A European Supergrid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(SEUPB) Mid Term Evaluation of the INTERREG IVA Programme Final
Special EU Programmes Body (SEUPB) Mid Term Evaluation of the INTERREG IVA Programme Final Report October 2013 SEUPB Mid Term Evaluation of INTERREG IVA Final Report October 2013 Table of Contents 1 EXECUTIVE SUMMARY ................................................................................................................ 1 1.1 INTRODUCTION ............................................................................................................................... 1 1.2 TERMS OF REFERENCE AND STUDY APPROACH ...................................................................... 2 1.3 CONCLUSIONS AND RECOMMENDATIONS ................................................................................. 5 2 INTRODUCTION & BACKGROUND ............................................................................................ 12 2.1 INTRODUCTION/SCOPE OF THIS REPORT ................................................................................ 12 2.2 TERMS OF REFERENCE ............................................................................................................... 12 2.3 PROGRAMME BACKGROUND ...................................................................................................... 13 2.4 CHANGES IN DELIVERY STRUCTURES/PROCESSES FROM THE LAST PROGRAMME ........ 24 2.5 EVALUATION METHODOLOGY AND REPORT STRUCTURE ..................................................... 25 3 STRATEGIC CONTEXT ............................................................................................................... 30 3.1 INTRODUCTION -
Asia Pacific Super Grid – Solar Electricity Generation, Storage and Distribution
DOI 10.1515/green-2012-0013 Green 2012; 2(4): 189–202 Andrew Blakers*, Joachim Luther and Anna Nadolny Asia Pacific Super Grid – Solar electricity generation, storage and distribution Abstract: This paper explores the large scale transmission tries have rapidly growing economies leading to rapidly of solar electricity to Southeast Asia from Australia. growing energy demand (2). The continent of Australia Despite the expense and losses incurred in long distance has a population of 23 million people and an average pop- transmission of Australian solar electricity, it appears to ulation density of 3 people per square kilometer. Australia be competitive with locally produced solar electricity is well endowed with indigenous energy resources. In par- because of high insolation levels in Australia. Supplemen- ticular, Australia has immense solar energy resources in tation of locally produced electricity (both from renewable the centre and northwest (3). and conventional sources) with power from Australia, to- A glance at the South East Asian page of a world atlas gether with substantial integrated energy storage, would shows a long and narrow chain of islands between Austra- allow a high solar electricity fraction to be achieved in lia and the Malay Peninsula. Major desert regions exist to Southeast Asia. the north (central China) and south (central and north west Australia). This dipole suggests the possibility of Keywords: solar energy, HVDC, photovoltaics, energy storage, transporting large quantities of solar electricity to South renewable energy East Asia via high voltage cables from large solar farms located in Australia, and solar and wind farms in China. PACS® (2010). 88.05.Lg The latitudes are 20°S and 40°N respectively, which would provide seasonal balance to the solar resource from each region. -
Modeling and Simulation of an Hvdc Network for Offshore Wind Farms”
Project Report – Budget TREBALL DE FI DE GRAU “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) Project Report “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) TABLE OF CONTENTS TABLE OF CONTENTS i List of Figures . iii List of Tables . v Abstract . vii Resum . vii Resumen . vii Chapter 1: Introduction 1 1.1 Aim and goals of this project . 1 1.2 Context and motivation . 1 1.2.1 Wind power and offshore wind farms . 2 1.2.2 HVDC transmission . 4 1.3 Project Report outline . 6 Chapter 2: Modeling of an HVDC network 7 2.1 Analytical model . 7 2.1.1 HVDC lines . 7 2.1.2 Voltage Source Converters . 9 2.1.3 General model . 10 2.1.4 Wind energy conversion model . 11 2.1.5 Control scheme: Droop control . 14 2.2 Case Studies . 16 2.2.1 Case Study 1: 4-terminal, 3-line system . 16 2.2.2 Case Study 2: 5-terminal, 6-line system . 17 2.2.3 Case Study 3: North Sea Transnational Grid . -
Power Grid Connection and Its Technical Issues
Power Grid Connection and its Technical Issues The fourth in a 2020 series of webinars from the Clean Energy Ministerial Regional and Global Energy Interconnection Initiative May 26, 2020 1200(GMT)/2000(GMT+8, Beijing Time) Duration: 1 hour Event Link: https://meeting.tencent.com/s/5WUWiqfd9c1a(Conference ID: 950 855 652) Speaker: Prof. Ryuichi Yokoyama (Waseda University) The webinar will address: ➢ What are the current status and challenges of power grid connection in Japan and the rest of the world? ➢ Which technical performance is better in High Voltage Direct Current transmission regarding Line Commuted Converter (LCC) or Voltage Source Converter(VSC) ? ➢ What impacts does the COV-19 have on the development of energy interconnection in future? Ryuichi Yokoyama is a Professor Emeritus of Waseda University, a Life Fellow of IEEE, a Senior Life Member of IEE of Japan, a member of CIGRE. He is also Chairman of Standardization Commissions of Electric Apparatus in METI Japan. He received the degrees of B.S., M.S., and Ph.D. in electrical engineering from Waseda University, Tokyo, Japan, in 1968, 1970, and 1974 respectively. After working in Mitsubishi Research Institute, from 1978 through 2007, he was a professor in the Faculty of Technology of Tokyo Metropolitan University. Since 2007, he had been a professor of the Graduate School of Environment and Energy Engineering in Waseda University. His fields of interests include planning, operation, control and optimization of large-scale environment and energy systems, and economic analysis and risk management of deregulated power markets. About the Regional and Global Energy Interconnection (RGEI) Initiative The RGEI Initiative was established at the 9th Clean Energy Ministerial meeting in Copenhagen/Malmö in May 2018. -
Renewables Super Grid Proposed to Solve Europe's Energy Dilemma
Renewables super grid proposed to solve Europe’s energy dilemma A pan-European electricity system powered by decentralised renewable energy supply and connected across a high-volume super grid has been described as the least-cost option to provide an optimal pathway to achieving the goals of the Paris Agreement while at the same time solving key obstacles towards developing a functional European Energy Union. Researchers from Lappeenranta University of Technology (LUT) in Finland have for several years now been developing 100 per cent renewable energy super grid models for global regions, and in 2016 even developed a first-of-its-kind planetary renewable energy model. Further, in November 2017, on the sidelines of the United Nations Climate Change Conference COP23 in Bonn, Germany, LUT researchers showcased how a 100% global renewable energy grid is not only a viable option but the most cost-effective option. Focusing their attention on the European Union, LUT researchers recently published an article in the journal Renewable Energy entitled Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europewhich reveals the results of two scenarios: the first depicts a scenario made up of 20 European regions acting as independent energy “islands”; the second scenario depicts those same 20 regions connected through a pan-European super grid. This second option, labelled as a “SuperSmart” energy system – as it acts as a compromise between two European Energy Union approaches that have been floated in recent years; a decentralised renewable energy Smart Grid approach, and a centralised and regulated Super Grid – would utilise decentralised renewable energy generation across the European Union combined with a super grid to facilitate pan-European energy trade. -
EWEA Offshore Report 2009
Oceans of Opportunity Harnessing Europe’s largest domestic energy resource A report by the European Wind Energy Association Oceans of opportunity Europe’s offshore wind potential is enormous and able to power Europe seven times over. Huge developer interest Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU’s electricity whilst avoiding 200 million tonnes of CO2 emissions each year. Repeating the onshore success EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 – what the wind energy industry Oceans of Opportunity has achieved on land can be repeated at sea. Building the offshore grid EWEA’s proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Realising the potential Strong political support and action from Europe’s policy-makers will allow a new, multi-billion euro industry to be built. EWEA Results that speak for themselves This new industry will deliver thousands of green collar jobs and a new About EWEA renewable energy economy and establish Europe as world leader in EWEA is the voice of the wind industry, actively promoting the utilisation of offshore wind power technology. -
Comparison of European Network Codes for AC- and HVDC-Connected Renewable Energy Sources
Downloaded from orbit.dtu.dk on: Sep 27, 2021 Comparison of European Network Codes for AC- and HVDC-connected Renewable Energy Sources Nouri, Behnam; Arasteh, Amir; Göksu, Ömer; Sakamuri, Jayachandra Naidu; Sørensen, Poul Ejnar Published in: Proceedings of the 18th Wind Integration Workshop Publication date: 2019 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Nouri, B., Arasteh, A., Göksu, Ö., Sakamuri, J. N., & Sørensen, P. E. (2019). Comparison of European Network Codes for AC- and HVDC-connected Renewable Energy Sources. In Proceedings of the 18th Wind Integration Workshop General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Comparison of European Network Codes for AC- and HVDC-connected Renewable Energy Sources Behnam Nouri, Amir Arasteh, Omer¨ Goksu,¨ Jayachandra N. Sakamuri, Poul E. Sørensen Department of Wind Energy Technical University of Denmark Roskilde 4000, Denmark Email: [email protected] Abstract—Developing an integrated pan-European energy sys- of transmission system operators for electricity (ENTSO-E) to tem based on renewable energy sources (RES) has technical harmonize the network codes in Europe. -
From Super Grid Transformers to Supercars
Young Freight Forwarder 2018 From Super Grid Transformers to Supercars 28th April 2018 From Super Grid Transformers to Supercars Contents Introduction ............................................................................................................................................ 3 Import Case Study – 180 tonne Super Grid Transformer .............................................................. 5 Project Description ........................................................................................................................... 5 Cargo Details and Dimensions ....................................................................................................... 6 Key Requirements ............................................................................................................................ 6 Areas of Consideration When Tailoring Our Solution ................................................................. 7 Port Selection and Route Restrictions .......................................................................................... 8 To Crane or Not to Crane ............................................................................................................... 8 Specialist Road Haulage ............................................................................................................... 10 Delivery Site Restrictions and Installation .................................................................................. 11 Delivery of the Project .................................................................................................................. -
Integration of Wave and Offshore Wind Energy in a European Offshore Grid
Aalborg Universitet Integration of Wave and Offshore Wind Energy in a European Offshore Grid Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M. Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Publication date: 2010 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Chozas, J. F., Sørensen, H. C., & Korpås, M. (2010). Integration of Wave and Offshore Wind Energy in a European Offshore Grid. In Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference: Beijing, China, June 20-25, 2010 (Vol. I, pp. 926-933). International Society of Offshore & Polar Engineers. International Offshore and Polar Engineering Conference Proceedings Vol. 20 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: September 24, 2021 Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Beijing, China, June 2025, 2010 Copyright © 2010 by The International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-77-7 (Set); ISSN 1098-6189 (Set); www.isope.org Integration of Wave and Offshore Wind Energy in a European Offshore Grid J. -
Challenges and Opportunities of Power Systems from Smart Homes to Super-Grids
Ambio 2016, 45(Suppl. 1):S50–S62 DOI 10.1007/s13280-015-0733-x Challenges and opportunities of power systems from smart homes to super-grids Philipp Kuhn, Matthias Huber, Johannes Dorfner, Thomas Hamacher Abstract The world’s power systems are facing a scale systems, whereas the intermittent nature of generation structural change including liberalization of markets and favors large-scale systems. To facilitate discussion, we integration of renewable energy sources. This paper categorize the various approaches in three scopes, which describes the challenges that lie ahead in this process and roughly refer the geographical scale: local, national, points out avenues for overcoming different problems at international. different scopes, ranging from individual homes to Local scope: the local scope reaches from individual international super-grids. We apply energy system homes to cities. The discussion is focused on politically or models at those different scopes and find a trade-off privately motivated plans to become energy autonomous. between technical and social complexity. Small-scale Furthermore, decentralized technologies like photovoltaic systems would require technological breakthroughs, (PV) have reached grid parity which allows for cost especially for storage, but individual agents can and do reductions through own production. already start to build and operate such systems. In contrast, National scope: at the national scope, governments can large-scale systems could potentially be more efficient set the agenda for energy policy and regulation. The cur- from a techno-economic point of view. However, new rent setting of these conditions is a result of political political frameworks are required that enable long-term decisions in the past (e.g., the Renewable Energy Sources cooperation among sovereign entities through mutual trust. -
Energy Infrastructure
MJ-30-10-705- EN -C Energy infrastructure PRIORITIES FOR 2020 AND BEYOND ─ A BLUEPRINT FOR AN INTEGRATED EUROPEAN ENERGY NETWORK Energy infrastructure PRIORITIES FOR 2020 AND BEYOND ─ A BLUEPRINT FOR AN INTEGRATED EUROPEAN ENERGY NETWORK This illustrated brochure comprises the text of the European Commission’s communication ‘Energy infrastructure priorities for 2020 and beyond — A Blueprint for an integrated European energy network’ (COM(2010) 677 final of 17 November 2010) and a foreword by Commissioner Günther Oettinger. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2011 ISBN 978-92-79-18877-0 doi:10.2833/78572 © European Union, 2011 Reproduction is authorised provided the source is acknowledged. Photos courtesy of: European Commission; European Parliament; iStockphoto; Patrick Mascart/European Commission; Shutterstock; Siemens/EWEA. Printed in Belgium FOREWORD Europe is at an unprecedented crossroads for its energy future. We are currently going through a paradigm shift in the way we produce, transmit, distribute and trade energy, as we try to reduce the carbon footprint of the energy sector as a whole. This shift will increase the role of electricity compared to other energy vectors. We will have to get the most promising renewable energy sources where they are, while further integrating the European energy market. -
Europe's Supergrid
PROTECTING EUROPEAN CIVILISATION: EUROPE’S SUPERGRID Eddie O’Connor Marcos Byrne Introduction 1. What Europe will look like in 2050. I. What will our electrical demand be? II. How influential will rooftop solar and storage be? III. What effect will electric vehicles have on this demand? IV. How will the demand be met by renewables? 2. What Resources are available to meet this demand. I. Where will the main sources of generation be located? II. How can we access the areas of great potential? 3. How we can distribute this renewable energy. I. How do we interconnect countries with great wind and/or solar resources with those with weaker renewable resources? II. What are the challenges involved? Hemispheric Temperature Change – Annual Mean Hemispheric Temperature Change - 5-Year Running Mean 1.4 1.2 Northern Hemishpere 5-Year Running Mean 1 Southern Hemisphere 5-Year Running Mean 0.8 0.6 0.4 0.2 0 -0.2 Hemispheric Temperature Change (C) Change Temperature Hemispheric -0.4 -0.6 1880 1900 1920 1940 1960 1980 2000 2020 EU 2020 Strategy and the Paris Climate Agreement • 20% reduction in greenhouse gas emissions (from 1990 levels). • 20% of EU energy from renewables • This target varies between countries depending on their starting points. • 20% increase in energy efficiency. • The 2020 strategy feeds into future targets such as reducing EU emissions by 40% by 2040. • All EU countries are also part of the Paris Climate Agreement. Source: UNEP What does European demand look like now? EU Electricity Generation by Fuel Type 4,000 3,500 3,335 3,269