Design Principles for Biologically Inspired Cognitive Robotics

Total Page:16

File Type:pdf, Size:1020Kb

Design Principles for Biologically Inspired Cognitive Robotics Author's personal copy Biologically Inspired Cognitive Architectures (2012) 1,73– 81 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/bica INVITED ARTICLE Design principles for biologically inspired cognitive robotics Jeffrey L. Krichmar Department of Cognitive Sciences, 2328 Social and Behavioral Sciences Gateway, University of California, Irvine 92697-5100, USA Department of Computer Science, 2328 Social and Behavioral Sciences Gateway, University of California, Irvine 92697-5100, USA Received 5 April 2012; received in revised form 28 April 2012; accepted 28 April 2012 KEYWORDS Abstract Cognition; The goals of cognitive robotics are to better understand cognition through the construction of Computational physical artifacts, and to create practical systems that demonstrate cognitive capabilities. I neuroscience; believe for cognitive robotics to move forward, a balanced approach that emphasizes the inter- Embodiment; Neurorobots action of brain, body, and environment is necessary. In general, cognitive robots and cognitive architectures focus too much on brain control, and overlook the contributions of morphology to intelligent behavior. On the other hand, the behavior based robotics approach is unbalanced in the opposite direction. For cognitive robotics to move forward, these disparate research com- munities need to come into balance. The materials, morphology, sensors, actuators, and the nervous system should be balanced and coordinated in their action. In their book, ‘‘How the body shapes the way we think: A new view of intelligence’’ (MIT Press, 2007), Pfeifer and Bongard have suggested that intelligent agents should follow a set of design principles that high- light the importance of embodiment and physical interaction with the environment. In the pres- ent paper, I apply each of these principles to biologically inspired cognitive robotics and suggest how the field can shift toward better cognitive architectures by adherence to these principles. ª 2012 Elsevier B.V. All rights reserved. Introduction In the field of cognitive robotics, physical artifacts are con- structed to demonstrate a level of cognition. The term cog- nitive is difficult to define because it has different meaning Address: Department of Cognitive Sciences, 2328 Social & to different people. In this paper, I will focus on comparing Behavioral Sciences Gateway, University of California, Irvine, CA 92697-5100, USA. Tel.: +1 949 824 5888. agent behavior to that of biological organisms carrying out E-mail address: [email protected] cognitive tasks, such as standard tasks of attention, 2212-683X/$ - see front matter ª 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.bica.2012.04.003 Author's personal copy 74 J.L. Krichmar decision-making, learning and memory. This allows artificial I suggest that we in the Biologically Inspired Cognitive Archi- agents to be compared to a working model. Therefore, tectures (BICA) community should embrace many of these throughout the paper the term ‘‘cognition’’ could be re- design principles when developing our systems. I will apolo- placed by ‘‘biologically inspired cognition’’. Also, through- gize in advance for not referencing many pertinent robots out the paper I will use the term ‘‘nervous system’’ to and systems in the present paper. In general, I will focus describe the system that guides the agent behavior. on systems that I know at a deep level because either I have Although many of the examples given are based on neuro- had a hand in their design or because I have seen a particular biologically inspired systems, this does not mean to imply robot in person and discussed the robot with its designers. that a neurobiologically inspired architecture is the only method for constructing a cognitive robot. But, the neuro- biologically inspired approach does allow the mechanism Design principles for cognitive robots to be compared with empirical data. Despite these restric- tions, the arguments below may be applied to cognitive Pfeifer and Bongard introduced eight design principles for robotics in general. intelligent agents (Pfeifer & Bongard, 2007). I will follow The field of cognitive robots goes by many names: brain- each of these in turn, and discuss them in light of biologi- based devices, cognitive robots, neurorobots, neuromorphic cally inspired cognitive robot design. robots, etc. The common goal is twofold: Firstly, developing a system that demonstrates some level of cognitive ability Agent design principle 1: the three-constituents can lead to a better understanding of cognition in general. principle This idea has been dubbed ‘‘synthetic methodology’’ or ‘‘synthetic neural modeling’’ and the notion goes back to An intelligent agent should have (1) a defined ecological Grey Walter’s Turtles, Braitenberg’s vehicles and the Darwin niche, (2) a defined behavior or task, and (3) an agent series of automata (Braitenberg, 1986; Edelman et al., 1992; design. Grey Walter, 1953). The synthetic method has even older The first two constituents define the agent’s behavioral roots in psychology and cybernetics (Cordeschi, 2002; Craik, task. For example, the niche and behavior of many of our 1967). In general, understanding through building is the goal. robots has been a controlled laboratory setting. However, Secondly, building a robot or artifact that follows a cognitive much of cognitive science and behavioral neuroscience is model could lead to a system that demonstrates capabilities conducted in experiments where humans and other animals commonly found in the animal kingdom, but rarely found in behave under controlled settings in darkened rooms. There- artificial systems. While this second goal may have important fore, cognitive robots, which are built to test theories of implications for practical applications, cognitive robotics biological cognition, are often tested in conditions that mi- have not been as successful in achieving this goal as origi- mic these experimental paradigms. For example, cognitive nally hoped. One of the aims of this paper is to discuss some robots have replicated standard experimental paradigms of the reasons why this is the case. such as operant conditioning, fear conditioning, and skill In their book, ‘‘How the body shapes the way we think: A acquisition to better understand learning and memory new view of intelligence’’, Pfeifer and Bongard put forth an (Krichmar & Edelman, 2002; McKinstry, Seth, Edelman, & embodied approach to cognition (Pfeifer & Bongard, 2007). Krichmar, 2008). We have tested our robots in the Morris Because of this position, many of the robots that they have water maze or the Plus maze to understand how different designed demonstrate ‘‘intelligent’’ behavior with limited neural areas contribute to different types of memory (Flei- or non-existent neural processing (Bongard, Zykov, & Lip- scher, Gally, Edelman, & Krichmar, 2007; Krichmar, Nitz, son, 2006; Iida & Pfeifer, 2004). Gally, & Edelman, 2005). In many ways, the field of cognitive robotics and my own The main reason for this is to compare the cognitive ro- work on brain-based devices and neurorobotics might be re- bot’s behavior with biological cognition. This can’t be garded as the antithesis of Pfiefer and Bongard’s position. stressed enough. If we are to claim that our robots are cogni- Our designs are heavy on top-down control and neural pro- tive, then we need to test them under conditions by which cessing and light on interaction with the environment. I will cognitive scientists test their subjects. However, the flip side discuss why this is the case in detail below. Although they of this is that it does not make for exciting robot behavior and may underemphasize them, cognitive robots do adhere to it can potentially reveal limitations in the cognitive robot ap- many of Pfeifer and Bongard’s principles. It is my belief that proach. The community needs to demonstrate that cognitive cognitive robots and architectures should attempt to follow robots can transition to the real world just as humans or ani- these principles. mals do when they are outside a laboratory setting. In the remainder of the paper, I will discuss how each of Some roboticists have been able to demonstrate that Pfeifer and Bongard’s principles for designing intelligent their neuromorphic systems are effective outside of labora- agents can apply to brain-based or neuromorphic robots. tory settings. For example, the RatSLAM project has devel- Many readers may not agree Pfeifer and Bongard’s point of oped accurate cognitive maps of offices and cities based on view. For example, Clark and Grush take the position that a hippocampal inspired architecture (Wyeth & Milford, cognitive phenomena involves offline-reasoning, vicarious 2009), and our group has shown that a brain-based device environmental exploration and an internal representation can compete on the soccer field (Fleischer et al., 2006). (Clark & Grush, 1999). However, I believe there is value in The third constituent, agent design, is dealt with in examining these principles, which arise from behavior based cognitive or neuromorphic robots by necessity. If one is robotics (Arkin, 1998; Brooks, 1991), and seeing how they testing visual object recognition, then the robot will typi- might be implied to biologically inspired cognitive robotics. cally have a vision system, or if one is testing somatosensory Author's personal copy Design principles for biologically inspired cognitive robotics 75 tem that responded to features in its environment, but it also
Recommended publications
  • Current Advances in Cognitive Robotics Amir Aly, Sascha Griffiths, Francesca Stramandinoli
    Towards Intelligent Social Robots: Current Advances in Cognitive Robotics Amir Aly, Sascha Griffiths, Francesca Stramandinoli To cite this version: Amir Aly, Sascha Griffiths, Francesca Stramandinoli. Towards Intelligent Social Robots: Current Advances in Cognitive Robotics . France. 2015. hal-01673866 HAL Id: hal-01673866 https://hal.archives-ouvertes.fr/hal-01673866 Submitted on 1 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the Full Day Workshop Towards Intelligent Social Robots: Current Advances in Cognitive Robotics in Conjunction with Humanoids 2015 South Korea November 3, 2015 Amir Aly1, Sascha Griffiths2, Francesca Stramandinoli3 1- ENSTA ParisTech – France 2- Queen Mary University – England 3- Italian Institute of Technology – Italy Towards Emerging Multimodal Cognitive Representations from Neural Self-Organization German I. Parisi, Cornelius Weber and Stefan Wermter Knowledge Technology Institute, Department of Informatics University of Hamburg, Germany fparisi,weber,[email protected] http://www.informatik.uni-hamburg.de/WTM/ Abstract—The integration of multisensory information plays a processing of a huge amount of visual information to learn crucial role in autonomous robotics. In this work, we investigate inherent spatiotemporal dependencies in the data. To tackle how robust multimodal representations can naturally develop in this issue, learning-based mechanisms have been typically used a self-organized manner from co-occurring multisensory inputs.
    [Show full text]
  • Psychological Aspect of Cognitive Robotics
    VI Psychological Aspect of Cognitive Robotics 169 CHAPTER 9 Robotic Action Control: On the Crossroads of Cognitive Psychology and Cognitive Robotics Roy de Kleijn Leiden Institute for Brain and Cognition, Leiden University, The Netherlands. George Kachergis Leiden Institute for Brain and Cognition, Leiden University, The Netherlands. Bernhard Hommel Leiden Institute for Brain and Cognition, Leiden University, The Netherlands. CONTENTS 9.1 Early history of the fields .................................... 172 9.1.1 History of cognitive psychology .................... 172 9.1.2 The computer analogy ............................... 173 9.1.3 Early cognitive robots ................................ 174 9.2 Action control ................................................. 174 9.2.1 Introduction ........................................... 175 9.2.2 Feedforward and feedback control in humans ..... 175 9.2.3 Feedforward and feedback control in robots ....... 176 9.2.4 Robotic action planning .............................. 177 9.3 Acquisition of action control ................................. 178 9.3.1 Introduction ........................................... 178 9.3.2 Human action-effect learning ....................... 179 171 172 Cognitive Robotics 9.3.2.1 Traditional action-effect learning research .................................. 179 9.3.2.2 Motor babbling .......................... 179 9.3.3 Robotic action-effect learning ........................ 180 9.4 Directions for the future ...................................... 181 9.4.1 Introduction ..........................................
    [Show full text]
  • Artificial Intelligence Vs (General) Artificial Intelligence 3
    ISSN 0798 1015 HOME Revista ESPACIOS ÍNDICES / Index A LOS AUTORES / To the ! ! AUTORS ! Vol. 40 (Number 4) Year 2019. Page 3 ¿Will machines ever rule the world? ¿Las máquinas dominarán el mundo? PEDROZA, Mauricio 1; VILLAMIZAR, Gustavo 2; MENDEZ, James 3 Received: 11/08/2018 • Approved: 16/12/2018 • Published 04/02/2019 Contents 1. Introduction 2. (Narrow) Artificial Intelligence vs (General) Artificial Intelligence 3. Machines designed as tools of man 4. Machines thought as similar to man 5. Conclusions Acknowledgments Bibliographic references ABSTRACT: RESUMEN: From ancient automatons, to the latest technologies Desde los antiguos autómatas hasta las últimas of robotics and supercomputing, the continued tecnologías de la robótica, el continuo progreso de la progress of mankind has led man to even question his humanidad ha llevado al hombre a cuestionar incluso future status as a dominant species. “Will machines su estatus futuro como especie dominante. "¿Alguna ever rule the world?” or more precisely: Do we want vez dominarán las máquinas el mundo?" O más machines to rule the world? Theoretical and precisamente: ¿Queremos que las máquinas dominen technological challenges involved in this choice will be el mundo? Los retos teóricos y tecnológicos que se considered both under the conservative approach of plantean en esta elección serán considerados tanto "machines designed as tools of man" and in the bajo el enfoque conservador de "máquinas que sirven scenario of "machines thought as similar to man". al hombre" como en el escenario de "máquinas Keywords: Artificial Intelligence, Cognitive Machines, equiparables al hombre" Narrow Artificial Intelligence Strong Artificial Palabras clave: Inteligencia Artificial, Máquinas Intelligence, Artificial General Intelligence.
    [Show full text]
  • Cognitive Robotics
    Volume title 1 The editors c 2006 Elsevier All rights reserved Chapter 24 Cognitive Robotics Hector Levesque and Gerhard Lakemeyer This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cognitive robotics, as we understand it to have been envisaged by him.1 Of course, nobody can control the use of a term or the direction of research. We apologize in advance to those who feel that other approaches to cognitive robotics and related problems are inadequately represented here. 24.1 Introduction In its most general form, we take cognitive robotics to be the study of the knowledge rep- resentation and reasoning problems faced by an autonomous robot (or agent) in a dynamic and incompletely known world. To quote from a manifesto by Levesque and Reiter [42]: “Central to this effort is to develop an understanding of the relationship between the knowledge, the perception, and the action of such a robot. The sorts of questions we want to be able to answer are • to execute a program, what information does a robot need to have at the outset vs. the information that it can acquire en route by perceptual means? • what does the robot need to know about its environment vs. what need only be known by the designer? • when should a robot use perception to find out if something is true as opposed to reasoning about what it knows was true in the past? • when should the inner workings of an action be available to the robot for reasoning and when should the action be considered primitive or atomic? 1To the best of our knowledge, the term was first used publicly by Reiter at his lecture on receiving the IJCAI Award for Research Excellence in 1993.
    [Show full text]
  • Cognitive Robotics
    Cognitive Robotics . Cognitive Robotics . Embodied AI/Embodied CS . Robot capable of perception, reasoning, learning, deliberation, planning, acting, interacting, etc. Cognitive Architecture . Unified Theory of Cognition . Cognitive Models Cognitive Systems and Robotics • Since 2001: Cognitive Systems intensely funded by the EU "Robots need to be more robust, context-aware and easy-to-use. Endowing them with advanced learning, cognitive and reasoning capabilities will help them adapt to changing situations, and to carry out tasks intelligently with people" Research Areas . Biorobotics . Bio-inspirata, biomimetica, etc. Enactive Robotics . Dynamic interaction with the environment icub . Developmental Robotics (Epigenetic) . Robot learns as a baby . Incremental sensorimotor and cognitive ability [Piaget] . Neuro-Robotics . Models from cognitive neuroscience . Prosthesis, wearable systems, BCI, etc. Cog Developmental Robotics . iCub Platform . Italian Institute of Technology . EU project RobotCub: open source cognitive humanoid platf. Developmental Robotics . iCub Platform . Italian Institute of Technology . EU project RobotCub: open source cognitive humanoid platf. Developmental Robotics . iCub Platform Developmental Robotics . iCub Platform Developmental Robotics . Cognitive Architecture: The procedural memory is a network of associations between action events and perception events When an image is presented to the memory, if a previously stored image matches the stored image is recalled; otherwise, the presented image is stored Affordance . Affordance: property of an object or a feature of the immediate environment, that indicates how to interface with that object or feature ("action possibilities" latent in the environment [Gibson 1966]) . “The affordances of the environment are what it offers the animal, what it provides or furnishes, either for good or ill. The verb to afford is found in the dictionary, but the noun affordance is not.
    [Show full text]
  • Report of Comest on Robotics Ethics
    SHS/YES/COMEST-10/17/2 REV. Paris, 14 September 2017 Original: English REPORT OF COMEST ON ROBOTICS ETHICS Within the framework of its work programme for 2016-2017, COMEST decided to address the topic of robotics ethics building on its previous reflection on ethical issues related to modern robotics, as well as the ethics of nanotechnologies and converging technologies. At the 9th (Ordinary) Session of COMEST in September 2015, the Commission established a Working Group to develop an initial reflection on this topic. The COMEST Working Group met in Paris in May 2016 to define the structure and content of a preliminary draft report, which was discussed during the 9th Extraordinary Session of COMEST in September 2016. At that session, the content of the preliminary draft report was further refined and expanded, and the Working Group continued its work through email exchanges. The COMEST Working Group then met in Quebec in March 2017 to further develop its text. A revised text in the form of a draft report was submitted to COMEST and the IBC in June 2017 for comments. The draft report was then revised based on the comments received. The final draft of the report was further discussed and revised during the 10th (Ordinary) Session of COMEST, and was adopted by the Commission on 14 September 2017. This document does not pretend to be exhaustive and does not necessarily represent the views of the Member States of UNESCO. – 2 – REPORT OF COMEST ON ROBOTICS ETHICS EXECUTIVE SUMMARY I. INTRODUCTION II. WHAT IS A ROBOT? II.1. The complexity of defining a robot II.2.
    [Show full text]
  • Applications of Cognitive Robotics in Disassembly of Products
    Applications of Cognitive Robotics in Disassembly of Products By Supachai Vongbunyong B. Eng., M. Eng. A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Mechanical and Manufacturing Engineering The University of New South Wales July 2013 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name Vongbunyong First name. Supachai Other name/s: - Abbreviation for degree as g1ven in the University calendar: PhD School· Mechamcal and Manufacturing Engmeering Faculty· Engmeenng Tille. Applications of cogmtlve robotics in disassembly of products Abstract 350 words maximum: (PLEASE TYPE) Disassembly automation has encountered difficulties in disassembly proces11 due to the variability in the planning and operation levels that result from uncertainties in quality-quantity of the products returned. Thus, the concept of cognitive robotics is Implemented to the vision-based and (semi-) destructive disassembly automation for end-of-life electronic products to handle this variability. The system consists of three operating modules, I.e. cognitive robotic module, vision system module, and disassembly operation module. First, the cognitive robotic module controls the system according to its behaviour influenced by four cognitive functions: reasoning, execution monitoring, learning, and revision. The cognitive robotic agent uses rule-based reasoning to schedule the actions according to the existing knowledge and sensed information from the physical world in regard to the disassembly state. Execution monitoring is used to determine accomplishment of the process. The significant Information of the current process is learned and will be Implemented in subsequent processes. Learning also occurs in the form of demonstration conducted by the expert user via the graphic user interface to overcome unresolved complex problem.
    [Show full text]
  • Cognitive Robotics and Control
    electronics Editorial Cognitive Robotics and Control Cecilio Angulo IDEAI-UPC, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; [email protected]; Tel.: +34-9341-34021 Received: 29 April 2020; Accepted: 1 May 2020; Published: 6 May 2020 1. Introduction Robotics and control are both research and application domains that have been frequently engineered with the use of interdisciplinary approaches like cybernetics [1]. Cognition is a particular concept of this approach, abstracted from the context of living organisms to that of artificial devices, about knowledge acquisition and understanding through thought, experience, and the senses [2]. Cognitive robotics and control refer to knowledge processing as much as knowledge generation from problem understanding, leading to special forms of architectures enabling systems to behave in an autonomous way [3–5]. The main aim of this special issue is to highlight emerging applications and address recent breakthroughs in the domain of cognitive robotics and control and related areas. Procedures, algorithms, architectures and implementations for reasoning, problem solving or decision making in the domain of robotics and control are elements under consideration. 2. The Present Issue This special issue consists of eight papers covering important topics in the field of cognitive robotics and control, including robotic platforms in interactive scenarios such as operating rooms, trajectories learning and optimisation from nature-inspired and computational cognition approaches, and hardware developments for motor control. The contents of these papers are introduced here. Robotic platforms are taking their place in the operating room, providing stability and accuracy during surgery. Most of these platforms are tele-operated, as in Reference [6], where the learning from demonstration (LfD) approach is extended for object tele-manipulation.
    [Show full text]
  • Social Robots Social and Family Companion Robots
    Advanced Manufacturing Technology (TechVision) Social Robots Social and Family Companion Robots D718-TV March 04, 2016 Contents Section Slide Numbers Innovation–Social Robots 3 Social Home Robot 4 Family Companion Robot 5 Leonardo–A Socially Interactive Robot 6 Keepon® Pro 7 Strategic Insights 8 Key Patents 9 Industry Interactions 11 D718-TV 2 Innovations in Social Robots D718-TV 3 Social Home Robot Jibo Inc.–Jibo Tech. Profile Wide-scale Adoption Market Opportunity Jibo is a social interactive home robot for Pre-orders for Jibo have been very family and personnel assistance. Jibo is a active from early 2015. The • Robotics static robot but is capable of seeing, company is planning on shipping • Sensors hearing, speaking, helping, learning and from April 2016. This novel • Social/Commercial robots engaging in various household chores and innovation is expected to be • Space roles such as delivering information, commercialized over the relative • Defence and military controlling the environment, capturing near term. • Hospitality and tourism pictures, providing an educative medium for children, browsing the Web and providing relevant information, managing and co-ordinating family activities. Technology Convergence 1 9 22 Robotics is actually a convergence of Competing Aspects major technologies such as sensors, microelectronics and so on. This novel Jibo has a touch sensitive 8 3 aluminum body which has the technology development has opportunities to be widely adopted for capability to rotate in all three axis Technology different applications in various and face the person who is 7 Readiness 4 addressing it. The system runs on a Level industries mentioned in market opportunities. Robotics products such Linux platform and ARM processor 6 5 and the data collected by the as Jibo have potential to impact on the system is directly stored in the Jibo commercial electronics market.
    [Show full text]
  • Towards Cognitive Robotics : Robotics, Biology and Developmental
    Towards cognitive robotics : robotics, biology and developmental psychology LEE, Mark, NEHMZOW, Ulrich and RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-1303> Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/5282/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version LEE, Mark, NEHMZOW, Ulrich and RODRIGUES, Marcos (2012). Towards cognitive robotics : robotics, biology and developmental psychology. In: MCFARLAND, David, STENNING, Keith, MCGONIGLE, Maggie and HENDRY, Derek, (eds.) The complex mind : an interdisciplinary approach. Basingstoke, Palgrave Macmillan, 103-126. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk Towards Cognitive Robotics: Robotics, Biology and Developmental Psychology Mark Lee, Ulrich Nehmzow and Marcos Rodrigues 1 Introduction — Early Robotics Research The question of how “intelligent” controllers can be designed for machines has always attracted much interest and research activity. The idea of reproducing some facets of human cognition in a designed artifact has fascinated scientists, philosophers and charlatans throughout history. But despite the enormous efforts that have been directed at this issue in the twentieth century, only very recently has any significant progress been made. The robots of the last century typically were brittle, they failed in even simple tasks as soon as these tasks deviated even slightly from the original specifications; they were slow; and they needed constant attention from software engineers. Up to the late 1980s and early 1990s robotics research was dominated by work originating from the control theory and cybernetics communities, which meant that the fundamental assumptions of how intelligent behaviour could be achieved were very similar if not identical.
    [Show full text]
  • Cognitive Robotics to Understand Human Beings
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE QUARTERLY REVIEW No.20 / July 2006 1 Cognitive Robotics to Understand Human Beings KAYOKO ISHII Life Science Unit taking place at that time. 1 Introduction In Japan, research on the computational theory of the brain[1] and research combining The question of what human beings (self theory and physiological experiments[2] has been and others), the mind, and the world are has carried out. One of the major themes in Japanese always been of great interest to humankind. brain science in the 1990s was “creating the Most academic disciplines originated to answer brain” beside analytical experimental sciences these questions. As neuroscience has advanced, (“understanding the brain”) and research oriented the notion that brain function is closely related to medical applications (“protecting the brain”). to the mind has become more widely accepted, This theme was significant in that it not only increasing the expectation that unknown aspects expressed the concept of understanding brain of the mind could be explored by neuroscience. functions through “cycles of creation of models of However, a long-standing question regarding the brain, computational theory and neural networks, mind is that one’s mind seems to be associated their verification through experimental science, with oneself as a physical existence, yet its and improvement of theories and models,” but content seems not to be expressed physically. also expressed the unconventional orientation Simply accumulating knowledge acquired of creating new systems inspired by the brain. through external analysis and observation of Furthermore, computational neuroscience was the brain as a physical entity is not sufficient to defined as “to investigate information processing elucidate the essential functions of the brain and of the brain to the extent that artificial machines, the nature of the mind.
    [Show full text]
  • Cognitive Robotics: the Science of Building Intelligent Autonomous Robots and Software Agents
    Cognitive Robotics: The science of building intelligent autonomous robots and software agents Giuseppe De Giacomo University of Roma “La Sapienza”, Italy Miegunyah Fellow, University of Melbourne, Australia Cognitive Robotics Giuseppe De Giacomo - Miegunyah Fellow 1 Cognitive Robotics: The science of building intelligent autonomous robots and software agents INTRODUCTION Cognitive Robotics Giuseppe De Giacomo - Miegunyah Fellow 2 Introduction • Cognitive Robotics is the science of building autonomous robots/agents that operate in changing, incompletely known, unpredictable environments. • Cognitive robots are “smart”: have autonomy, including autonomous reasoning and planning capabilities. • Cognitive robots are already a reality. Cognitive Robotics Giuseppe De Giacomo - Miegunyah Fellow 3 Example: “Curiosity” the Latest NASA Mars Rover •! “Cognitive robotics” in a NASA cartoon! Cognitive Robotics Giuseppe De Giacomo - Miegunyah Fellow 4 Example: “Curiosity” the Latest NASA Mars Rover •! The previous video is referring to Curiosity, the latest NASA Mars Rover (a large, mobile laboratory), which started its mission a year ago (landed on Mars on Aug. 6, 2012) •! Within the first 8 months of a planned 23-month primary mission, Curiosity met its major objective of finding evidence of a past environment well suited to supporting microbial life. Cognitive Robotics Giuseppe De Giacomo - Miegunyah Fellow 5 Robots Come in a Variety of Shapes •! Nowadays through increasing use of software (and hence CS) robots are increasingly acquiring forms of autonomy Rhex: power - and computation - autonomous hexapod robot with compliant legs and only one actuator per leg, developed by a consortium of American universities, including University of Michigan, McGill University, Carnegie Mellon University, University of California, Berkeley, Princeton University, Cornell University, University of Pennsylvania, within the RHex DARPA project.
    [Show full text]