Goniodoris Nodosa" (Montagu)

Total Page:16

File Type:pdf, Size:1020Kb

Goniodoris Nodosa REPRODUCTION, LARVAL GROWTH AND METAMORPHOSIS OF THE NUDIBRANCH MOLLUSCS "ONCHIDORIS BILAMELLATA" (L.) AND "GONIODORIS NODOSA" (MONTAGU) Isabel Lafuente A Thesis Submitted for the Degree of PhD at the University of St Andrews 1997 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/14641 This item is protected by original copyright Reproduction, Larval Growth and Metamorphosis of the Nudibranch Molluscs Onchidoris bilamellata (L.) and Goniodoris nodosa (Montagu). by Isabel Lafoente Submitted for the Degree of a Master of Philosophy (by research) at the University of St Andrews School of Biological and Medical Sciences September 1996 ProQuest Number: 10167094 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10167094 Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. Box 1346 Ann Arbor, Ml 48106- 1346 Declaration a) I, Isabel Lafiiente, hereby certify that this thesis has been composed by myself, that it is a record of my own work and that it has not been accepted in partial or complete fulfilment of any other degree or professional qualification. Signed Date b) I was admitted to the Faculty of Science of the University of St Andrews under Ordinance General No. 12 on 1st. April 1990 as a candidate for the degree of Master of Philosophy. 2^ Signed Date c) I hereeb ccrtiff thatt heccndidatehas fflfilied the conditioos of the Resoiutioo and Regulations appropriate to the degree ofMaster nfPhilosophy. Signature of Supervisors Date Date d) Innubmitting this th^s^is so fheUUversiSy of ft Andrews I unde^rand dial I am givivin permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. ACKNOWLEDGEMENTS I am grateful to my supervisors, Christopher Todd and Matthew Bentley for their helpful comments and suggestions in the writing up process, and for their continuous support and advice throughout the fulfilment of this work. I have received invaluable guidance and relevant references from Jose Templado and Marta Calvo to whom I extend my most sincere thanks. I am also truly indebted to my family for their care, concern and encouragement during the course of this degree, and to Fernando Ortega for his priceless help during the writting up and his assistance with some of the figures used in this document; and to Javier Ortega, Jose Moya and Ricardo for their help with the statistics. I am equally thankful to Julian Crowe for his unconditional assistance with computers, and to Joy Baldwin for her warm support and her help with indispensable papers used for this study. I am indebted to UHStAGA, who covered my residence and boarding costs during part of this work. To all the friends I made in St. Andrews, a big thanks, but especially to those from the fencing club, Sandra, Steve, Rasmus, Gareth, Melissa, Rich, Dan, Katie, our coach Derek, and many others; and from the Gatty, Dimitri, Debbie, Helen J., Helen W., Mary A., Mary T., Derek, Bob, Jenny, Richard, Roland, and Pete, thank you for the good times we spent together and your interest in my baby-slugs. I wish not to forget my friends from University Hall, Yoko, Maki, Shazia, Amy, big and small Graham, Lisa, Susanna, Daphne, who were extremely supportive and helpful in times of distress. CONTENTS Page No. CHAPTER 1 GENERAL INTRODUCTION 1 CHAPTER 2 SPAWNING PATTERNS OEONCHIDORISBILAMELLATA L. AND GONIODORIS NODOSA MONTAGU Introduction 6 Materials & Methods Collection, maintenance and mating of tlie adults 9 Experiment 1 9 Experiment 2 11 Experiments 13 Statistical analysis 13 Results Experiment 1 14 Experiment 2 17 Experiment 3 23 Discussion 26 CHAPTER 3 LARVAL GROWTH AND DEVELOPMENT IN ONCHIDORIS BU.AMEU.ATA L. AND GONIODORIS NODOSA MONTAGU Introduction 35 Materials & Methods Collection and maintenance of the adults 37 Spawn mass culture 37 Algal culture 38 Larval culture 39 Statistical analysis 44 Results Onchidoris bilamellata 44 Goniodoris nodosa 49 Discussion 52 CHAPTER 4 INDUCTION OF METAMORPHOSIS IN ONCHIDORIS BILAMELLATA L. AND GONIODORIS NODOSA MONTAGU Introduction 56 Materials & Methods 60 Experiment 1. Potassium ion dose-response of O. bilamellata 64 Experiment 2-4. Induction of metamorphosis in O. bilamellata on contact with and at a distance from the natural prey 64 Experiment 5. Metamorphosis induction of G. nodosa 66 Experiment 6. Delay of metamorphosis in O. bilamellata 66 Statistical analysis 67 Results Experiment 1. Potassium ion dose-response of O. bilamellata 69 Experiment 2-4. Induction of metamorphosis in O. bilamellata on contact with and at a distance from the natural prey 72 Experiment 5. Metamorphosis induction of G. nodosa 76 Experiment 6. Delay of metamorphosis in O. bilamellata 76 Discussion 78 CHAPTER 5 GENERAL DISCUSSION 83 Conclusions 87 REFERENCES 88 ABSTRACT This study investigated the reproduction, larval growth and metamorphosis of the nudibranchs Onchidoris bilamellata (L.) and Goniodoris nodosa (Montagu) under controlled laboratory conditions. In addition, the rare occurrence of spawning events of O. bilamellata taking place in the field outwith the winter and spring reproductive period was studied. Onchidoris bilamellata and Goniodoris nodosa differ in the size and number of eggs produced per spawning event. In the present study O. bilamellata does not exhibit a clear spawning pattern, whereas G. nodosa lays increasingly smaller eggs and larvae as the season progresses. The diameter of the eggs of O. bilamellata is not correlated with the organic content per egg. The data available for G. nodosa were insufficient to analyse this relationship. The rates of larval growth and development are reported for Onchidoris bilamellata and Goniodoris nodosa. These variables do not differ significantly for O. bilamellata between cultures maintained under various light regimes, ranging from continuous darkness to continuous illumination, and are comparable to those of G. nodosa.. The shell growth pattern exhibited by larvae of G nodosa is sigmoid, similar to that of other opisthobranchs. Spawn masses laid during the winter and spring months were collected fresh from the field and compared to spawn masses collected from the field in July and September, outwith the typical spawning period of Onchidoris bilamellata in the British Isles. The shell size of the July and September hatchlings was significantly smaller than that of the winter and spring hatchlings. Furthermore, the larvae hatched from spawn masses laid in September cultured in the laboratory exhibited high mortality rates and the overwhelming majority did not survive through metamorphosis. The significance of the spawning activity of O. bilamellata past the typical spawning period of this species is discussed. The induction of metamorphosis of Onchidoris bilamellata was investigated using seawater containing elevated concentrations of potassium ion, and the results indicate that the optimal concentration inductive of metamorphosis is 19 mM K + ASW. Metamorphosis experiments were also performed with the natural prey of O. bilamellata, the acorn barnacle Semibalanus balanoides (L.). The results suggest that pediveligers can be induced to metamorphose at a distance from the inductive substrata. Attempts were made to identify the natural inductive cue of Goniodoris nodosa, but this was not successful. CHAPTER 1 GENERAL INTRODUCTION Onchidoris bilamellata (L.) and Goniodoris nodosa (Montagu) are intertidal nudibranch molluscs common on the British coasts. O. bilamellata may reach 40 mm in length (Thompson & Brown, 1984), although 25 mm is more usual (Todd, 1979b), and feeds on species of the barnacles Elminius and Chthanalus, but especially Semibalanus (Thompson & Brown, 1984; Chia & Koss, 1988). G. nodosa (Montagu) has a smaller body size, reaching 27 mm in length (Fig. 1.1). In contrast with O. bilamellata, G. nodosa feeds upon encrusting bryozoans, such as Alcyonidium polyoum (Hassall), Callopora dumerili (Audouin) and Flustrellidra hispida (Fabricius) when young, whereas the adults feed preferentially on the ascidians Diplosoma listerianum (Milne Edwards), Botryllus schlosseri (Pallas) and Dendrodoa grossularia (van Beneden) (McMillan, 1942; Miller, 1961; Swennen, 1961). These nudibranchs are primarily found in the intertidal zone in association with their prey items. Onchidoris bilamellata does not extend as high up the shore as its main prey species, Semibalarms balanoides, due to the desiccation risks inherent to this zone (Todd, 1979a), and is frequent in intertidal pools on the undersides of rocks, but it is also common at the lower tidal limit. Goniodoris nodosa is primarily located beneath rocks at the lower limits of the intertidal zone, but may also occur on Fucus sp. fronds on which the polyzoan and ascidian preys settle. Additionally, both of these nudibranchs can also be found subtidally at depths to 120 meters in their northernmost limits of distribution (Ohdner, 1939; Lemche, 1929). The geographic distribution of Onchidoris bilamellata ranges from France to Norway, the White Sea and Spitzbergen, Iceland, Greenland, and the Atlantic and Pacific coasts of North America. Goniodoris nodosa is restricted to north-western Europe, from Norway and the Faeroes to the north west of Spain (Thompson & Brown, 1984). Both of these nudibranchs are common species in Britain. Chapter 1 Page 2 Fig. 1.1. a) Dorsal view of a 14 mm specimen of Onchidoris bilamellata. b) Dorsal view of a 22 mm specimen of Goniodoris nodosa, c) spawn mass of the same attached to the polyzoan Alcyonidium.
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus Splendidus (Angas, 1864)
    diversity Article Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus splendidus (Angas, 1864) Nerida G. Wilson 1,2,*, Anne E. Winters 3 and Karen L. Cheney 3 1 Western Australian Museum, 49 Kew Street, Welshpool WA 6106, Australia 2 School of Animal Biology, University of Western Australia, Crawley 6009 WA, Australia 3 School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia; [email protected] (A.E.W.); [email protected] (K.L.C.) * Correspondence: [email protected]; Tel.: +61-08-9212-3844 Academic Editor: Michael Wink Received: 25 April 2016; Accepted: 15 July 2016; Published: 22 July 2016 Abstract: In contrast to many tropical animals expanding southwards on the Australian coast concomitant with climate change, here we report a temperate endemic newly found in the tropics. Chromodorid nudibranchs are bright, colourful animals that rarely go unnoticed by divers and underwater photographers. The discovery of a new population, with divergent colouration is therefore significant. DNA sequencing confirms that despite departures from the known phenotypic variation, the specimen represents northern Goniobranchus splendidus and not an unknown close relative. Goniobranchus tinctorius represents the sister taxa to G. splendidus. With regard to secondary defences, the oxygenated terpenes found previously in this specimen are partially unique but also overlap with other G. splendidus from southern Queensland (QLD) and New South Wales (NSW). The tropical specimen from Mackay contains extracapsular yolk like other G. splendidus. This previously unknown tropical population may contribute selectively advantageous genes to cold-water species threatened by climate change.
    [Show full text]
  • Onchidoris Bilamellata Class: Gastropoda, Opisthobranchia Order: Nudibranchia Many-Gilled Onchidoris Nudibranch Family: Onchidoridae
    Phylum: Mollusca Onchidoris bilamellata Class: Gastropoda, Opisthobranchia Order: Nudibranchia Many-gilled onchidoris nudibranch Family: Onchidoridae Description Papillae: Mushroom-shaped, with protruding Size: Usual length 15 mm (McDonald 1980); spicules (Fig. 3). Numerous club-like this specimen 15.5 mm long, 11 mm wide, 6 tubercles of unequal size with a slight convex mm high. Far northern and Atlantic specimens top. 10-15 spicules covered with epithelium can reach 31 mm length (Marcus 1961). project out over the surface. Spicules are Color: Translucent brownish-white with thick with blunt tips and are centrally bent, irregular dark or rusty brown splotches, sloping obliquely toward the base of the sometimes as irregular longitudinal stripes. tubercle (Kress 1981). Spicules support the Commonly a light spot between the dark body and make it unpalatable (Potts 1981). rhinophores; gills dull white, underside a dull Eggs: Type A, defined as an egg mass in white (Marcus 1961). No yellow pigment, but ribbon form, attached along the length of one some specimens without brown color (Kozloff edge, with capsules occurring throughout 1974). Cryptic coloration (Potts 1981). (Hurst 1967). With a short, stout spiral ribbon Body Shape: Doridiform: oval; slightly attached along one edge, flaring out on the broadened towards front. With a broad flat other (O’Donoghue and O’Donoghue 1922) foot, thick fleshy mantle, and conspicuous (Fig. 5); capsules have a smooth wall and double circlet of gills dorsally (Figs. 1, 2). contain 1-3 eggs; 60,000 eggs in a ribbon 4 Dorsum covered with many large round cm long (Hadfield 1963). Eggs 100µm. Eggs papillae, becoming smaller at edges.
    [Show full text]
  • Diaphorodoris Luteocincta (Sars, 1870): ¿Dos “Variedades” O Especies Diferentes?
    Facultad de Ciencias del Mar y Ambientales Departamento de Biología Trabajo Fin de Grado Grado en Ciencias del Mar Diaphorodoris luteocincta (Sars, 1870): ¿dos “variedades” o especies diferentes? Fernando Cortés Fossati Tutores: Pr. Dr. D. Juan Lucas Cervera Currado, Pr. Dra. Dña. Marta Pola Pérez Por ada: Fotografía modificada de Marta Pola Diaphorodoris luteocincta (Sars, 1870): ¿dos “variedades” o especies diferentes? Memoria presentada por Fernando Cortés Fossati para optar al Grado de Ciencias del Mar por la Universidad de Cádiz. Fdo.: Fernando Cortés Fossati Puerto Real, 16 de Septiembre de 2016 LA PRESENTE MEMORIA DE TRABAJO FIN DE GRADO HA SIDO TUTORIZADA POR EL PR. DR. JUAN LUCAS CERVERA CURRADO, DE LA UNIVERSIDAD DE CÁDIZ Y POR LA PR. DRA. MARTA POLA PÉREZ, DE LA UNIVERSIDAD AUTÓNOMA DE MADRID Los tutores: Fdo.: Juan Lucas Cervera Currado Fdo.: Marta Pola Pérez Puerto Real, 16 de Septiembre de 2016 ÍNDICE AGRADECIMIENTOS ...................................................................................................... 3 RESUMEN ........................................................................................................................... 7 ABSTRACT ......................................................................................................................... 7 1. INTRODUCCIÓN ........................................................................................................... 9 1.1 Sobre la Biodiversidad de los “Invertebrados” en el Medio Marino ................. 9 1.2 El debate acerca de la identidad
    [Show full text]
  • A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
    RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae.
    [Show full text]
  • Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
    Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims.
    [Show full text]
  • Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska
    Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska. Report to Prince William Sound Regional Citizens’ Advisory Council (PWSRCAC) From Molecular Ecology Laboratory Moss Landing Marine Laboratory Dr. Jonathan Geller Melinda Wheelock Martin Guo Any opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. December 1, 2018 Revised August 15, 2019 Abstract This report describes the methods and findings of the metagenetic analysis of plankton samples from the waters of Prince William Sound (PWS), Alaska. The study was done to identify zooplankton, in particular the larvae of invasive benthic species. Plankton samples, collected by the Prince William Sound Science Center (PWSSC), were analyzed by the Molecular Ecology Laboratory at the Moss Landing Marine Laboratories. The samples were taken from five stations in May of 2017 in Port Valdez and elsewhere in PWS. DNA was extracted from bulk plankton and a portion of the mitochondrial Cytochrome c oxidase subunit 1 gene, the most commonly used DNA barcode for animals, was amplified by polymerase chain reaction (PCR). Products of PCR were sequenced using Illumina reagents and MiSeq instrument. 211 operational taxonomic units (an approximation of biological species) were found and 52 were identified to species. Most species were crustaceans and molluscs, and none were non-native. We also compared PWSRCAC samples taken in 2016 to the current set of samples. Fewer species were identified in 2017 than in 2016, but sampling methods varied across years. Standardization of methods and a longer time series are necessary to investigate temporal trends. Page 1 of 17 952.431.190815.MLMetagenetic Introduction Monitoring marine habitat for species of concern, including invasive species, can be costly and time-consuming, which limits the information available to resource managers, scientists, and the public.
    [Show full text]
  • Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand
    ISSN 0083-7903, 70 (Print) ISSN 2538-1016; 70 (Online) Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand by PENELOPE A. LUCKENS New Zealand Oceanographic.Institute Memoir No. 70 1976 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH Settlement and Succession on Rocky Shores at Auckland, North Island, New Zealand by PENELOPE A. LUCKENS New Zealand Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir No. 70 1976 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to World List of Scientific Periodicals ( 4th edn.): Mem. N.Z. oceanogr. Inst. 70 New Zealand Oceanographic Institute Memoir No. 70 ISSN 0083-7903 Edited by Q. W. Ruscoe and D. J. Zwartz, Science Information Division, DSIR Received for publication May 1969 © Crown Copyright 1976 A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND - 1976 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Abstract page 5 Introduction .. 5 The experimental areas Location and physical structure Tidal phenomena 9 Terminology 9 General zonation pattern at the localities sampled 9 Methods 11 Settlement seasons 12 Organisms settling in the experimental areas (Table 1) 15 Factors affecting settlement of some of the organisms 42 Changes observed after clearance of the experimental areas .. 44 Temporal succession .. 60 Climax populations 60 Summary 61 Acknowledgments 61 Appendix 62 References 63 Index 64 3 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
    [Show full text]
  • Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C
    Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C.-P., Gusky, M., Gutow, L., Heiber, W., Jantschik, P., Krieg, H.J., Krone, R., Nehmer, P., Reichert, K., Reiss, H., Schröder, A., Witt, J. & Zettler, M.L. (2013): Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere. – In: Becker, N.; Haupt, H.; Hofbauer, N.; Ludwig, G. & Nehring, S. (Red.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeresorganismen. – Münster (Landwirtschaftsverlag). – Na- turschutz und Biologische Vielfalt 70 (2): S. 81-176. Die Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeres- organismen (ISBN 978-3-7843-5330-2) ist zu beziehen über BfN-Schriftenvertrieb – Leserservice – im Landwirtschaftsverlag GmbH 48084 Münster Tel.: 02501/801-300 Fax: 02501/801-351 http://www.buchweltshop.de/bundesamt-fuer-naturschutz.html bzw. direkt über: http://www.buchweltshop.de/nabiv-heft-70-2-rote-liste-gefahrdeter-tiere-pflanzen-und- pilze-deutschlands-bd-2-meeresorganismen.html Preis: 39,95 € Naturschutz und Biologische Vielfalt 70 (2) 2013 81 –176 Bundesamtfür Naturschutz Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere 4. Fassung, Stand Dezember 2007, einzelne Aktualisierungenbis 2012 EIKE RACHOR,REGINE BÖNSCH,KARIN BOOS, FRITZ GOSSELCK, MICHAEL GROTJAHN, CARMEN- PIA GÜNTHER, MANUELA GUSKY, LARS GUTOW, WILFRIED HEIBER, PETRA JANTSCHIK, HANS- JOACHIM KRIEG,ROLAND KRONE, PETRA NEHMER,KATHARINA REICHERT, HENNING REISS, ALEXANDER SCHRÖDER, JAN WITT und MICHAEL LOTHAR ZETTLER unter Mitarbeit von MAREIKE GÜTH Zusammenfassung Inden hier vorgelegten Listen für amMeeresbodenlebende wirbellose Tiere (Makrozoo- benthos) aus neun Tierstämmen wurden 1.244 Arten bewertet. Eszeigt sich, dass die Verhältnis- se in den deutschen Meeresgebietender Nord-und Ostsee (inkl.
    [Show full text]
  • Nudibranch Range Shifts Associated with the 2014 Warm Anomaly in the Northeast Pacific
    Bulletin of the Southern California Academy of Sciences Volume 115 | Issue 1 Article 2 4-26-2016 Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Jeffrey HR Goddard University of California, Santa Barbara, [email protected] Nancy Treneman University of Oregon William E. Pence Douglas E. Mason California High School Phillip M. Dobry See next page for additional authors Follow this and additional works at: https://scholar.oxy.edu/scas Part of the Marine Biology Commons, Population Biology Commons, and the Zoology Commons Recommended Citation Goddard, Jeffrey HR; Treneman, Nancy; Pence, William E.; Mason, Douglas E.; Dobry, Phillip M.; Green, Brenna; and Hoover, Craig (2016) "Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific," Bulletin of the Southern California Academy of Sciences: Vol. 115: Iss. 1. Available at: https://scholar.oxy.edu/scas/vol115/iss1/2 This Article is brought to you for free and open access by OxyScholar. It has been accepted for inclusion in Bulletin of the Southern California Academy of Sciences by an authorized editor of OxyScholar. For more information, please contact [email protected]. Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Cover Page Footnote We thank Will and Ziggy Goddard for their expert assistance in the field, Jackie Sones and Eric Sanford of the Bodega Marine Laboratory for sharing their observations and knowledge of the intertidal fauna of Bodega Head and Sonoma County, and David Anderson of the National Park Service and Richard Emlet of the University of Oregon for sharing their respective observations of Okenia rosacea in northern California and southern Oregon.
    [Show full text]
  • Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Sponges, shade-tolerant red seaweeds and Dendrodoa grossularia on wave-surged overhanging lower eulittoral bedrock and caves MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review John Readman 2020-01-24 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1203]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Readman, J.A.J., 2020. Sponges, shade-tolerant red seaweeds and [Dendrodoa grossularia] on wave- surged overhanging lower eulittoral bedrock and caves. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1203.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]