Cognitive Robotics to Understand Human Beings

Total Page:16

File Type:pdf, Size:1020Kb

Cognitive Robotics to Understand Human Beings View metadata, citation and similar papers at core.ac.uk brought to you by CORE QUARTERLY REVIEW No.20 / July 2006 1 Cognitive Robotics to Understand Human Beings KAYOKO ISHII Life Science Unit taking place at that time. 1 Introduction In Japan, research on the computational theory of the brain[1] and research combining The question of what human beings (self theory and physiological experiments[2] has been and others), the mind, and the world are has carried out. One of the major themes in Japanese always been of great interest to humankind. brain science in the 1990s was “creating the Most academic disciplines originated to answer brain” beside analytical experimental sciences these questions. As neuroscience has advanced, (“understanding the brain”) and research oriented the notion that brain function is closely related to medical applications (“protecting the brain”). to the mind has become more widely accepted, This theme was significant in that it not only increasing the expectation that unknown aspects expressed the concept of understanding brain of the mind could be explored by neuroscience. functions through “cycles of creation of models of However, a long-standing question regarding the brain, computational theory and neural networks, mind is that one’s mind seems to be associated their verification through experimental science, with oneself as a physical existence, yet its and improvement of theories and models,” but content seems not to be expressed physically. also expressed the unconventional orientation Simply accumulating knowledge acquired of creating new systems inspired by the brain. through external analysis and observation of Furthermore, computational neuroscience was the brain as a physical entity is not sufficient to defined as “to investigate information processing elucidate the essential functions of the brain and of the brain to the extent that artificial machines, the nature of the mind. either computer programs or robots, can solve The brain has many parallel units (modules) the same computational problems as solved by that represent different parts of the body the brain, essentially in the same principle” [3]. or participate in different functions. When Based on this conceptual framework, innovative neuroscientists study the properties of a module, researchers, although still few in number, are they apply a controlled stimulus to the subject, engaging in studies to elucidate human brain so that it perturbs only the targeted module functions through “cycles of creation of brain (or limited numbers of modules, including the algorithms, their verification through robots, target). When human beings engage in usual noninvasive measurements of brain activities, activities, however, many different modules psychology, and experimental sciences, and work in an autonomous and distributed manner. further improvement of the algorithms.” Particular ideas or actions are generated either From the perspective of ordinary Japanese by the exchange of information between sensibilities as well, the mind cannot be specific modules or the selective involvements considered in isolation from the body, the of certain modules. Unless the algorithms for environment, and the existence of other people. these information exchanges and selections can In other words, attempting to create the brain be elucidated, observation of the physical state alone will not elucidate the essential functions of of the brain at a given time cannot lead to an the brain itself or the mechanisms of the mind. understanding of the information processing Embodiment and context dependence are key 11 SCIENCE & TECHNOLOGY TRENDS QUARTERLY REVIEW No.20 / July 2006 concepts in cognitive science and neuroscience, 2-1 Cognitive robotics and robots given bodies to interact with the “Cognitive robotics” in this report refers to environment are serving as effective simulation an comprehensive science in which robotics, tools [4]. as described above, neurosciences (ranging from the experimental to the theoretical or mathematical variety and neuroinformatics), 2 The Field of Cognitive cognitive science, psychology (psychophysics and Robotics behavioral measurement) and behavioral sciences Since their beginning, robots have been seamlessly collaborate in unity while keeping constructed to imitate, replace, and supplement variations in perspective, closely connecting human beings or a part of human functions. with fields such as philosophy, social sciences, Since 1960, the mainstream of robot development anthropology, and economics; exchanging has been oriented to industrial applications - their knowledge and methodologies, and manufacturing robots. In recent years however, executing mutual verification. Robotics herein we have witnessed a rapid increase in the represents an expectation of interdisciplinary development of robots designed to serve ordinary integration, rather than the simple collection people rather than experts [5 -7]. Traditionally, of independent research fields, and will be robotics referred to a combination of science, realised by using robots as a common verification engineering, psychology, sociology, and other platform to highlight weaknesses and errors in disciplines necessary “for the development, research processes in individual disciplines and construction, and dissemination of practical contradictions among different disciplines, robots,” with particular emphasis on the For the development of commercial robots, a engineering aspects. demand-oriented perspective, based on future During the process of seeking the necessary prospects and on a broad understanding of conditions for robots to act as flexibly, smoothly, humans and society, is required. For humanoid and autonomously as human beings in the real robots (humanoids hereafter), the initial phase of world, robotics researchers began to turn their development has been completed for structural attention to human cognitive mechanisms, modules and actuators, which correspond to learning, recognition of others, and social their bodies, and the computers to control them. behaviors. In Japan, since around 1994, robotics Currently, humanoid hardware developed in researchers have organized research groups, Japan is widely used, both in Japan and abroad such as the Keihanna Research Group for as platforms for the development of software to Sociointelligenesis, with the primary aim of serve as the cognitive mechanisms. Certainly, elucidating human cognition, development, and future success in the development of practical behaviors by using robots. These researchers humanoids will depend on the improvement of have adopted a “constructivist” approach, which their “cognitive functions.” aims to explain human cognitive mechanisms Some research laboratories dedicated to the by creating and testing robots that can develop development of practical robots have taken up humanlike cognitive abilities to cope with the parallel research in cognitive robotics, which real world (“cognitive developmental robotics”)[8]. offers this fundamental knowledge. Even These researchers have the advantage of having researchers specializing in the development not only advanced knowledge and experiences in of structural modules and actuators must take physics and engineering, which share a common compatibility with next-generation cognitive basis in mathematics, but also a broad knowledge functions into consideration. Energy consumption and understanding of biology, the humanities, is another important future issue expected and the social sciences, and of having a solid to accompany advances in robotic cognitive verification platform, such as robots. function. Research to solve this issue will become necessary. 12 13 SCIENCE & TECHNOLOGY TRENDS QUARTERLY REVIEW No.20 / July 2006 Figure 1 : Cognitive robotics Mathematics Philosophy Computational neur Social Theor osciences Theoreticalysics sciences ph y or Economics iented Neur inf Anthro- ormaticso- pology ing Mater vioral mation technology ial or or Beha sciences Inf iented Psychology System engineer Mechanics Cognitive Neuro- System biology sciences sciences Materials Biology Prepared by the STFC Energy consumption problems associated with improvement in cognitive functions Neural systems are enormous energy consumers in animals. Humans have remarkably large brains for their bodies (approximately 2.5% of body weight), and the brain consumes 20% of the body’s total energy. The cerebral neocortex of primates increased exponentially in volume as their social behaviour became more complex (the social brain hypothesis, Reference 14). In order for robots to work in complex human society, improvement of their cognitive functions is indispensable. This raises the problem of energy consumption for information processing. Furthermore, because of size restrictions and mobility requirements for humanoid robots, it is critical to invent new materials and structures enabling flexible and efficient information processing within limited spaces. This means that humanoid robots can be most desirable test beds for the creation of new paradigms for computational theories and materials/structures. Although noninvasive methods to measure Such algorithms, if available, would serve as brain activity have progressed, certain constraints the foundation for the development of new remain. Currently, interpretation of results computers and human-machine interfaces. requires either (1) statistical analysis of data from multiple measurements or (2) training subjects 2-2 Global progress of robotics
Recommended publications
  • Current Advances in Cognitive Robotics Amir Aly, Sascha Griffiths, Francesca Stramandinoli
    Towards Intelligent Social Robots: Current Advances in Cognitive Robotics Amir Aly, Sascha Griffiths, Francesca Stramandinoli To cite this version: Amir Aly, Sascha Griffiths, Francesca Stramandinoli. Towards Intelligent Social Robots: Current Advances in Cognitive Robotics . France. 2015. hal-01673866 HAL Id: hal-01673866 https://hal.archives-ouvertes.fr/hal-01673866 Submitted on 1 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the Full Day Workshop Towards Intelligent Social Robots: Current Advances in Cognitive Robotics in Conjunction with Humanoids 2015 South Korea November 3, 2015 Amir Aly1, Sascha Griffiths2, Francesca Stramandinoli3 1- ENSTA ParisTech – France 2- Queen Mary University – England 3- Italian Institute of Technology – Italy Towards Emerging Multimodal Cognitive Representations from Neural Self-Organization German I. Parisi, Cornelius Weber and Stefan Wermter Knowledge Technology Institute, Department of Informatics University of Hamburg, Germany fparisi,weber,[email protected] http://www.informatik.uni-hamburg.de/WTM/ Abstract—The integration of multisensory information plays a processing of a huge amount of visual information to learn crucial role in autonomous robotics. In this work, we investigate inherent spatiotemporal dependencies in the data. To tackle how robust multimodal representations can naturally develop in this issue, learning-based mechanisms have been typically used a self-organized manner from co-occurring multisensory inputs.
    [Show full text]
  • Psychological Aspect of Cognitive Robotics
    VI Psychological Aspect of Cognitive Robotics 169 CHAPTER 9 Robotic Action Control: On the Crossroads of Cognitive Psychology and Cognitive Robotics Roy de Kleijn Leiden Institute for Brain and Cognition, Leiden University, The Netherlands. George Kachergis Leiden Institute for Brain and Cognition, Leiden University, The Netherlands. Bernhard Hommel Leiden Institute for Brain and Cognition, Leiden University, The Netherlands. CONTENTS 9.1 Early history of the fields .................................... 172 9.1.1 History of cognitive psychology .................... 172 9.1.2 The computer analogy ............................... 173 9.1.3 Early cognitive robots ................................ 174 9.2 Action control ................................................. 174 9.2.1 Introduction ........................................... 175 9.2.2 Feedforward and feedback control in humans ..... 175 9.2.3 Feedforward and feedback control in robots ....... 176 9.2.4 Robotic action planning .............................. 177 9.3 Acquisition of action control ................................. 178 9.3.1 Introduction ........................................... 178 9.3.2 Human action-effect learning ....................... 179 171 172 Cognitive Robotics 9.3.2.1 Traditional action-effect learning research .................................. 179 9.3.2.2 Motor babbling .......................... 179 9.3.3 Robotic action-effect learning ........................ 180 9.4 Directions for the future ...................................... 181 9.4.1 Introduction ..........................................
    [Show full text]
  • Robot Theatre Marek Perkowski 1
    Towards Robot Theatre Marek Perkowski 1. History of robot theatre 2. Modern robot theatre 3. Robot theatre at PSU 4. Models of robot theatre 5. Research topics on Robot Theatre 6. Future Robot Theatre History of Robot Theatre From antiquity until 1996 Heron’s Book Automata Robot Theatre of Hero • A collection of constructions called miracles of Alexandria (thaumata) for temples. • Heron describes automatic rotating objectives, noise such as thunder, automatic opening doors. • Philon from Byzanz describes the existence of automata in his book Mechaniki syntaxis, that includes pneumatic apparatus and automatic astronomical devices as early as 300 BC. Albertus Magnus and his robot head Albertus is recorded as having made a mechanical automaton in the form of a brass head that would answer questions put to it. Knight of Leonardo Da Vinci 1. Leonardo's robot refers to a humanoid automaton designed by Leonardo da Vinci around the year 1495. 2. The design notes for the robot appear in sketchbooks that were rediscovered in the 1950s. 3. It is not known whether or not an attempt was made to build the device during da Vinci's lifetime. 4. Since the discovery of the sketchbook, the robot has been built faithfully based on Leonardo's design; this proved it was fully functional. Duck of Vaucanson • The Canard Digérateur, or Digesting Duck, was an automaton in the form of a duck, created by Jacques de Vaucanson in 1739. • The mechanical duck appeared to have the ability to eat kernels of grain, and to metabolize and defecate them Constructed and unveiled in 1770 by Wolfgang von Turk of Kempelen Kempelen (1734–1804) to impress the Empress Maria Theresa • The Turk was in fact a mechanical illusion that allowed a human chess master hiding inside to operate the machine.
    [Show full text]
  • Artificial Intelligence Vs (General) Artificial Intelligence 3
    ISSN 0798 1015 HOME Revista ESPACIOS ÍNDICES / Index A LOS AUTORES / To the ! ! AUTORS ! Vol. 40 (Number 4) Year 2019. Page 3 ¿Will machines ever rule the world? ¿Las máquinas dominarán el mundo? PEDROZA, Mauricio 1; VILLAMIZAR, Gustavo 2; MENDEZ, James 3 Received: 11/08/2018 • Approved: 16/12/2018 • Published 04/02/2019 Contents 1. Introduction 2. (Narrow) Artificial Intelligence vs (General) Artificial Intelligence 3. Machines designed as tools of man 4. Machines thought as similar to man 5. Conclusions Acknowledgments Bibliographic references ABSTRACT: RESUMEN: From ancient automatons, to the latest technologies Desde los antiguos autómatas hasta las últimas of robotics and supercomputing, the continued tecnologías de la robótica, el continuo progreso de la progress of mankind has led man to even question his humanidad ha llevado al hombre a cuestionar incluso future status as a dominant species. “Will machines su estatus futuro como especie dominante. "¿Alguna ever rule the world?” or more precisely: Do we want vez dominarán las máquinas el mundo?" O más machines to rule the world? Theoretical and precisamente: ¿Queremos que las máquinas dominen technological challenges involved in this choice will be el mundo? Los retos teóricos y tecnológicos que se considered both under the conservative approach of plantean en esta elección serán considerados tanto "machines designed as tools of man" and in the bajo el enfoque conservador de "máquinas que sirven scenario of "machines thought as similar to man". al hombre" como en el escenario de "máquinas Keywords: Artificial Intelligence, Cognitive Machines, equiparables al hombre" Narrow Artificial Intelligence Strong Artificial Palabras clave: Inteligencia Artificial, Máquinas Intelligence, Artificial General Intelligence.
    [Show full text]
  • Cognitive Robotics
    Volume title 1 The editors c 2006 Elsevier All rights reserved Chapter 24 Cognitive Robotics Hector Levesque and Gerhard Lakemeyer This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cognitive robotics, as we understand it to have been envisaged by him.1 Of course, nobody can control the use of a term or the direction of research. We apologize in advance to those who feel that other approaches to cognitive robotics and related problems are inadequately represented here. 24.1 Introduction In its most general form, we take cognitive robotics to be the study of the knowledge rep- resentation and reasoning problems faced by an autonomous robot (or agent) in a dynamic and incompletely known world. To quote from a manifesto by Levesque and Reiter [42]: “Central to this effort is to develop an understanding of the relationship between the knowledge, the perception, and the action of such a robot. The sorts of questions we want to be able to answer are • to execute a program, what information does a robot need to have at the outset vs. the information that it can acquire en route by perceptual means? • what does the robot need to know about its environment vs. what need only be known by the designer? • when should a robot use perception to find out if something is true as opposed to reasoning about what it knows was true in the past? • when should the inner workings of an action be available to the robot for reasoning and when should the action be considered primitive or atomic? 1To the best of our knowledge, the term was first used publicly by Reiter at his lecture on receiving the IJCAI Award for Research Excellence in 1993.
    [Show full text]
  • Mapping the Evolution of the Robotics Industry: a Cross-Country Comparison
    MAPPING THE EVOLUTION OF THE ROBOTICS INDUSTRY: A CROSS-COUNTRY COMPARISON Eric Estolatan, Aldo Geuna, Marco Guerzoni, and Massimiliano Nuccio INNOVATION POLICY LAB WORKING PAPER SERIES 2018-01 Abstract Industry 4.0 may be regarded as an emerging approach to the adoption of next-generation robotics for industrial applications. Our study sheds light on the current state of robotics, with a particular focus on robots for industrial applications. The research combines publicly-available information from company press releases, news articles, peer-reviewed journals and trade and industry reports. The paper is organized in four sections. Section 1 discusses some definitions of robotics and robotics sub- classes, and various robotics classifications. Sections 2 and 3 provide a snapshot of demand and supply of robotics, and offers some insights into select regional markets and global technological trends. Section 4 describes the challenges and opportunities surrounding robotics and Industry 4.0, and the future impact of these technologies. JEL Codes:O33, L52, L63 Keywords: robotics, Industry 4.0, cyber-physical systems, industrial robots, co-bots Acknowledgements The authors would like to thank ASPEN Institute Italia for the reference to some data from the report: Digital disruption and the transformation of Italian manufacturing by Geuna A., Guerzoni, M., Nuccio M., Pammolli F. and Rungi A. (2017) available at: https://www.aspeninstitute.it/aspenia- online/article/digital-disruption-and-manufacturing-transformation-italian-case-study 2 1. Introduction: the rise of cyber-physical systems Digital technology has the potential to re-shape current industrial processes at a magnitude comparable to previous industrial revolutions. The first one which occurred the XIX century was characterized by steam and water; the second at the beginning of the XX century was related to electricity and the moving assembly line, which steered mass production; with the third revolution of the 1980s we shift from analog to digital technologies.
    [Show full text]
  • Developmental Reasoning and Planning with Robot Through Enactive Interaction with Human Maxime Petit
    Developmental reasoning and planning with robot through enactive interaction with human Maxime Petit To cite this version: Maxime Petit. Developmental reasoning and planning with robot through enactive interaction with human. Automatic. Université Claude Bernard - Lyon I, 2014. English. NNT : 2014LYO10037. tel-01015288 HAL Id: tel-01015288 https://tel.archives-ouvertes.fr/tel-01015288 Submitted on 26 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N˚d’ordre 37 - 2014 Année 2013 THESE DE L’UNIVERSITE DE LYON présentée devant L’UNIVERSITE CLAUDE BERNARD LYON 1 Ecole Doctorale Neurosciences et Cognition pour l’obtention du Diplôme de Thèse (arrété du 7 août 2006) Discipline : SCIENCES COGNITIVES Option : INFORMATIQUE présentée et soutenue publiquement le 6 Mars 2014 par Maxime Raisonnement et Planification Développementale d’un Robot via une Interaction Enactive avec un Humain Developmental Reasoning and Planning with Robot through Enactive Interaction with Human dirigée par Peter F. Dominey devant le jury composé de : Pr. Rémi Gervais Président du jury Pr. Giorgio Metta Rapporteur Pr. Philippe Gaussier Rapporteur Pr. Chrystopher Nehaniv Examinateur Dr. Jean-Christophe Baillie Examinateur Dr. Peter Ford Dominey Directeur de thèse 2 Stem-Cell and Brain Research Insti- École doctorale Neurosciences et Cog- tute, INSERM U846 nition (ED 476 - NSCo) 18, avenue Doyen Lepine UCBL - Lyon 1 - Campus de Gerland 6975 Bron Cedex 50, avenue Tony Garnier 69366 Lyon Cedex 07 Pour mon père.
    [Show full text]
  • New Technologies for Human Robot Interaction and Neuroprosthetics
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Engineering, Computing and Mathematics 2017-07-01 Human-Robot Interaction and Neuroprosthetics: A review of new technologies Cangelosi, A http://hdl.handle.net/10026.1/9872 10.1109/MCE.2016.2614423 IEEE Consumer Electronics Magazine All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. CEMAG-OA-0004-Mar-2016.R3 1 New Technologies for Human Robot Interaction and Neuroprosthetics Angelo Cangelosi, Sara Invitto Abstract—New technologies in the field of neuroprosthetics and These developments in neuroprosthetics are closely linked to robotics are leading to the development of innovative commercial the recent significant investment and progress in research on products based on user-centered, functional processes of cognitive neural networks and deep learning approaches to robotics and neuroscience and perceptron studies. The aim of this review is to autonomous systems [2][3]. Specifically, one key area of analyze this innovative path through the description of some of the development has been that of cognitive robots for human-robot latest neuroprosthetics and human-robot interaction applications, in particular the Brain Computer Interface linked to haptic interaction and assistive robotics. This concerns the design of systems, interactive robotics and autonomous systems. These robot companions for the elderly, social robots for children with issues will be addressed by analyzing developmental robotics and disabilities such as Autism Spectrum Disorders, and robot examples of neurorobotics research.
    [Show full text]
  • Cognitive Robotics
    Cognitive Robotics . Cognitive Robotics . Embodied AI/Embodied CS . Robot capable of perception, reasoning, learning, deliberation, planning, acting, interacting, etc. Cognitive Architecture . Unified Theory of Cognition . Cognitive Models Cognitive Systems and Robotics • Since 2001: Cognitive Systems intensely funded by the EU "Robots need to be more robust, context-aware and easy-to-use. Endowing them with advanced learning, cognitive and reasoning capabilities will help them adapt to changing situations, and to carry out tasks intelligently with people" Research Areas . Biorobotics . Bio-inspirata, biomimetica, etc. Enactive Robotics . Dynamic interaction with the environment icub . Developmental Robotics (Epigenetic) . Robot learns as a baby . Incremental sensorimotor and cognitive ability [Piaget] . Neuro-Robotics . Models from cognitive neuroscience . Prosthesis, wearable systems, BCI, etc. Cog Developmental Robotics . iCub Platform . Italian Institute of Technology . EU project RobotCub: open source cognitive humanoid platf. Developmental Robotics . iCub Platform . Italian Institute of Technology . EU project RobotCub: open source cognitive humanoid platf. Developmental Robotics . iCub Platform Developmental Robotics . iCub Platform Developmental Robotics . Cognitive Architecture: The procedural memory is a network of associations between action events and perception events When an image is presented to the memory, if a previously stored image matches the stored image is recalled; otherwise, the presented image is stored Affordance . Affordance: property of an object or a feature of the immediate environment, that indicates how to interface with that object or feature ("action possibilities" latent in the environment [Gibson 1966]) . “The affordances of the environment are what it offers the animal, what it provides or furnishes, either for good or ill. The verb to afford is found in the dictionary, but the noun affordance is not.
    [Show full text]
  • Report of Comest on Robotics Ethics
    SHS/YES/COMEST-10/17/2 REV. Paris, 14 September 2017 Original: English REPORT OF COMEST ON ROBOTICS ETHICS Within the framework of its work programme for 2016-2017, COMEST decided to address the topic of robotics ethics building on its previous reflection on ethical issues related to modern robotics, as well as the ethics of nanotechnologies and converging technologies. At the 9th (Ordinary) Session of COMEST in September 2015, the Commission established a Working Group to develop an initial reflection on this topic. The COMEST Working Group met in Paris in May 2016 to define the structure and content of a preliminary draft report, which was discussed during the 9th Extraordinary Session of COMEST in September 2016. At that session, the content of the preliminary draft report was further refined and expanded, and the Working Group continued its work through email exchanges. The COMEST Working Group then met in Quebec in March 2017 to further develop its text. A revised text in the form of a draft report was submitted to COMEST and the IBC in June 2017 for comments. The draft report was then revised based on the comments received. The final draft of the report was further discussed and revised during the 10th (Ordinary) Session of COMEST, and was adopted by the Commission on 14 September 2017. This document does not pretend to be exhaustive and does not necessarily represent the views of the Member States of UNESCO. – 2 – REPORT OF COMEST ON ROBOTICS ETHICS EXECUTIVE SUMMARY I. INTRODUCTION II. WHAT IS A ROBOT? II.1. The complexity of defining a robot II.2.
    [Show full text]
  • Ethics and Robotics. a First Approach1
    ETHICS AND ROBOTICS. A FIRST APPROACH1. RAFAEL DE ASÍS ROIG2 Abstract: Clearly, technical and scientific progress and moral progress do not necessarily go hand in hand. Therefore, this article encourages reflection on the new ethical challenges posed by such developments and, in particular, by robotics, a field that has developed greatly in recent decades and that has led to possibilities unimaginable until recently. Thus, the author examines here the so-called roboethics, its content, the specific fields it addresses –such as social relations and moral agency of robots–, as well as the different approaches and views on these issues. Keywords: Ethics, robotics, moral agent, human rights Contents: I. INTRODUCTION; II. ROBOTICS; III. ROBOETHICS. I. INTRODUCTION In the 20th and 21st centuries there have been major advances in both the scientific and technical field. The first one has been named the science century. In this regard, it has been claimed that the first half of the 20th century focused on Physics whilst the second half on Biology, Genetics and Computer Science (Rifkin 1998: p. 20). As for the 21st century until now is characterised by the rise of Neuroscience and Nanotechnology as well as by advances in the field of Robotics (in connection with the other areas but especially to I.T). However, despite all these advances, poverty, hunger and dissatisfaction regarding rights still persist. It is not surprising that Th. Pogge commences his book World Poverty and Human Rights examining how it is possible that extreme poverty affects half of humanity despite the enormous economic and technological progress, and how it is possible that the distribution of scientific and technological benefits is so uneven (Pogge 2002).
    [Show full text]
  • Evolutionary Developmental Soft Robotics As a Framework to Study Intelligence and Adaptive Behavior in Animals and Plants
    PERSPECTIVE published: 17 July 2017 doi: 10.3389/frobt.2017.00034 Evolutionary Developmental Soft Robotics As a Framework to Study Intelligence and Adaptive Behavior in Animals and Plants Francesco Corucci1,2*, Nick Cheney2,3, Sam Kriegman2, Josh Bongard2 and Cecilia Laschi1 1 The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy, 2 Morphology, Evolution & Cognition Laboratory, University of Vermont, Burlington, VT, United States, 3 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States In this paper, a comprehensive methodology and simulation framework will be reviewed, designed in order to study the emergence of adaptive and intelligent behavior in generic soft-bodied creatures. By incorporating artificial evolutionary and developmental pro- cesses, the system allows to evolve complete creatures (brain, body, developmental properties, sensory, control system, etc.) for different task environments. Whether the Edited by: evolved creatures will resemble animals or plants is in general not known a priori, and Kasper Stoy, IT University of Copenhagen, depends on the specific task environment set up by the experimenter. In this regard, the Denmark system may offer a unique opportunity to explore differences and similarities between Reviewed by: these two worlds. Different material properties can be simulated and optimized, from Dimitris Tsakiris, a continuum of soft/stiff materials, to the interconnection of heterogeneous structures, FORTH Institute of Computer Science, Greece both found in animals and plants alike. The adopted genetic encoding and simulation Naveen Kuppuswamy, environment are particularly suitable in order to evolve distributed sensory and control Toyota Research Institute (TRI), United States systems, which play a particularly important role in plants.
    [Show full text]