Architecture of the IBM System / 360
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Travelers IBM 1401 Exhibit Thematic Presentation, June 1984
THE TRAVELERS IBM 1401 EXHIBIT At The Computer Museum, Bay 3, Floor 5 THEMATIC PRESENTATION Overall The Travelers IBM 1401 Exhibit will illustrate general aspects of business computing in the mid-sixties. Four primary themes will be presented: the use of computers as information processors by businesses, the characteristics of this kind of computer operation, the rise in higher-level languages, and the replacement of punched cards by magnetic memory as the predominant secondary storage medium. The Travelers 1401 will exemplify these themes. In instances where reality does not quite serve the presentation artistic license will be exercized. Computers as Business Tools The use of the 1401 by The Travelers for policy processing and management report compilation will illustrate the general character of problems to which businesses a~plied computers. Charateristics of Computer Operation Batch-processing characterized the operation of computers in the mid-sixties. This reinforced the division between the machine and the programmers. Since only operators were allowed to run programs on the computer, the process of de-bugging a program was long and arduous. This method of operation will be contrasted with the contemporary operation of computers. The 1401 exhibit, by the relative position of the Programmer's Office and the Computer Room, and the contents thereof, will advance this theme. High-Level Languages The predominance of COBOL as the programming language for business illustrates the general move towards using higher-level languages which occured throughout the 1960's. The Travelers 1401 will be presented as being programmed in COBOL. The Fall of the Punched Card and the Ris~ of Magnetic Memory Inflexibility, serial storage, and size will be presented as three of the major problems of punched cards for data storage. -
IBM 1401 Simulator Usage 31-Mar-2015
IBM 1401 Simulator Usage 31-Mar-2015 COPYRIGHT NOTICE The following copyright notice applies to the SIMH source, binary, and documentation: Original code published in 1993-2015, written by Robert M Supnik Copyright (c) 1993-2015, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 1 Simulator Files ............................................................................................................. 3 2 IBM 1401 Features ...................................................................................................... 3 2.1 CPU ...................................................................................................................... 4 2.2 1402 Card Reader/Punch (CDR, CDP, STKR) .................................................... -
Computer Organization & Architecture Eie
COMPUTER ORGANIZATION & ARCHITECTURE EIE 411 Course Lecturer: Engr Banji Adedayo. Reg COREN. The characteristics of different computers vary considerably from category to category. Computers for data processing activities have different features than those with scientific features. Even computers configured within the same application area have variations in design. Computer architecture is the science of integrating those components to achieve a level of functionality and performance. It is logical organization or designs of the hardware that make up the computer system. The internal organization of a digital system is defined by the sequence of micro operations it performs on the data stored in its registers. The internal structure of a MICRO-PROCESSOR is called its architecture and includes the number lay out and functionality of registers, memory cell, decoders, controllers and clocks. HISTORY OF COMPUTER HARDWARE The first use of the word ‘Computer’ was recorded in 1613, referring to a person who carried out calculation or computation. A brief History: Computer as we all know 2day had its beginning with 19th century English Mathematics Professor named Chales Babage. He designed the analytical engine and it was this design that the basic frame work of the computer of today are based on. 1st Generation 1937-1946 The first electronic digital computer was built by Dr John V. Atanasoff & Berry Cliford (ABC). In 1943 an electronic computer named colossus was built for military. 1946 – The first general purpose digital computer- the Electronic Numerical Integrator and computer (ENIAC) was built. This computer weighed 30 tons and had 18,000 vacuum tubes which were used for processing. -
IBM 1401 System Summary
File No. 1401-00 Form A24-1401-1 Systems Reference Library IBM 1401 System Summary This reference publication contains brief descriptions of the machine features, components, configurations, and special features. Also included is a section on pro grams and programming systems. Publications providing detailed information on sub jects discussed in this summary are listed in IB~I 1401 and 1460 Bibliography, Form A24-1495. Major Revision (September 1964) This publication, Form A24-1401-1, is a major revision of and obsoletes Form A24-1401-0. Significant changes have been made throughout the publication. Reprinted April 1966 Copies of this and other IBM publications can be obtained through IBM Branch Offices. Address comments concerning the content of this publication to IBM Product Publications, Endicott, New York 13764. Contents IBM 1401 System Summary . ........... 5 System Concepts . ................ 6 Card-Oriented System .... ......... 11 Physical Features. 11 Interleaving. .. .................................... 14 Data Flow.... ... ... ... ... .. ... ... .. ................... 14 Checking ................................................... 15 Word Mark.. ... ... ... ... ... ... .. ... ... ... ........... 15 Stored-Program Instructions. .................. 15 Operation Codes . .. 18 Editing. .. ............ 18 IBM 1401 Console ............................................ 19 IBM 1406 Storage Unit. ........................... 20 Magnetic-Tape-Oriented System . ........................... 22 Data Flow ................................................. -
Technology Transfer: the IBM System/360 Case by Emerson W
Technology Transfer: The IBM System/360 Case by Emerson W. Pugh Introduction The term 'technology transfer" is most commonly used within a company to describe the internal transfer of technical knowledge or devices from research to development, from development to manufacturing, and from manufacturing to sales and services. The term is also used to describe the less orderly processes in which new technologies flow backwards in the system (e.g. from manufacturing to research) or laterally (e.g. from one development laboratory to another development laboratory). In academic circles and international conferences, technology transfer is more often used to refer to the transfer of technology from one company to another or between different geographical locations and countries. Multinational companies can be involved in all of these processes simultaneously; and companies in high-tech industries will only survive if they understand and manage these processes effectively. Indeed, this was the case for IBM during the 1960s when it introduced the IBM System/360 line of computers. Defining the Problem The problem IBM faced was the direct result of rapid changes in technologies, combined with dramatic growth in the computer market -- which was itself driven by the rapidly improving cost/performance of critical technologies. The success of the IBM 1401 computer, announced in October 1959, highlighted the problem. Equipped with discrete semiconductor logic circuits and up to 4000 characters of ferrite-core memory, it was the first computer to be inexpensive enough to replace conventional punched card equipment. By the end of 196 1, the number of 1401 s installed in the United States had reached 2,000; this was 25 percent of all electronic stored-program computers installed by all manufacturers to that time. -
A Study for the Coordination of Education Information and Data Processing from Kindergarten Through College
DOCUMENT RESUME ED 035 317 24 EM 007 717 AUTHOR Keenan, W. W. TTTLR A Study for the Coordination of Education Information and Data Processing from Kindergarten through College. Final Report. INSTITUTION Minnesota National Laboratory, St. Paul. SDONS AGENCY Office of Education (DREW), Washington, D.C. Bureau of Research. BUREAU NO BR-8-v-001 PUB DATE Sep 69 GRANT OEG-6-8-008001-0006 NOTE 165p. EDRS PRICE EDRS Price MF-$0.75 HC-$8.35 DESCRIPTORS Computer Oriented Programs, *Educational Coordination, Educational Planning, *Electronic Data Processing, Feasibility Studies, Indexing, Institutional Research, *State Programs, *State Surveys ABSTPACT The purpose of this project was to study the feasibility of coordinating educational information systems and associated data processing efforts. A non-profit organization, representing key educational agencies in the state of Minnesota, was established to advise and guide the project. A statewide conference was held under the auspices of the Governor to mobilize interest, to provide and disseminate information, and to do preliminary planning. A status study was conducted which covered all institutions in the state and included hardiare utilized, plans, training of staff and special projects and efforts that might be underway. On the basis of the conference, the status study, and subsequent meetings, a basic overall plan for the coordination and development of information systems in education in the state of Minnesota was completed and disseminated. Appendixes include a report on the conference, the status report, and the resultant state plan. (JY) 4 FINAL REPORT Project No. 8-F-001 Grant No. OEG-6 -8 -008001-0006 A STUDY FOR THE COORDINATION OF EDUCATION INFORMATION AND DATA PROCESSING- FROM KINDERGARTEN THROUGH COLLEGE W. -
Computing Science Technical Report No. 99 a History of Computing Research* at Bell Laboratories (1937-1975)
Computing Science Technical Report No. 99 A History of Computing Research* at Bell Laboratories (1937-1975) Bernard D. Holbrook W. Stanley Brown 1. INTRODUCTION Basically there are two varieties of modern electrical computers, analog and digital, corresponding respectively to the much older slide rule and abacus. Analog computers deal with continuous information, such as real numbers and waveforms, while digital computers handle discrete information, such as letters and digits. An analog computer is limited to the approximate solution of mathematical problems for which a physical analog can be found, while a digital computer can carry out any precisely specified logical proce- dure on any symbolic information, and can, in principle, obtain numerical results to any desired accuracy. For these reasons, digital computers have become the focal point of modern computer science, although analog computing facilities remain of great importance, particularly for specialized applications. It is no accident that Bell Labs was deeply involved with the origins of both analog and digital com- puters, since it was fundamentally concerned with the principles and processes of electrical communication. Electrical analog computation is based on the classic technology of telephone transmission, and digital computation on that of telephone switching. Moreover, Bell Labs found itself, by the early 1930s, with a rapidly growing load of design calculations. These calculations were performed in part with slide rules and, mainly, with desk calculators. The magnitude of this load of very tedious routine computation and the necessity of carefully checking it indicated a need for new methods. The result of this need was a request in 1928 from a design department, heavily burdened with calculations on complex numbers, to the Mathe- matical Research Department for suggestions as to possible improvements in computational methods. -
6.823 Computer System Architecture
6.823 Computer System Architecture Instructors: Daniel Sanchez and Joel Emer TA: Hyun Ryong (Ryan) Lee What you’ll understand after The processor you taking 6.823 built in 6.004 September 8, 2021 MIT 6.823 Fall 2021 L01-1 Computing devices then… September 8, 2021 MIT 6.823 Fall 2021 L01-2 Computing devices now September 8, 2021 MIT 6.823 Fall 2021 L01-3 A journey through this space • What do computer architects actually do? • Illustrate via historical examples – Early days: ENIAC, EDVAC, and EDSAC – Arrival of IBM 650 and then IBM 360 – Seymour Cray – CDC 6600, Cray 1 – Microprocessors and PCs – Multicores – Cell phones • Focus on ideas, mechanisms, and principles, especially those that have withstood the test of time September 8, 2021 MIT 6.823 Fall 2021 L01-4 Abstraction layers Application Algorithm Parallel computing, Programming Language specialization, Original Operating System/Virtual Machine security, … domain of the Instruction Set Architecture (ISA) Domain of computer Microarchitecture computer architect architecture (‘90s) (‘50s-‘80s) Register-Transfer Level (RTL) Circuits Reliability, power Devices Expansion of Physics computer architecture, mid- 2000s onward. September 8, 2021 MIT 6.823 Fall 2021 L01-5 Computer Architecture is the design of abstraction layers • What do abstraction layers provide? – Environmental stability within generation – Environmental stability across generations – Consistency across a large number of units • What are the consequences? – Encouragement to create reusable foundations: • Toolchains, operating systems, libraries – Enticement for application innovation September 8, 2021 MIT 6.823 Fall 2021 L01-6 Technology is the dominant factor in computer design Technology Transistors Computers Integrated circuits VLSI (initially) Flash memories, … Technology Core memories Computers Magnetic tapes Disks Technology ROMs, RAMs VLSI Computers Packaging Low Power September 8, 2021 MIT 6.823 Fall 2021 L01-7 But Software.. -
Systems Reference Library Merge 6 Specifications and Operating
File 1401/1460-33 Form C24-3053-3 Systems Reference Library Merge 6 Specifications and Operating Procedures IBM 1401 and 1460 Program Number J40 J-5M-063 This publication, C24-3053-3, describes the Merge 6 program, its capabilities:, phases, and merge object program. The control and parameter cards by which a user can tailor the program to his specific needs are also explained: This publication is intended for use with Form C24-1489, Input /Output Control System (on Disk) Specifications for IBM 1401/1460. The user should also become familiar with the following SRL bulletins: • Autocoder (on Disk) Language Specifications for IBM 1401, 1440, and 1460, Form C24-3258. • Autocoder (on Disk) Program Specifications and Operating Procedures for IBM 1401, 1440, and 1460, Form C24-3259. Other related publications and their abstracts are listed in the IBM 1401/1460 Bibliography SRL, Form A24-1495. This edition, Form C24-3053-3, is a major reVISIOn of an earlier edition, and incorporates information from Form C24- 3213-0 and Technical Newsletter N24-0217-0. This new edi tion obsoletes Forms C24-3053-2, C24-3213-0, and N24-0217 -0. Copies of this and other IBM publications can be obtained through IBM Branch Offices. A form is included at the back of this manual for readers' comments. If this form has been removed, address comments to: IBM Corporation, Product Publications, Dept. 245, Rochester, Minn. 55901. © International Business Machines Corporation 1964 Contents Merge 6 Specifications. .. 5 Tape Label Processing ................................. , 20 Introduction. .. 5 RDLIN Cards. .. 23 Additional Programs Required. .. 6 Object Program Features ............................. -
Programming the IBM 650
RICHARD v ANDREE ASSOCIATE PROFESSOR OF MATHEMATIC S UNIVERSITY OF OKLAH O MA c - .....- If' '" .. " \ ' 0 .. N G OA t .. ........ ".•0t0l .... --\I'• .Q\; ....... -, OtU;t1Q1t•" ~ .;. ... 1<• ..,'0<" ~ut .....ucnooo ....' U .. "CO Olffhl.. Ow I • ~ 0 0 4. • 0 0 &8CMltU ~ aut\lU '-'Sfb&tJTOIt L ~ ItI~ :U· IlCII'.'" tu.II _ ife» '-'*' QHaAnoe , ...."a SfOfJ SINN no-C .~~' . '. - " ..,. I ( , I. • • • • • • • • "'f"'. ~.. • ',01 ~ IoOW1I ~ _ ....... ... ,~..- J 4«t* , no.. .., , , 't' ' \' , ,.' ~ .' ;' .. I~ MOGt£MMtO NW oa. • 0 0 • • " ,. ~ I ( ,. I 0 If • C()trl:ft.Ol ~. DGPUoy ovtut&'W ~ '''0'1 -- , , . ' I .. .. 'I O(.. IAM (O MJI ~T! " ,I,(Cu' ~I"O""¥I .. ~ .•• ~, I I I "'.' I HH;( I __ ~ S1"" I SlO'. ~ I IlUf HUT U$U l......... ' , • j ~ ~., " id , ~j ~' ·;1 ,IJ ', ',' .' • t., ." '" (, It \ t \' .. , '.3 ~: . f .. _ ... ~ .. ~ ~ . " ' . , '. \t J \' '' ':l!~ t. ','l ) '. J '\ :..' ~. , • , • • ,_ r: .. ' : ,' rW , Ii •• , ' . ~ • " f ,,;. " ,',.' • -elf!" ~-iJ~ !) , r "" ... _, _ _ .. ... .. - ".'" 't. ~" ~ _ ~ f. _ _ ." ~'f--_ _ i __ ~ '* - ;. 4 ' ~ ! /~ RICHARD V. ANDREE ASSOCIATE PROFESSOR OF MATHEMATICS UNIVERSITY OF OKLAHOMA U U U 11 ;J n I] HOLT, RINEHART AND WINSTON, INC. 383 MADISON AVENUE, NEW YORK 17, N. Y. Dedication II II I I I I I II I I I I I III I I II I 1111 " I I I I II I III I I I I III I II 10000010000010000000111000000000100000110010000001000001000000000110000000000000 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526 272829 JO 313233343536 37 38 39 40414243« 45 46 47 48 49 50 5152535455565158596061626364656667686970717213747576 -
History of Digital Storage White Paper
History of Digital Storage Dean Klein Vice President of System Memory Development Micron Technology, Inc. December 15, 2008 Purpose Introduction: Throughout modern history many and various digital The Need to Store Data storage systems have been researched, developed, Since men first scribbled on cave walls, humanity has manufactured, and eventually surpassed in an effort to recognized the instrinic value of information and has address ever-increasing demands for density, operating employed a variety of ways and means to safely store speed, low latency, endurance, and economy.1 This cycle it. The ability to reference numbers for calculation or to of innovation has lead us to a new generation of NAND review information for planning, learning, and action Flash memory-based solid state drives (SSDs) that repre- is fundamental since “all computations, either mental, sent the next evolutionary step in both enterprise and mechanical, or electronic require a storage system of consumer storage applications. some kind, whether the numbers be written on paper, remembered in our brain, counted on the mechanical This paper surveys the memory storage landscape of devices of a gear, punched as holes in paper, or translated the past 50 years—starting at the beginning of digital into electronic circuitry.”2 storage and paying homage to IBM’s groundbreaking RAMAC disk storage unit and StorageTek’s DRAM-based In day-to-day life, this fundamental need to store data SSD; then enumerating the benefits of modern NAND generates innumerable documents, spreadsheets, files, Flash memory and advanced SSDs; and finally looking e-mails, and trillions of other work-related bytes all forward to the near-future possibilities of nonvolatile stored on disks around the globe. -
PC Hardware Contents
PC Hardware Contents 1 Computer hardware 1 1.1 Von Neumann architecture ...................................... 1 1.2 Sales .................................................. 1 1.3 Different systems ........................................... 2 1.3.1 Personal computer ...................................... 2 1.3.2 Mainframe computer ..................................... 3 1.3.3 Departmental computing ................................... 4 1.3.4 Supercomputer ........................................ 4 1.4 See also ................................................ 4 1.5 References ............................................... 4 1.6 External links ............................................. 4 2 Central processing unit 5 2.1 History ................................................. 5 2.1.1 Transistor and integrated circuit CPUs ............................ 6 2.1.2 Microprocessors ....................................... 7 2.2 Operation ............................................... 8 2.2.1 Fetch ............................................. 8 2.2.2 Decode ............................................ 8 2.2.3 Execute ............................................ 9 2.3 Design and implementation ...................................... 9 2.3.1 Control unit .......................................... 9 2.3.2 Arithmetic logic unit ..................................... 9 2.3.3 Integer range ......................................... 10 2.3.4 Clock rate ........................................... 10 2.3.5 Parallelism .........................................