticensis Sp. Nov., Isolated from Forest Soil
    International Journal of Systematic and Evolutionary Microbiology (2014), 64, 2338–2345 DOI 10.1099/ijs.0.063560-0 Pseudomonas helmanticensis sp. nov., isolated from forest soil Martha-Helena Ramı´rez-Bahena,1,2 Maria Jose´ Cuesta,1 Jose´ David Flores-Fe´lix,3 Rebeca Mulas,4 Rau´l Rivas,2,3 Joao Castro-Pinto,5 Javier Bran˜as,5 Daniel Mulas,5 Fernando Gonza´lez-Andre´s,4 Encarna Vela´zquez2,3 and A´ lvaro Peix1,2 Correspondence 1Instituto de Recursos Naturales y Agrobiologı´a, IRNASA-CSIC, Salamanca, Spain A´ lvaro Peix 2Unidad Asociada Grupo de Interaccio´n Planta-Microorganismo, [email protected] Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain 3Departamento de Microbiologı´a y Gene´tica, Universidad de Salamanca, Salamanca, Spain 4Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de Leo´n, Leo´n, Spain 5Fertiberia S. A., Madrid, Spain A bacterial strain, OHA11T, was isolated during the course of a study of phosphate-solubilizing bacteria occurring in a forest soil from Salamanca, Spain. The 16S rRNA gene sequence of strain OHA11T shared 99.1 % similarity with respect to Pseudomonas baetica a390T, and 98.9 % similarity with the type strains of Pseudomonas jessenii, Pseudomonas moorei, Pseudomonas umsongensis, Pseudomonas mohnii and Pseudomonas koreensis. The analysis of housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation to the genus Pseudomonas and showed similarities lower than 95 % in almost all cases with respect to the above species. Cells possessed two polar flagella. The respiratory quinone was Q9. The major fatty acids were C16 : 0, C18 : 1v7c and summed feature 3 (C16 : 1v7c/iso-C15 : 0 2-OH).
    [Show full text]
  • 4.2. Biodegradation of Soil Pollutants by Microorganisms
    UNIVERSITY OF PANNONIA GEORGIKON FACULTY FESTETICS DOCTORAL SCHOOL School leader: Dr. habil. Angéla Anda, DSc THE BASICS OF RESEARCH IN MICROBIOLOGICAL SOIL REMEDIATION PRACTICES DOCTORAL (PHD) THESIS Written by: Nikoletta Horváth Thesis supervisors: Dr. Borbála Biró, DSc Dr. Péter Budai, PhD 2017 KESZTHELY HUNGARY CONTENTS 1. ABSTRACTS............................................................................................................................................... 1 1.1. Abstract (English) ................................................................................................................................. 1 1.2. Kivonat (Hungarian) ............................................................................................................................. 2 1.3. Abstract (German) ................................................................................................................................ 3 2. INTRODUCTION AND IMPORTANCE OF THE TOPIC ................................................................... 4 2.1. Research background ............................................................................................................................ 4 2.2. Basis of the research ............................................................................................................................. 4 3. OBJECTIVES ............................................................................................................................................. 6 4. LITERATURE REVIEW..........................................................................................................................
    [Show full text]
  • Isolation of Rhizobacteria in Southwestern Québec, Canada: An
    Isolation of rhizobacteria in Southwestern Québec, Canada: An investigation of their impact on the growth and salinity stress alleviation in Arabidopsis thaliana and crop plants Di Fan Department of Plant Science Faculty of Agricultural and Environmental Sciences Macdonald Campus of McGill University 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec H9X 3V9 December 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY © Di Fan, Canada, 2017 Table of contents Abstract ................................................................................................. x Résumé ................................................................................................ xiii Acknowledegments ............................................................................. xv Preface ................................................................................................ xviii Contribution of authors ................................................................................ xviii Chapter 1................................................................................................. 1 Introduction ............................................................................................ 1 Chapter 2................................................................................................. 5 Literature Review ................................................................................... 5 2.1 What are root exudates? .........................................................................
    [Show full text]
  • Aquatic Microbial Ecology 80:15
    The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package.
    [Show full text]
  • Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
    (19) TZZ Z_Z_T (11) EP 2 820 140 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 63/02 (2006.01) A01N 37/06 (2006.01) 10.01.2018 Bulletin 2018/02 A01N 37/36 (2006.01) A01N 43/08 (2006.01) C12P 1/04 (2006.01) (21) Application number: 13754767.5 (86) International application number: (22) Date of filing: 27.02.2013 PCT/US2013/028112 (87) International publication number: WO 2013/130680 (06.09.2013 Gazette 2013/36) (54) CONTROL OF PHYTOPATHOGENIC MICROORGANISMS WITH PSEUDOMONAS SP. AND SUBSTANCES AND COMPOSITIONS DERIVED THEREFROM BEKÄMPFUNG VON PHYTOPATHOGENEN MIKROORGANISMEN MIT PSEUDOMONAS SP. SOWIE DARAUS HERGESTELLTE SUBSTANZEN UND ZUSAMMENSETZUNGEN RÉGULATION DE MICRO-ORGANISMES PHYTOPATHOGÈNES PAR PSEUDOMONAS SP. ET DES SUBSTANCES ET DES COMPOSITIONS OBTENUES À PARTIR DE CELLE-CI (84) Designated Contracting States: • O. COUILLEROT ET AL: "Pseudomonas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB fluorescens and closely-related fluorescent GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO pseudomonads as biocontrol agents of PL PT RO RS SE SI SK SM TR soil-borne phytopathogens", LETTERS IN APPLIED MICROBIOLOGY, vol. 48, no. 5, 1 May (30) Priority: 28.02.2012 US 201261604507 P 2009 (2009-05-01), pages 505-512, XP55202836, 30.07.2012 US 201261670624 P ISSN: 0266-8254, DOI: 10.1111/j.1472-765X.2009.02566.x (43) Date of publication of application: • GUANPENG GAO ET AL: "Effect of Biocontrol 07.01.2015 Bulletin 2015/02 Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere (73) Proprietor: Marrone Bio Innovations, Inc.
    [Show full text]
  • Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In
    Table S8. Species identified by random forests analysis of shotgun sequencing data that exhibit significant differences in their representation in the fecal microbiomes between each two groups of mice. (a) Species discriminating fecal microbiota of the Soil and Control mice. Mean importance of species identified by random forest are shown in the 5th column. Random forests assigns an importance score to each species by estimating the increase in error caused by removing that species from the set of predictors. In our analysis, we considered a species to be “highly predictive” if its importance score was at least 0.001. T-test was performed for the relative abundances of each species between the two groups of mice. P-values were at least 0.05 to be considered statistically significant. Microbiological Taxonomy Random Forests Mean of relative abundance P-Value Species Microbiological Function (T-Test) Classification Bacterial Order Importance Score Soil Control Rhodococcus sp. 2G Engineered strain Bacteria Corynebacteriales 0.002 5.73791E-05 1.9325E-05 9.3737E-06 Herminiimonas arsenitoxidans Engineered strain Bacteria Burkholderiales 0.002 0.005112829 7.1580E-05 1.3995E-05 Aspergillus ibericus Engineered strain Fungi 0.002 0.001061181 9.2368E-05 7.3057E-05 Dichomitus squalens Engineered strain Fungi 0.002 0.018887472 8.0887E-05 4.1254E-05 Acinetobacter sp. TTH0-4 Engineered strain Bacteria Pseudomonadales 0.001333333 0.025523638 2.2311E-05 8.2612E-06 Rhizobium tropici Engineered strain Bacteria Rhizobiales 0.001333333 0.02079554 7.0081E-05 4.2000E-05 Methylocystis bryophila Engineered strain Bacteria Rhizobiales 0.001333333 0.006513543 3.5401E-05 2.2044E-05 Alteromonas naphthalenivorans Engineered strain Bacteria Alteromonadales 0.001 0.000660472 2.0747E-05 4.6463E-05 Saccharomyces cerevisiae Engineered strain Fungi 0.001 0.002980726 3.9901E-05 7.3043E-05 Bacillus phage Belinda Antibiotic Phage 0.002 0.016409765 6.8789E-07 6.0681E-08 Streptomyces sp.
    [Show full text]
  • Pseudomonas Versuta Sp. Nov., Isolated from Antarctic Soil 1 Wah
    *Manuscript 1 Pseudomonas versuta sp. nov., isolated from Antarctic soil 1 2 3 1,2 3 1 2,4 1,5 4 2 Wah Seng See-Too , Sergio Salazar , Robson Ee , Peter Convey , Kok-Gan Chan , 5 6 3 Álvaro Peix 3,6* 7 8 4 1Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of 9 10 11 5 Science University of Malaya, 50603 Kuala Lumpur, Malaysia 12 13 6 2National Antarctic Research Centre (NARC), Institute of Postgraduate Studies, University of 14 15 16 7 Malaya, 50603 Kuala Lumpur, Malaysia 17 18 8 3Instituto de Recursos Naturales y Agrobiología. IRNASA -CSIC, Salamanca, Spain 19 20 4 21 9 British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK 22 23 10 5UM Omics Centre, University of Malaya, Kuala Lumpur, Malaysia 24 25 11 6Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca- 26 27 28 12 IRNASA ( CSIC) 29 30 13 , IRNASA-CSIC, 31 32 33 14 c/Cordel de Merinas 40 -52, 37008 Salamanca, Spain. Tel.: +34 923219606. 34 35 15 E-mail address: [email protected] (A. Peix) 36 37 38 39 16 Abstract: 40 41 42 43 17 In this study w e used a polyphas ic taxonomy approach to analyse three bacterial strains 44 45 18 coded L10.10 T, A4R1.5 and A4R1.12 , isolated in the course of a study of quorum -quenching 46 47 19 bacteria occurring Antarctic soil . The 16S rRNA gene sequence was identical in the three 48 49 50 20 strains and showed 99.7% pairwise similarity with respect to the closest related species 51 52 21 Pseudomonas weihenstephanensis WS4993 T, and the next closest related species were P.
    [Show full text]
  • Entomopathogenic Nematode-Associated Microbiota: from Monoxenic Paradigm to Pathobiome Jean-Claude Ogier†, Sylvie Pagès†, Marie Frayssinet and Sophie Gaudriault*
    Ogier et al. Microbiome (2020) 8:25 https://doi.org/10.1186/s40168-020-00800-5 RESEARCH Open Access Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome Jean-Claude Ogier†, Sylvie Pagès†, Marie Frayssinet and Sophie Gaudriault* Abstract Background: The holistic view of bacterial symbiosis, incorporating both host and microbial environment, constitutes a major conceptual shift in studies deciphering host-microbe interactions. Interactions between Steinernema entomopathogenic nematodes and their bacterial symbionts, Xenorhabdus, have long been considered monoxenic two partner associations responsible for the killing of the insects and therefore widely used in insect pest biocontrol. We investigated this “monoxenic paradigm” by profiling the microbiota of infective juveniles (IJs), the soil-dwelling form responsible for transmitting Steinernema-Xenorhabdus between insect hosts in the parasitic lifecycle. Results: Multigenic metabarcoding (16S and rpoB markers) showed that the bacterial community associated with laboratory-reared IJs from Steinernema carpocapsae, S. feltiae, S. glaseri and S. weiseri species consisted of several Proteobacteria. The association with Xenorhabdus was never monoxenic. We showed that the laboratory-reared IJs of S. carpocapsae bore a bacterial community composed of the core symbiont (Xenorhabdus nematophila) together with a frequently associated microbiota (FAM) consisting of about a dozen of Proteobacteria (Pseudomonas, Stenotrophomonas, Alcaligenes, Achromobacter, Pseudochrobactrum, Ochrobactrum, Brevundimonas, Deftia, etc.). We validated this set of bacteria by metabarcoding analysis on freshly sampled IJs from natural conditions. We isolated diverse bacterial taxa, validating the profile of the Steinernema FAM. We explored the functions of the FAM members potentially involved in the parasitic lifecycle of Steinernema. Two species, Pseudomonas protegens and P. chlororaphis, displayed entomopathogenic properties suggestive of a role in Steinernema virulence and membership of the Steinernema pathobiome.
    [Show full text]
  • Molecular Identification and Characterization of Phosphate Solubilizing Pseudomonas Sp
    Archive of SID J. Agr. Sci. Tech. (2016) Vol. 18: 775-788 Molecular Identification and Characterization of Phosphate Solubilizing Pseudomonas sp. Isolated from Rhizosphere of Mash Bean ( Vigna Mungo L.) for Growth Promotion in Wheat M. Ehsan 1, 2, 3, I. Ahmed 1, *, R. Hayat 2, M. Iqbal 1, N. Bibi 1, 2, and N. Khalid 4 ABSTRACT Bio-inoculants have potential role in plant growth promotion. The present study evaluated the potential of Pseudomonas strains as bio-inoculants in wheat on the basis of plant growth promotion and physiological characterization. The 16S rRNA gene sequencing and phylogenetic analysis revealed that four isolated strains belonged to genus Pseudomonas . These strains were positive for phosphorus solubilization and indole acetic acid production, whereas only two strains were positive candidate for their nitrogen fixing ability as determined by presence or absence of nifH gene through amplification from polymerase chain reaction. The pot experiment showed that the integrated use of Pseudomonas strains as co-inoculant and 50% applied mineral fertilizers enhanced the maximum wheat growth and development from 58 to 140% for different shoot and root growth parameters. The strain NCCP-45 and NCCP-237 were closely related to Pseudomonas beteli and Pseudomonas lini, respectively. These isolated strains can be used to increase crop productivity by using as a bio-fertilizer inoculum. Keywords: Bio-inoculant, PCR, PGPR, Phylogenetic analysis, 16S rRNA gene. INTRODUCTION different crops for enhancing plant growth, seed emergence, crop yield, and as bio- Microorganisms are abundant in various control agents against certain plant ecologies. For instance, at least 10 4 bacterial pathogens and pests (Dey et al., 2004; taxa and 10 10-10 11 different bacterial copy Herman et al., 2008).
    [Show full text]
  • Bioprospecting Surfactants Produced by Pseudomonas Spp. Isolated from Soil for Potential Application in Biotechnology
    Bioprospecting Surfactants Produced by Pseudomonas spp. Isolated from Soil for Potential Application in Biotechnology A thesis submitted for the degree of Doctor of Philosophy (PhD) by Kamaluddeen Kabir BSc, MSc. School of Science, Engineering and Technology, Abertay University. April, 2017 Preliminary pages K. Kabir Page ii Preliminary pages Declarations I, Kamaluddeen Kabir, hereby certify that this thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy (PhD), Abertay University, is wholly my own work unless otherwise referenced or acknowledged. This work has not been submitted for any other qualification at any other academic institution. 02/08/17 …………………………………………………. ………………………………………………….. Candidate’s Signature Date K. Kabir Page iii Preliminary pages Acknowledgements I would like to express my sincere gratitude to my supervisor, Dr Andrew Spiers. He has continuously supported me during my PhD programme at Abertay University, and his patience, motivation and advice on ideas have been a source of inspiration to me. This thesis would not have been accomplished without his intellectual input. His supervision has guided me throughout my research and writing of this thesis, and I cannot imagine having a better supervisor or mentor. My immense gratitude also goes to my second supervisor, Dr Yusuf Deeni, for his intuitive comments and support. His questions and input truly helped me to widen my research and look at it from different angles. Even with his tight schedule, he took the time to go through my entire thesis and for this I have nothing to say but, ‘JazakAllah khair’. My sincere gratitude also goes to Zuzana Spiers for her help during the Sample collection and for making my stay in Dundee a memorable one.
    [Show full text]
  • Plant Growth Promoting Bacteria: Biodiversity and Multifunctional Attributes for Sustainable Agriculture
    Review Article Adv Biotech & Micro - August Volume 5 Issue 5 2017 Copyright © All rights are reserved by Ajar Nath Yadav DOI: 10.19080/AIBM.2017.05.555671 Plant Growth Promoting Bacteria: Biodiversity and Multifunctional Attributes for Sustainable Agriculture Ajar Nath Yadav1*, Priyanka Verma2, Bhanumati Singh3, Vinay Singh Chauahan3, Archna Suman4 and Anil Kumar Saxena5 1Department of Biotechnology, Akal College of Agriculture, Eternal University, India 2Department of Microbiology, Akal College of Basic Science, Eternal University, India 3Department of Biotechnology, Bundelkhand University, India 4Division of Microbiology, Indian Agricultural Research Institute, India 5ICAR-National Bureau of Agriculturally Important Microorganisms, India Submission: May 24, 2017; Published: August 24, 2017 *Corresponding author: Ajar Nath Yadav, Department of Biotechnology, Akal College of Agriculture, Eternal University, India, Tel: +91- 9882545085; Email: Ajar Nath Yadav and Priyanka Verma contributed equally to the present work. Abstract The use of plant growth promoting bacteria may prove useful in developing strategies to facilitate plant growth under normal as well as diverse abiotic stress conditions. The application of microbes with the aim of improving nutrients availability for plants is an important practice and necessary for sustainable agriculture. During the past couple of decades, the use of microbial inoculants for sustainable agriculture has to inoculation with plant growth promoting (PGP) microbes have been repeatedly reported. The actual biodiversity of PGP microbes belong to differentincreased groups tremendously including in Actinobacteria, various parts of Bacteroidetes, the world. Significant Balneolaeota increases Firmicutes, in growth Proteobacteria and yield of and agronomically Spirochaetes. important PGP bacteria crops are in responsenaturally productionoccurring soil of bacteriaammonia, that hydrogen aggressively cyanide, colonize siderophore plant roots and and biocontrol benefit plants against by different providing plant growth pathogens.
    [Show full text]