<<

2/27/2017

Amphibian Predation and Defense

By: Katie Harris

“Each stage of development from egg to adult faces it own particular dangers, and at no time of day or night are and their offspring safe from attack.” –Tyler 1976

“almost anything will eat an .” – Porter 1972

Why Eat ?

Amphibian Predators

Evolutionary Response

Future Directions

Summary

1 2/27/2017

Why Eat Amphibians?

Amphibian Predators

Evolutionary 1. Egg Response 2. Larvae 3. Adult

Future Directions

Summary

Why eat an amphibian?

• Small, slow-moving, defenseless?

• High population densities

• Good source of protein

• Lack indigestible material

Why eat an amphibian?

• Small, slow-moving, defenseless?

• High population densities

• Good source of protein

• Lack indigestible material

2 2/27/2017

Why eat an amphibian?

• Small, slow-moving, defenseless?

• High population densities

• Good source of protein

• Lack indigestible material

Why eat an amphibian?

• Small, slow-moving, defenseless?

• High population densities

• Good source of protein

• Lack indigestible material

Common Predators?

3 2/27/2017

Common Predators?

• Invertebrates • eggs and larvae • temporary ponds • caddisfly larvae • parasites • trophic loop

Lethocerus americanus Pseudacris regilla

Common Predators?

• Invertebrates • eggs and larvae • temporary ponds • caddisfly larvae • parasites • trophic loop

Ambystoma maculatum Trichoptera

Common Predators?

• Invertebrates • eggs and larvae • temporary ponds • caddisfly larvae • parasites • trophic loop

Lithobates sylvaticus Macrobdella

4 2/27/2017

Common Predators?

• Invertebrates • eggs and larvae • temporary ponds • caddisfly larvae • parasites • trophic loop

Common Predators?

• Invertebrates • Fish • Eggs, larvae, adults

Common Predators?

• Invertebrates • Fish • Reptiles

5 2/27/2017

Common Predators?

• Invertebrates • Fish • Reptiles • Birds

Common Predators?

• Invertebrates • Fish • Reptiles • Birds • Amphibians

Common Predators?

• Invertebrates • Fish • Reptiles • Birds • Amphibians • Mammals

6 2/27/2017

Option 1: Option 2: Reduce the Reduce the chances likelihood of being of being consumed detected once detected

Chemical Behavioral Morphological Physiological Phenological

Ambystoma maculatum

Option 1: Option 2: Reduce the Reduce the chances likelihood of being of being consumed detected once detected

Chemical Behavioral Morphological Physiological Phenological

Ambystoma maculatum

Option 1: Option 2: Reduce the Reduce the chances likelihood of being of being consumed detected once detected

Chemical Behavioral Morphological Physiological Phenological

Ambystoma maculatum

7 2/27/2017

Option 1: Option 2: Reduce the Reduce the changes likelihood of being of being consumed detected once detected

Chemical Behavioral Morphological Physiological Phenological

Ambystoma maculatum

Eggs: Mechanical and Chemical

• Egg capsule and jelly

• Toxic and distasteful compounds

• Effectiveness depends on predator • Eggs of R. calmitans & R. catesbianus

• distasteful to newts and larval ambystomatids (Walters 1975)

• readily consumed by leeches (Howard 1978)

Eggs: Oviposition Site

• Areas without fish • temporary ponds • on land

• Areas void of predators • Anaxyrus americanus avoid oviposition in areas that contained sylvaticus eggs (Pentranka et al. 1994) • L. sylvaticus didn’t lay eggs in ponds with predatory

sunfish (Hopey and Petranka 1994)

Lithobates sylvaticus

8 2/27/2017

Eggs: Oviposition Site

• Areas without fish • temporary ponds • on land

• Areas void of predators • Anaxyrus americanus avoid oviposition in areas that contained Lithobates sylvaticus eggs (Pentranka et al. 1994) • L. sylvaticus didn’t lay eggs in ponds with predatory sunfish (Hopey and Petranka 1994)

Lithobates sylvaticus

Eggs: Timing of Reproduction

• Early spring • before predatory reach peak densities

• Synchronized reproduction • earlier hatchlings consume eggs deposited later • swamp predators increasing individual survival

Lithobates sylvaticus

Eggs: Timing of Reproduction

• Early spring • before predatory species reach peak densities

• Synchronized reproduction • earlier hatchlings consume eggs deposited later • swamp predators increasing individual survival

Lithobates sylvaticus

9 2/27/2017

Eggs: Adaptive Plasticity

• Red-eyed tree (Agalychnis callidryas) • egg mass hatches immediately if clutch is attacked (Warkentin 1995, Warkentin 2000, Warkentin et al. 2001) • survive by dropping in water • trade off!  small, not very mobile • wasp predation – single hatching (Warkentin 2000) • fungus – eggs closet to fungus hatch first

Agalychinis callidryas

Eggs: Adaptive Plasticity

• Red-eyed tree frog (Agalychnis callidryas) • egg mass hatches immediately if clutch is attacked (Warkentin 1995, Warkentin 2000, Warkentin et al. 2001) • survive by dropping in water • trade off!  small, not very mobile • wasp predation – single hatching (Warkentin 2000) • fungus – eggs closet to fungus hatch first

Leptodeira

Eggs: Adaptive Plasticity

• Red-eyed tree frog (Agalychnis callidryas) • egg mass hatches immediately if clutch is attacked (Warkentin 1995, Warkentin 2000, Warkentin et al. 2001) • survive by dropping in water • trade off!  small, not very mobile • wasp predation – single hatching (Warkentin 2000) • fungus – eggs closet to fungus hatch first

10 2/27/2017

Eggs: Adaptive Plasticity

• Red-eyed tree frog (Agalychnis callidryas) • egg mass hatches immediately if clutch is attacked (Warkentin 1995, Warkentin 2000, Warkentin et al. 2001) • survive by dropping in water • trade off!  small, not very mobile • wasp predation – single hatching (Warkentin 2000) • fungus – eggs closet to fungus hatch first

Eggs: Adaptive Plasticity

• Hatching is delayed in the presence of predators (Sih and Moore 1993, Moore et al. 1996)

• Allows larvae to hatch at a more advanced stage

Ambystoma opacum

Larval Defense:

Lithobates clamitans

11 2/27/2017

Larval Defense: Color Patterns

• First line of defense

• Drab colors

• Countershading

• Disruptive coloration

• Reflective or transparent

• Deflection marks

Lithobates clamitans

Larval Defense: Color Patterns

• First line of defense

• Drab colors

• Countershading

• Disruptive coloration

• Reflective or transparent

• Deflection marks

LithobatesStorfer etclamitans al. 1999

Larval Defense: Color Patterns

• First line of defense

• Drab colors

• Countershading

• Disruptive coloration

• Reflective or transparent

• Deflection marks

Lithobates catesbianus

12 2/27/2017

Larval Defense: Color Patterns

• First line of defense

• Drab colors

• Countershading

• Disruptive coloration

• Reflective or transparent

• Deflection marks

Larval Defense: Color Patterns

• First line of defense

• Drab colors

• Countershading

• Disruptive coloration

• Reflective or transparent

• Deflection marks

Xenopus longipes

Larval Defense: Color Patterns

• First line of defense

• Drab colors

• Countershading

• Disruptive coloration

• Reflective or transparent

• Deflection marks

Acris sp.

13 2/27/2017

Larval Defense: Color Patterns

• First line of defense

• Drab colors

• Countershading

• Disruptive coloration

• Reflective or transparent

• Deflection marks

Clinotarsus alticola

Larval Defense: Phenotypic Plasticity • Acris

• tail tip coloration (Caldwell 1982) • Hyla chrysoscelis dragonfly naiads present • dragonfly naiads present • dark orange, deep tail fins,

dark (Van Buskirk & McCollum 1999) • predators absent fish present • Shallow, unmarked tail fins (Van Buskirk & McCollum 1999) • early age exposure = gradual development (LaFiandra & Babbitt 2004) • direct contact not Acris sp. necessary

Larval Defense: Phenotypic Plasticity • Acris

• tail tip coloration (Caldwell 1982) Present • Hyla chrysoscelis • dragonfly naiads present • dark orange, deep tail fins,

dark (Van Buskirk & McCollum 1999) • predators absent Absent • Shallow, unmarked tail fins (Van Buskirk & McCollum 1999) • early age exposure = gradual development (LaFiandra & Babbitt 2004) • direct contact not necessary

14 2/27/2017

Larval Defense: Phenotypic Plasticity • Acris

• tail tip coloration (Caldwell 1982) Present • Hyla chrysoscelis • dragonfly naiads present • dark orange, deep tail fins,

dark (Van Buskirk & McCollum 1999) • predators absent Absent • Shallow, unmarked tail fins (Van Buskirk & McCollum 1999) • early age exposure = gradual development (LaFiandra & Babbitt 2004) • direct contact not necessary

Larval Defense: Phenotypic Plasticity • Acris

• tail tip coloration (Caldwell 1982) Present • Hyla chrysoscelis • dragonfly naiads present • dark orange, deep tail fins,

dark (Van Buskirk & McCollum 1999) • predators absent Absent • Shallow, unmarked tail fins (Van Buskirk & McCollum 1999) • early age exposure = gradual development (LaFiandra & Babbitt 2004) • direct contact not necessary

Larval Defense: Behavioral

• Schooling (Rodel and Linsenmair 1997) • decreases chance of individual capture • Time of day

• shift active when predators are not active (Sih et al. 1992) • Ambystoma barbouri – tend to be nocturnal in

presence of fish (Taylor 1983) • Refuge habitats: less food

• water column – Ambystoma talpoideum (Holomuzki 1986) • trade-offs  vulnerability versus foraging efficiency

• Limit activity (Altwegg 2003)

Lithobates sylvaticus

15 2/27/2017

Larval Defense: Behavioral

• Schooling (Rodel and Linsenmair 1997) • decreases chance of individual capture • Time of day

• shift active when predators are not active (Sih et al. 1992) • Ambystoma barbouri – tend to be nocturnal in

presence of fish (Taylor 1983) • Refuge habitats: less food

• water column – Ambystoma talpoideum (Holomuzki 1986) • trade-offs  vulnerability versus foraging efficiency

• Limit activity (Altwegg 2003)

Lithobates sylvaticus

Larval Defense: Behavioral

• Schooling (Rodel and Linsenmair 1997) • decreases chance of individual capture • Time of day

• shift active when predators are not active (Sih et al. 1992) • Ambystoma barbouri – tend to be nocturnal in

presence of fish (Taylor 1983) • Refuge habitats: less food

• water column – Ambystoma talpoideum (Holomuzki 1986) • trade-offs  vulnerability versus foraging efficiency

• Limit activity (Altwegg 2003)

Lithobates sylvaticus

Larval Defense: Behavioral

• Schooling (Rodel and Linsenmair 1997) • decreases chance of individual capture • Time of day

• shift active when predators are not active (Sih et al. 1992) • Ambystoma barbouri – tend to be nocturnal in

presence of fish (Taylor 1983) • Refuge habitats: less food

• water column – Ambystoma talpoideum (Holomuzki 1986) • trade-offs  vulnerability versus foraging efficiency

• Limit activity (Altwegg 2003)

Lithobates sylvaticus

16 2/27/2017

(Strangel and Semlitsch 1987)

Lithobates sylvaticus

Larval Defense: Sensory Cues

• Tactile • Visual • Chemical • discrimination between dangerous and less dangerous genetic response-previous exposure is not required (Lefcourt 1996,1998, Gallie et al. 2001, Mathis et al. 2003) • discrimination between predators of conspecific larvae (Chivers and Mirza 2001)

• not always present, can develop rapidly (Kiesecker and Blaustein 1997)

Lithobates sylvaticus

(Chivers, Kiesecker, Blaustein 1996)

Predatory

Predatory

17 2/27/2017

Larval Defense: Sensory Cues

• Tactile • Visual • Chemical • discrimination between dangerous and less dangerous genetic response-previous exposure is not required (Lefcourt 1996,1998, Gallie et al. 2001, Mathis et al. 2003) • discrimination between predators of conspecific larvae (Chivers and Mirza 2001)

• not always present, can develop rapidly (Kiesecker and Blaustein 1997)

Lithobates sylvaticus

Larval Defense: Alarm Responses

• Cues from injured conspecifics (Hews and Blaustein 1985)

• use these cues to avoid areas where predators are likely (Hews 1988)

• increase activity (different than most)

• beneficial if predator has already been detected (Hews 1998))

Lithobates sphenocephalus

Larval Defense: Growth & Development • Rapid growth • Predators have limited prey size

• Sprint speed increases with size (Richards and Bull 1990)

• Higher growth rate= higher survivorships (Travis 1983) • Growth and predator exposure

• Bufo boreas – increased growth rate (Chivers et al. 1999) • Ambystoma macrodactylum – decreased growth rate

• foraging decreased (Wildy et al 1999)

18 2/27/2017

Larval Defense: Growth & Development • Rapid growth • Predators have limited prey size

• Sprint speed increases with size (Richards and Bull 1990)

• Higher growth rate= higher survivorships (Travis 1983) • Growth and predator exposure

• Bufo boreas – increased growth rate (Chivers et al. 1999) • Ambystoma macrodactylum – decreased growth rate

• foraging decreased (Wildy et al 1999)

Larvae Defense: Chemical Defenses • Distasteful and toxic; particularly anuran tadpoles • Bufo- palatability varies among predators

• Why not in all species?

Bufo bufo

Larvae Defense: Chemical Defenses • Distasteful and toxic; particularly anuran tadpoles • Bufo- palatability varies among predators

• Why not in all species? • expensive to produce • temporary ponds: too costly, rapid growth • permanent ponds: worth the energy costs, slow growth

Bufo bufo

19 2/27/2017

Adult Defense: Cryptic Coloration

• Matching dorsal coloration to environment (Edmunds 1974)

• Reflect light in visible and infrared spectrum (Schalm et al. 1977, Emerson et al. 1990)

• Color change (Iga and Bagnara 1975)

• Cryptic patterning (Cott 1940)

Hyla chrysoscelis

Adult Defense: Cryptic Coloration

• Matching dorsal coloration to environment (Edmunds 1974)

• Reflect light in visible and infrared spectrum (Schalm et al. 1977, Emerson et al. 1990)

• Color change (Iga and Bagnara 1975)

• Cryptic patterning (Cott 1940)

Hyalinobatrachium taylori

Adult Defense: Cryptic Coloration

• Matching dorsal coloration to environment (Edmunds 1974)

• Reflect light in visible and infrared spectrum (Schalm et al. 1977, Emerson et al. 1990)

• Color change (Iga and Bagnara 1975)

• Cryptic patterning (Cott 1940)

Hyla cinerea

20 2/27/2017

Adult Defense: Cryptic Coloration

• Matching dorsal coloration to environment (Edmunds 1974)

• Reflect light in visible and infrared spectrum (Schalm et al. 1977, Emerson et al. 1990)

• Color change (Iga and Bagnara 1975)

• Cryptic patterning (Cott 1940)

Ceratobatrachus guentheri - Soloman Island Frog

Adult Defense: Color Polymorphism

• Polymorphism = different forms

• Genetically controlled (Merrell 1965, Fogelman et al. 1980)

• can be environmentally influenced (Travis and Trexler 1984, Harkey and Semlitch 1988)

• Pacific tree frog (Pseudacris regilla)

• color-changing morph (brown/green) (Wente and Phillips 2003) • slow  not effective to immediate predation • adaptive  seasonal shifts • light intensity and temperature  thermoregulation (Stegen et al. 2004)

Acris crepitans

Adult Defense: Color Polymorphism

• Polymorphism = different forms

• Genetically controlled (Merrell 1965, Fogelman et al. 1980)

• can be environmentally influenced (Travis and Trexler 1984, Harkey and Semlitch 1988)

• Pacific tree frog (Pseudacris regilla)

• color-changing morph (brown/green) (Wente and Phillips 2003) • slow  not effective to immediate predation • adaptive  seasonal shifts • light intensity and temperature  thermoregulation (Stegen et al. 2004)

Acris crepitans

21 2/27/2017

Adult Defense: Color Polymorphism

• Polymorphism = different forms

• Genetically controlled (Merrell 1965, Fogelman et al. 1980)

• can be environmentally influenced (Travis and Trexler 1984, Harkey and Semlitch 1988)

• Pacific tree frog (Pseudacris regilla)

• color-changing morph (brown/green) (Wente and Phillips 2003) • slow  not effective to immediate predation • adaptive  seasonal shifts • light intensity and temperature  thermoregulation (Stegen et al. 2004)

Acris crepitans

Adult Defense: Predator Avoidance

• Avoid locations where predators present

• Chemical cues • predators • injured conspecifics

• Newts (Woody and Mathis 1998)

• did not avoid chemical stimuli from fish (Marvin and Hutchinson 1995, Woody and Mathis 1997) • avoided chemical stimuli from fish if associated with injured conspecific (Woody and Mathis 1998)

Plethodon vandykei

Adult Defense: Predator Avoidance

• Avoid locations where predators present

• Chemical cues • predators • injured conspecifics

• Newts (Woody and Mathis 1998)

• did not avoid chemical stimuli from fish (Marvin and Hutchinson 1995, Woody and Mathis 1997) • avoided chemical stimuli from fish if associated with injured conspecific (Woody and Mathis 1998)

Plethodon vandykei

22 2/27/2017

Adult Defense: Predator Avoidance

• Avoid locations where predators present

• Chemical cues • predators • injured conspecifics

• Newts (Woody and Mathis 1998)

• did not avoid chemical stimuli from fish (Marvin and Hutchinson 1995, Woody and Mathis 1997) • avoided chemical stimuli from fish if associated with injured conspecific (Woody and Mathis 1998)

Plethodon vandykei

Adult Defense: Behavioral

• Jumping – slender bodies (Heinen and Hammond 1997)

• Flipping – Plethodontids (Whiteman and Wissinger 1991, Azizi and Landberg 2000)

• Coiling – Mount Lyell playcephalus (Garcia- Paris and Deban 1995)

• Death feigning – leaf litter frog Ischnocnema aff. henselii (Vaz-Silva et. al 2004)

• Vocalization (Weber 1978)

• Biting (Taylor and Ludlam 2013)

• Tail display – , Salamandridae (Wake and Dresner 1967)

• Unken reflex (Kuchta 2005)

Rana so.

Adult Defense: Behavioral

• Jumping – slender bodies (Heinen and Hammond 1997)

• Flipping – Plethodontids (Whiteman and Wissinger 1991, Azizi and Landberg 2000)

• Coiling – Mount Lyell salamander Hydromantes playcephalus (Garcia- Paris and Deban 1995)

• Death feigning – leaf litter frog Ischnocnema aff. henselii (Vaz-Silva et. al 2004)

• Vocalization (Weber 1978)

• Biting (Taylor and Ludlam 2013)

• Tail display – Plethodontidae, Salamandridae (Wake and Dresner 1967)

• Unken reflex (Kuchta 2005)

Plethodon cinereus

23 2/27/2017

Adult Defense: Behavioral

Adult Defense: Behavioral

• Jumping – slender bodies (Heinen and Hammond 1997)

• Flipping – Plethodontids (Whiteman and Wissinger 1991, Azizi and Landberg 2000)

• Coiling – Mount Lyell salamander Hydromantes playcephalus (Garcia-Paris and Deban 1995)

• Death feigning – leaf litter frog Ischnocnema aff. henselii (Vaz- Silva et. al 2004)

• Vocalization (Weber 1978)

• Biting (Taylor and Ludlam 2013)

• Tail display – Plethodontidae, Salamandridae (Wake and Dresner 1967)

• Unken reflex (Kuchta 2005)

Ischnocnema aff. henselii

Adult Defense: Behavioral

• Jumping – slender bodies (Heinen and Hammond 1997)

• Flipping – Plethodontids (Whiteman and Wissinger 1991, Azizi and Landberg 2000)

• Coiling – Mount Lyell salamander Hydromantes playcephalus (Garcia-Paris and Deban 1995)

• Death feigning – leaf litter frog Ischnocnema aff. henselii (Vaz- Silva et. al 2004)

• Vocalization (Weber 1978)

• Biting (Taylor and Ludlam 2013)

• Tail display – Plethodontidae, Salamandridae (Wake and Dresner 1967)

• Unken reflex (Kuchta 2005)

Lithobates catesbianus

24 2/27/2017

Adult Defense: Behavioral

• Jumping – slender bodies (Heinen and Hammond 1997)

• Flipping – Plethodontids (Whiteman and Wissinger 1991, Azizi and Landberg 2000)

• Coiling – Mount Lyell salamander Hydromantes playcephalus (Garcia-Paris and Deban 1995)

• Death feigning – leaf litter frog Ischnocnema aff. henselii (Vaz- Silva et. al 2004)

• Vocalization (Weber 1978)

• Biting (Taylor and Ludlam 2013)

• Tail display – Plethodontidae, Salamandridae (Wake and Dresner 1967)

• Unken reflex (Kuchta 2005)

Amphiuma tridactylum

Adult Defense: Behavioral

• Jumping – slender bodies (Heinen and Hammond 1997)

• Flipping – Plethodontids (Whiteman and Wissinger 1991, Azizi and Landberg 2000)

• Coiling – Mount Lyell salamander Hydromantes playcephalus (Garcia-Paris and Deban 1995) • Death feigning – leaf litter frog Ischnocnema aff. henselii (Vaz-Silva et. al 2004)

• Vocalization (Weber 1978)

• Biting (Taylor and Ludlam 2013)

• Tail display – Plethodontidae, Salamandridae (Wake and Dresner 1967)

• Unken reflex (Kuchta 2005)

Batrachoseps relictus

Adult Defense: Behavioral

25 2/27/2017

Adult Defense: Behavioral

• Jumping – slender bodies (Heinen and Hammond 1997)

• Flipping – Plethodontids (Whiteman and Wissinger 1991, Azizi and Landberg 2000)

• Coiling – Mount Lyell salamander Hydromantes playcephalus (Garcia-Paris and Deban 1995)

• Death feigning – leaf litter frog Ischnocnema aff. henselii (Vaz- Silva et. al 2004)

• Vocalization (Weber 1978)

• Biting (Taylor and Ludlam 2013)

• Tail display – Plethodontidae, Salamandridae (Wake and Dresner 1967)

• Unken reflex (Kuchta 2005)

Taricha granulosa

Adult Defense: Chemical

• Granular glands • Found in all amphibians, relatively similar structure • Distributed throughout the skin or concentrated • Defensive secretions 1. Widespread, naturally occurring compounds. • Can serve other functions  microbes and fungi • Defensive when secreted in large quantities 2. Evolved for defense  toxic • Origin

• Synthesized within the (Smith et al. 2002)

• Derived from chemicals of other organisms (Daly et al. 1994)

Anaxyrus sp.

Adult Defense: Chemical

• Granular glands • Found in all amphibians, relatively similar structure • Distributed throughout the skin or concentrated • Defensive secretions 1. Widespread, naturally occurring compounds. • Can serve other functions  microbes and fungi • Defensive when secreted in large quantities 2. Evolved for defense  toxic • Origin

• Synthesized within the animal (Smith et al. 2002)

• Derived from chemicals of other organisms (Daly et al. 1994)

Anaxyrus sp.

26 2/27/2017

Adult Defense: Chemical

• Granular glands • Found in all amphibians, relatively similar structure • Distributed throughout the skin or concentrated • Defensive secretions 1. Widespread, naturally occurring compounds. • Can serve other functions  microbes and fungi • Defensive when secreted in large quantities 2. Evolved for defense  toxic • Origin

• Synthesized within the animal (Smith et al. 2002)

• Derived from chemicals of other organisms (Daly et al. 1994)

Anaxyrus sp.

Adult Defense: Aposematic Coloring

• Coloration to warn or deter predators

• Only beneficial when predator can see colors

• Dendrobatidae • Color brightness correlates to toxicity (Summers and Clough 2001)

HylaOophagachrysoscelispumilio

Adult Defense: Mimicry

• Predators learn to avoid the aposematic patterns • Batesian mimicry: edible species benefit by evolving pseudoaposematic colors • Pseudotriton ruber & Notophthalmus viridescens

• readily eaten before exposure to red efts (Brodie & Howard 1972)

• less palatable than Desmognathus species (Brandon et al. 1979) • produce toxins  Mullerian • Mullerian mimicry: toxic species share a common warning coloration

Notophalmus viridescens Pseudotriton ruber

27 2/27/2017

Future Directions

• Impact on populations • demographic impact of predation • impact of specific predators • invasive predators

• Genetics

• Relationships between toxicity and predators

• Caecilians and

Lithobates sylvaticus

Summary

• Subject to vast array of predators • Predation is greatest on egg and larval stages • Most predators are generalists • Protection against predators is varied • Predation lessened by: • reduce the change of detection • reduce the changes of being consumed once detected • chemical, phenological, behavioral, physiological, morphological

Ensatina eschscholtzii

References

• Azizi, E., and T. Landberg. 2002. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Eurycea bislineata)." Journal of Experimental Biology. 205: 841-849.

• Brandon, Ronald A., George M. Labanick, and James E. Huheey. "Relative palatability, defensive behavior, and mimetic relationships of red salamanders (Pseudotriton ruber), mud salamanders (Pseudotriton montanus), and red efts (Notophthalmus viridescens). Herpetologica 1979: 289-303.

• Brodie, E. D., and R. R. Howard. Behavioral mimicry in the defensive displays of the Urodele amphibians Nophthalmus viridescens and Pseudotriton ruber. BioScience 22: 666-667.

• Caldwell, J. P. 1982. Disruptive selection: a tail color polymorphism in Acris tadpoles in response to differential predation. Canadian Journal of Zoology, 60, 2818-2827.

• Chivers, D. P. and R. S. Mirza. 2001 Journal of Chemical Ecology. 27, 45-51.

• Chivers. D. P., J. M. Kiesecker, A. Marco, E. L. Wildy and A. R. Blaustein. 1999. Shift in life history as a response to predation in western toads (Bufo boreas). Journal of Chemical Ecology. 25, 2455-2463.

• Daly, J. W., S. L. Secunda, H. M. Garraffo, T. F. Spande, A. Wisnieski, and J. F. Cover. 1994. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon, 32(6), 657-663.

• Heinen, Joel T., and George Hammond. 1997. Antipredator behaviors of newly metamorphosed green frogs ( clamitans) and leopard frogs (R. pipiens) in encounters with eastern garter snakes (Thamnophis s. sirtalis). American Midland Naturalist. 1997: 136-144.

• Hews, D. K. "Alarm response in larval western toads, Bufo boreas: release of larval chemicals by a natural predator and its effect on predator capture efficiency." Animal Behaviour 36:125-133.

• Hews, D. K., and A. R. Blaustein. "An investigation of the alarm response in Bufo boreas and Rana cascadae tadpoles. Behavioral and Neural Biology 43.: 47-57.

• Hopey, M. E., and J. W. Petranka. 1994. Restriction of wood frogs to fish-free habitats: how important is adult choice? Copeia, 1994, 1023-1025.

• Fogleman, J. C., P. S. Corn, and D. A. Pettus. The genetic basis of a dorsal color polymorphism in Rana pipiens. The Journal of heredity 71: 439-440.

• Gallie, J. A., Ronald L. M., and S. A. Wissinger. Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American toad, Bufo americanus." Herpetologica 2001: 376-383.

• García-París, M., and S. M. Deban. 1995. A novel antipredator mechanism in salamanders: rolling escape in Hydromantes platycephalus. Journal of herpetology 29: 149-151.

• Harkey, G. A., and R. D. Semlitsch. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia, 1988: 1001-1007.

• Howard, R. D. 1978. The influence of male‐defended oviposition sites on early embryo mortality in bullfrogs. Ecology, 59, 789-798.

• Kiesecker, J. M., and A. R. Blaustein. "Population differences in responses of red‐legged frogs (Rana aurora) to introduced bullfrogs." Ecology 78.6: 1752-1760.

• Kuchta, S. R. Experimental support for aposematic coloration in the salamander Ensatina eschscholtzii xanthoptica: implications for mimicry of Pacific newts. Copeia. 2005: 265-271.

• LaFiandra, E. M., and K. J. Babbitt, K.J. Oecologia 2004 138: 350.

• Lefcourt, H., 1996. Adaptive, chemically mediated fright response in tadpoles of the southern leopard frog, Rana utricularia. Copeia 1996:455-59.

• Lefcourt H.,1998. Chemically mediated fright response in southern toad (bufo terrestris) tadpoles. Copeia 1998:445-50.

• Marvin, G. A., and V. H. Hutchison. Avoidance response by adult newts (Cynops pyrrhogaster and Notophthalmus viridescens) to chemical alarm cues. Behaviour 132.1 1995: 95-105.

Ensatina eschscholtzii

28 2/27/2017

References

• Mathis, A. 2003. Use of chemical cues in detection of conspecific predators and prey by newts, Notophthalmus viridescens. Chemoecology, 13, 193-197.

• Petranka, J. W., M. E. Hopey, B. T. Jennings, S. D. Baird, and S. J. Boone. 1994. Breeding habitat segregation of wood frogs and American toads: the rol e of interspecific tadpole predation and adult choice. Copeia, 691-697.

• Porter, K. R. 1972. Herpetology. Saunders Limited.

• Richards, S. J., and C. M. Bull. Size-limited predation on tadpoles of three Australian frogs. Copeia 1990: 1041-1046.

• Smith, B. P., M. J. Tyler, T, Kaneko, H. M. Garraffo, T. F. Spande, and J. W. Daly. 2002. Evidence for biosynthesis of pseudophrynamine alkaloids by an Australian myobatrachid frog (Pseudophryne) and for sequestration of dietary pumiliotoxins. Journal of natural products, 65, 439-447.

• Stegen, James C., C. M. Gienger, and Lixing Sun. 2004. The control of color change in the Pacific tree frog, Hyla regilla. Canadian journal of zoology 82: 889-896.

• Storfer, A., J. Cross, V. Rush, and J. Caruso. 1999. Adaptive coloration and gene flow as a constraint to local adaptation in the streamside salamander, Ambystoma barbouri. Evolution, 889-898.

• Summers, K. and M. E. Clough. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences 98: 6227-6232.

• Taylor, H., and J. P. Ludlam. 2013. The role of size preference in prey selection of Amphiuma means. Bios. 84: 8-13.

• Travis, J. Variation in growth and survival of Hyla gratiosa larvae in experimental enclosures. Copeia 1983: 232-237.

• Travis, J., and J. C. Trexler. "Investigations on the control of the color polymorphism in Pseudacris ornata." Herpetologica. 1984: 252-257.

• Tyler, M. J. 1976. Frogs. Sydney, Australia: Collins.

• Van Buskirk, J., and S. A. McCollum. 1999. Plasticity and selection explain variation in tadpole phenotype between ponds with different predator composition. Oikos, 31-39.

• Vaz-Silva, W., and J. G. Frota. 2004. Bufo marinus (Marine Toad) defensive behavior. Herpetological Review. 35: 371.

• Wake, D. B., and I. G. Dresner. 1967. Functional morphology and evolution of tail autotomy in salamanders. Journal of Morphology 122: 265-305.

• Walters, B. 1975. Studies of interspecific predation within an amphibian community. Journal of Herpetology, 267-279.

• Warkentin, K. M. Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proceedings of the National Academy of Sciences 92. 8: 3507-3510.

• Warkentin, K. M. Wasp predation and wasp-induced hatching of red-eyed treefrog eggs. Animal Behaviour 60. 4: 503-510.

• Warkentin, K. M., C. R. Currie, and S. A. Rehner. Egg‐killing fungus induces early hatching of red‐eyed treefrog eggs. Ecology 82. 10: 2860-2869.

• Wente, W. H., and J. B. Phillips. 2005 Seasonal color change in a population of pacific treefrogs (Pseudacris regilla). Journal of Herpetology 39: 161-165.

• Whiteman, H. H., and S. A. Wissinger. 1991. Differences in the antipredator behavior of three plethodontid salamanders to snake attack. Journal of herpetology. 25: 352-355.

• Weber, Ernst. Distress calls of Bufo calamita and B. viridis (Amphibia: Anura). Copeia 1978 : 354-356.

• Wildy, E. L., D. P. Chivers, Kiesecker, J. M., and A. R. Blaustein. 1998. Cannibalism enhances growth in larval long-toed salamanders (Ambystoma macrodactylum). Journal of Herpetology 32:286-289.

• Woody, D. R., and A. Mathis. 1998. Acquired recognition of chemical stimuli from an unfamiliar predator: associative learning by adult newts, Notophthalmus viridescens. Copeia 1998: 1027-1031. Ensatina eschscholtzii

Photo Credits

• Anna Spyrka • Kristiina Hurme • Amber Hart • Larry Kimball • Audobaun Society • Mike Benard • Barbara Magnuson • Montgomery Co. Dept. of Environmental Protection • Brandon Ballengee • Nancy Tray • Brian Gratwicke • Natalle McNear • Christina Rollo • Nathan Shepard • David Huth • Oliver Kratz • Douglas Mills • Peter May • Dwight Kuhn • Ricky Relya • Gary Nafis • Robert Clontz Photography • Greg Pecold • Rod Williams • Harikrishnan S. • Ryan Photographic • Jacob Loyacano • The Amphibain Foundation • Jason Gibson • Warren Photographic • Johnathan Mays • Werther Pereira Ramalho • John Whit • John White • Jones Fish Hatcher

Ensatina eschscholtzii

Questions?

Katie Harris 240 EPS Building [email protected]

29