A European Supergrid

Total Page:16

File Type:pdf, Size:1020Kb

A European Supergrid House of Commons Energy and Climate Change Committee A European Supergrid Seventh Report of Session 2010–12 Volume I Volume I: Report, together with formal minutes, oral and written evidence Additional written evidence is contained in Volume II, available on the Committee website at www.parliament.uk/ecc Ordered by the House of Commons to be printed 7 September 2011 HC 1040 Published on 22 September 2011 by authority of the House of Commons London: The Stationery Office Limited £15.50 The Energy and Climate Change Committee The Energy and Climate Change Committee is appointed by the House of Commons to examine the expenditure, administration, and policy of the Department of Energy and Climate Change and associated public bodies. Current membership Mr Tim Yeo MP (Conservative, South Suffolk) (Chair) Dan Byles MP (Conservative, North Warwickshire) Barry Gardiner MP (Labour, Brent North) Ian Lavery MP (Labour, Wansbeck) Dr Phillip Lee MP (Conservative, Bracknell) Albert Owen MP (Labour, Ynys Môn) Christopher Pincher MP (Conservative, Tamworth) John Robertson MP (Labour, Glasgow North West) Laura Sandys MP (Conservative, South Thanet) Sir Robert Smith MP (Liberal Democrat, West Aberdeenshire and Kincardine) Dr Alan Whitehead MP (Labour, Southampton Test) The following members were also members of the committee during the parliament: Gemma Doyle MP (Labour/Co-operative, West Dunbartonshire) Tom Greatrex MP (Labour, Rutherglen and Hamilton West) Powers The committee is one of the departmental select committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No 152. These are available on the Internet via www.parliament.uk. Publication The Reports and evidence of the Committee are published by The Stationery Office by Order of the House. All publications of the Committee (including press notices) are on the internet at www.parliament.uk/parliament.uk/ecc. A list of Reports of the Committee in the present Parliament is at the back of this volume. The Report of the Committee, the formal minutes relating to that report, oral evidence taken and some or all written evidence are available in a printed volume. Additional written evidence may be published on the internet only. Committee staff The current staff of the Committee are Nerys Welfoot (Clerk), Richard Benwell (Second Clerk), Dr Michael H. O’Brien (Committee Specialist), Jenny Bird (Committee Specialist), Francene Graham (Senior Committee Assistant), Jonathan Olivier Wright (Committee Assistant) and Nick Davies (Media Officer). Contacts All correspondence should be addressed to the Clerk of the Energy and Climate Change Committee, House of Commons, 7 Millbank, London SW1P 3JA. The telephone number for general enquiries is 020 7219 2569; the Committee’s email address is [email protected] A European Supergrid 1 Contents Report Page Summary 3 1 Introduction 5 2 Background 7 What is a supergrid? 7 3 The benefits of an integrated solution 10 Helping the UK meet its renewables targets 10 Offshore wind ambition 10 The advantages of an integrated approach 11 Renewing the onshore grid 12 Landscape and transmission assets 13 4 The benefits of increased interconnection 15 Balancing intermittency 17 Reducing the need for backup generation: reserve sharing 18 Economic opportunities 19 UK comparative advantage 20 5 Barriers to the development of a supergrid 22 Technological barriers 22 Interoperability 23 Supply chain constraints 26 Costs 26 Construction costs 27 Anticipatory investment 27 Cost sharing 29 Price arbitrage 31 Regulatory challenges 32 Political commitment and timeline 35 Conclusion 37 Conclusions and Recommendations 39 Barriers to the development of a supergrid 40 Annex I: Terms of Reference 43 Annex II: Different supergrid proposals and work streams in 2011 44 The North Seas Countries’ Offshore Grid Initiative 44 The All-Island Approach 44 The UK-Baltic Cooperation 44 The Irish-Scottish Links on Energy (ISLES) study 44 DESERTEC 45 Greenpeace proposals 45 2 A European Supergrid Formal Minutes 46 Witnesses 47 List of printed written evidence 47 List of additional written evidence 47 List of Reports from the Committee during the current Parliament 48 A European Supergrid 3 Summary In July 2011, contrary to the advice of the Committee on Climate Change, the Government increased its ambition for the deployment of offshore wind generation by 2020 from 13 GW to 18 GW. This is part of a plan to meet the UK’s commitment to generating 15% of energy from renewables by 2020. This strategy is a big gamble. On the one hand, the encouragement of offshore wind makes sense. Renewable energy is vital for climate change mitigation and the UK has a potentially huge resource that could amount to the equivalent of a billion barrels of oil each year. However, offshore wind is also a notoriously expensive and intermittent source of electricity, which could end up reducing the reliability of our electricity supply and imposing an unacceptable cost on consumers. The Government is banking on reductions in the cost of offshore wind and improvements in efficiency to make the numbers add up. This report shows that to make the gamble pay off, it would help if an ambitious transmission system was developed to match the ambitious plans for offshore renewables. This system could deliver electricity efficiently onto the grid, help to balance out intermittency and provide a route to export when supply is abundant. Only this way will our electricity system be able to cope with increasing penetration of intermittent renewables, situated far from where the electricity is needed. At the moment, the UK is virtually an electricity island. While the rest of Europe is increasingly interdependent, sharing electricity resources across borders, in the UK we continue to rely on our own power plants to produce our energy and our own transmission system to deliver electricity to where it is needed. The Government has only just begun to consider the options for interconnection and creating an offshore grid. It must agree to meet European targets for interconnection and set out further plans for the period up to 2050. We demonstrate that immediate action will be necessary if the kind of offshore grid required to connect up new renewables and interconnect with other electricity systems is to be developed. While we applaud the Government’s involvement in negotiations such as the North Seas Countries’ Offshore Grid Initiative, these make no concrete commitments to new infrastructure. The Government must pursue the development of an integrated grid in home waters and begin bilateral negotiations to create new shared infrastructure with our European neighbours. The development of a methodology for sharing costs is particularly urgent. At the moment, we use point-to-point connections from a single offshore wind farm to the land, but this approach will reach its limits in the near future. It is costly, inefficient and requires a huge amount of infrastructure, particularly where electricity cables come ashore. By sharing transmission assets, we can save money and reduce the environmental impact of network reinforcements. The Government must undertake to calculate the environmental and social savings that could be made through offshore grid reinforcements and set this against the costs of construction. By integrating these lines with interconnectors, we can sell electricity when supply is abundant and import it when 4 A European Supergrid demand is high. Such a network brings its own risks. We believe that the cost of creating a European supergrid will be very high indeed. The Government should analyse carefully if the benefits are sufficient to justify the costs before proceeding down this route. We also recognise that reaching international agreement about the necessary regulatory and market frameworks will be extremely difficult. If we do not build as much offshore wind as we expect, new transmission systems built in anticipation of this generation could be left stranded at considerable cost to the consumer. This means that investment is unlikely to be forthcoming for the early stages of an integrated offshore grid. The Government must give certainty to investors about the long- term support on offer for offshore wind. It must also consider how to encourage early investment in offshore grid infrastructure, either through regulation or improving access to public finance for pioneer projects. To ensure that early investments do not become redundant, the Government must analyse how offshore networks can be combined with future “smart grid” and electricity storage technologies and how early assets can be made “supergrid ready”. In 1933, the “national gridiron” began operating as a series of regional grids with interconnections for emergency use. By 1938, these separate systems were linked up to form a truly national system. The national grid was, in its time, a model for the world. In the 21st Century, however, the UK is moving toward a system where major intermittent sources of supply are concentrated offshore, in the north of the UK and abroad. We can no longer afford to be an electricity island. A “supergrid” is an international network of electricity cables, which integrates offshore renewables generation into the transmission system, as well as allowing electricity to be traded across borders. It is extremely unlikely that a full-scale European supergrid could be developed by 2020 and very uncertain whether such a system could be economically justified. However, we believe that there is a strong case for working quickly to achieve much more interconnection and integration of offshore networks, the building blocks of a supergrid. This kind of network will not develop by itself and the current approach has left the UK electricity system one of the least interconnected in Europe. The Government must end its laissez-faire approach to offshore transmission and set out a plan for developing an interconnected, integrated offshore network in time to make the most of our renewable resources. A European Supergrid 5 1 Introduction 1.
Recommended publications
  • (SEUPB) Mid Term Evaluation of the INTERREG IVA Programme Final
    Special EU Programmes Body (SEUPB) Mid Term Evaluation of the INTERREG IVA Programme Final Report October 2013 SEUPB Mid Term Evaluation of INTERREG IVA Final Report October 2013 Table of Contents 1 EXECUTIVE SUMMARY ................................................................................................................ 1 1.1 INTRODUCTION ............................................................................................................................... 1 1.2 TERMS OF REFERENCE AND STUDY APPROACH ...................................................................... 2 1.3 CONCLUSIONS AND RECOMMENDATIONS ................................................................................. 5 2 INTRODUCTION & BACKGROUND ............................................................................................ 12 2.1 INTRODUCTION/SCOPE OF THIS REPORT ................................................................................ 12 2.2 TERMS OF REFERENCE ............................................................................................................... 12 2.3 PROGRAMME BACKGROUND ...................................................................................................... 13 2.4 CHANGES IN DELIVERY STRUCTURES/PROCESSES FROM THE LAST PROGRAMME ........ 24 2.5 EVALUATION METHODOLOGY AND REPORT STRUCTURE ..................................................... 25 3 STRATEGIC CONTEXT ............................................................................................................... 30 3.1 INTRODUCTION
    [Show full text]
  • Asia Pacific Super Grid – Solar Electricity Generation, Storage and Distribution
    DOI 10.1515/green-2012-0013 Green 2012; 2(4): 189–202 Andrew Blakers*, Joachim Luther and Anna Nadolny Asia Pacific Super Grid – Solar electricity generation, storage and distribution Abstract: This paper explores the large scale transmission tries have rapidly growing economies leading to rapidly of solar electricity to Southeast Asia from Australia. growing energy demand (2). The continent of Australia Despite the expense and losses incurred in long distance has a population of 23 million people and an average pop- transmission of Australian solar electricity, it appears to ulation density of 3 people per square kilometer. Australia be competitive with locally produced solar electricity is well endowed with indigenous energy resources. In par- because of high insolation levels in Australia. Supplemen- ticular, Australia has immense solar energy resources in tation of locally produced electricity (both from renewable the centre and northwest (3). and conventional sources) with power from Australia, to- A glance at the South East Asian page of a world atlas gether with substantial integrated energy storage, would shows a long and narrow chain of islands between Austra- allow a high solar electricity fraction to be achieved in lia and the Malay Peninsula. Major desert regions exist to Southeast Asia. the north (central China) and south (central and north west Australia). This dipole suggests the possibility of Keywords: solar energy, HVDC, photovoltaics, energy storage, transporting large quantities of solar electricity to South renewable energy East Asia via high voltage cables from large solar farms located in Australia, and solar and wind farms in China. PACS® (2010). 88.05.Lg The latitudes are 20°S and 40°N respectively, which would provide seasonal balance to the solar resource from each region.
    [Show full text]
  • Modeling and Simulation of an Hvdc Network for Offshore Wind Farms”
    Project Report – Budget TREBALL DE FI DE GRAU “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) Project Report “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) TABLE OF CONTENTS TABLE OF CONTENTS i List of Figures . iii List of Tables . v Abstract . vii Resum . vii Resumen . vii Chapter 1: Introduction 1 1.1 Aim and goals of this project . 1 1.2 Context and motivation . 1 1.2.1 Wind power and offshore wind farms . 2 1.2.2 HVDC transmission . 4 1.3 Project Report outline . 6 Chapter 2: Modeling of an HVDC network 7 2.1 Analytical model . 7 2.1.1 HVDC lines . 7 2.1.2 Voltage Source Converters . 9 2.1.3 General model . 10 2.1.4 Wind energy conversion model . 11 2.1.5 Control scheme: Droop control . 14 2.2 Case Studies . 16 2.2.1 Case Study 1: 4-terminal, 3-line system . 16 2.2.2 Case Study 2: 5-terminal, 6-line system . 17 2.2.3 Case Study 3: North Sea Transnational Grid .
    [Show full text]
  • Power Grid Connection and Its Technical Issues
    Power Grid Connection and its Technical Issues The fourth in a 2020 series of webinars from the Clean Energy Ministerial Regional and Global Energy Interconnection Initiative May 26, 2020 1200(GMT)/2000(GMT+8, Beijing Time) Duration: 1 hour Event Link: https://meeting.tencent.com/s/5WUWiqfd9c1a(Conference ID: 950 855 652) Speaker: Prof. Ryuichi Yokoyama (Waseda University) The webinar will address: ➢ What are the current status and challenges of power grid connection in Japan and the rest of the world? ➢ Which technical performance is better in High Voltage Direct Current transmission regarding Line Commuted Converter (LCC) or Voltage Source Converter(VSC) ? ➢ What impacts does the COV-19 have on the development of energy interconnection in future? Ryuichi Yokoyama is a Professor Emeritus of Waseda University, a Life Fellow of IEEE, a Senior Life Member of IEE of Japan, a member of CIGRE. He is also Chairman of Standardization Commissions of Electric Apparatus in METI Japan. He received the degrees of B.S., M.S., and Ph.D. in electrical engineering from Waseda University, Tokyo, Japan, in 1968, 1970, and 1974 respectively. After working in Mitsubishi Research Institute, from 1978 through 2007, he was a professor in the Faculty of Technology of Tokyo Metropolitan University. Since 2007, he had been a professor of the Graduate School of Environment and Energy Engineering in Waseda University. His fields of interests include planning, operation, control and optimization of large-scale environment and energy systems, and economic analysis and risk management of deregulated power markets. About the Regional and Global Energy Interconnection (RGEI) Initiative The RGEI Initiative was established at the 9th Clean Energy Ministerial meeting in Copenhagen/Malmö in May 2018.
    [Show full text]
  • Renewables Super Grid Proposed to Solve Europe's Energy Dilemma
    Renewables super grid proposed to solve Europe’s energy dilemma A pan-European electricity system powered by decentralised renewable energy supply and connected across a high-volume super grid has been described as the least-cost option to provide an optimal pathway to achieving the goals of the Paris Agreement while at the same time solving key obstacles towards developing a functional European Energy Union. Researchers from Lappeenranta University of Technology (LUT) in Finland have for several years now been developing 100 per cent renewable energy super grid models for global regions, and in 2016 even developed a first-of-its-kind planetary renewable energy model. Further, in November 2017, on the sidelines of the United Nations Climate Change Conference COP23 in Bonn, Germany, LUT researchers showcased how a 100% global renewable energy grid is not only a viable option but the most cost-effective option. Focusing their attention on the European Union, LUT researchers recently published an article in the journal Renewable Energy entitled Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europewhich reveals the results of two scenarios: the first depicts a scenario made up of 20 European regions acting as independent energy “islands”; the second scenario depicts those same 20 regions connected through a pan-European super grid. This second option, labelled as a “SuperSmart” energy system – as it acts as a compromise between two European Energy Union approaches that have been floated in recent years; a decentralised renewable energy Smart Grid approach, and a centralised and regulated Super Grid – would utilise decentralised renewable energy generation across the European Union combined with a super grid to facilitate pan-European energy trade.
    [Show full text]
  • EWEA Offshore Report 2009
    Oceans of Opportunity Harnessing Europe’s largest domestic energy resource A report by the European Wind Energy Association Oceans of opportunity Europe’s offshore wind potential is enormous and able to power Europe seven times over. Huge developer interest Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU’s electricity whilst avoiding 200 million tonnes of CO2 emissions each year. Repeating the onshore success EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 – what the wind energy industry Oceans of Opportunity has achieved on land can be repeated at sea. Building the offshore grid EWEA’s proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Realising the potential Strong political support and action from Europe’s policy-makers will allow a new, multi-billion euro industry to be built. EWEA Results that speak for themselves This new industry will deliver thousands of green collar jobs and a new About EWEA renewable energy economy and establish Europe as world leader in EWEA is the voice of the wind industry, actively promoting the utilisation of offshore wind power technology.
    [Show full text]
  • Comparison of European Network Codes for AC- and HVDC-Connected Renewable Energy Sources
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 Comparison of European Network Codes for AC- and HVDC-connected Renewable Energy Sources Nouri, Behnam; Arasteh, Amir; Göksu, Ömer; Sakamuri, Jayachandra Naidu; Sørensen, Poul Ejnar Published in: Proceedings of the 18th Wind Integration Workshop Publication date: 2019 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Nouri, B., Arasteh, A., Göksu, Ö., Sakamuri, J. N., & Sørensen, P. E. (2019). Comparison of European Network Codes for AC- and HVDC-connected Renewable Energy Sources. In Proceedings of the 18th Wind Integration Workshop General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Comparison of European Network Codes for AC- and HVDC-connected Renewable Energy Sources Behnam Nouri, Amir Arasteh, Omer¨ Goksu,¨ Jayachandra N. Sakamuri, Poul E. Sørensen Department of Wind Energy Technical University of Denmark Roskilde 4000, Denmark Email: [email protected] Abstract—Developing an integrated pan-European energy sys- of transmission system operators for electricity (ENTSO-E) to tem based on renewable energy sources (RES) has technical harmonize the network codes in Europe.
    [Show full text]
  • From Super Grid Transformers to Supercars
    Young Freight Forwarder 2018 From Super Grid Transformers to Supercars 28th April 2018 From Super Grid Transformers to Supercars Contents Introduction ............................................................................................................................................ 3 Import Case Study – 180 tonne Super Grid Transformer .............................................................. 5 Project Description ........................................................................................................................... 5 Cargo Details and Dimensions ....................................................................................................... 6 Key Requirements ............................................................................................................................ 6 Areas of Consideration When Tailoring Our Solution ................................................................. 7 Port Selection and Route Restrictions .......................................................................................... 8 To Crane or Not to Crane ............................................................................................................... 8 Specialist Road Haulage ............................................................................................................... 10 Delivery Site Restrictions and Installation .................................................................................. 11 Delivery of the Project ..................................................................................................................
    [Show full text]
  • Integration of Wave and Offshore Wind Energy in a European Offshore Grid
    Aalborg Universitet Integration of Wave and Offshore Wind Energy in a European Offshore Grid Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M. Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Publication date: 2010 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Chozas, J. F., Sørensen, H. C., & Korpås, M. (2010). Integration of Wave and Offshore Wind Energy in a European Offshore Grid. In Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference: Beijing, China, June 20-25, 2010 (Vol. I, pp. 926-933). International Society of Offshore & Polar Engineers. International Offshore and Polar Engineering Conference Proceedings Vol. 20 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: September 24, 2021 Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Beijing, China, June 2025, 2010 Copyright © 2010 by The International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-77-7 (Set); ISSN 1098-6189 (Set); www.isope.org Integration of Wave and Offshore Wind Energy in a European Offshore Grid J.
    [Show full text]
  • Challenges and Opportunities of Power Systems from Smart Homes to Super-Grids
    Ambio 2016, 45(Suppl. 1):S50–S62 DOI 10.1007/s13280-015-0733-x Challenges and opportunities of power systems from smart homes to super-grids Philipp Kuhn, Matthias Huber, Johannes Dorfner, Thomas Hamacher Abstract The world’s power systems are facing a scale systems, whereas the intermittent nature of generation structural change including liberalization of markets and favors large-scale systems. To facilitate discussion, we integration of renewable energy sources. This paper categorize the various approaches in three scopes, which describes the challenges that lie ahead in this process and roughly refer the geographical scale: local, national, points out avenues for overcoming different problems at international. different scopes, ranging from individual homes to Local scope: the local scope reaches from individual international super-grids. We apply energy system homes to cities. The discussion is focused on politically or models at those different scopes and find a trade-off privately motivated plans to become energy autonomous. between technical and social complexity. Small-scale Furthermore, decentralized technologies like photovoltaic systems would require technological breakthroughs, (PV) have reached grid parity which allows for cost especially for storage, but individual agents can and do reductions through own production. already start to build and operate such systems. In contrast, National scope: at the national scope, governments can large-scale systems could potentially be more efficient set the agenda for energy policy and regulation. The cur- from a techno-economic point of view. However, new rent setting of these conditions is a result of political political frameworks are required that enable long-term decisions in the past (e.g., the Renewable Energy Sources cooperation among sovereign entities through mutual trust.
    [Show full text]
  • Energy Infrastructure
    MJ-30-10-705- EN -C Energy infrastructure PRIORITIES FOR 2020 AND BEYOND ─ A BLUEPRINT FOR AN INTEGRATED EUROPEAN ENERGY NETWORK Energy infrastructure PRIORITIES FOR 2020 AND BEYOND ─ A BLUEPRINT FOR AN INTEGRATED EUROPEAN ENERGY NETWORK This illustrated brochure comprises the text of the European Commission’s communication ‘Energy infrastructure priorities for 2020 and beyond — A Blueprint for an integrated European energy network’ (COM(2010) 677 final of 17 November 2010) and a foreword by Commissioner Günther Oettinger. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2011 ISBN 978-92-79-18877-0 doi:10.2833/78572 © European Union, 2011 Reproduction is authorised provided the source is acknowledged. Photos courtesy of: European Commission; European Parliament; iStockphoto; Patrick Mascart/European Commission; Shutterstock; Siemens/EWEA. Printed in Belgium FOREWORD Europe is at an unprecedented crossroads for its energy future. We are currently going through a paradigm shift in the way we produce, transmit, distribute and trade energy, as we try to reduce the carbon footprint of the energy sector as a whole. This shift will increase the role of electricity compared to other energy vectors. We will have to get the most promising renewable energy sources where they are, while further integrating the European energy market.
    [Show full text]
  • Europe's Supergrid
    PROTECTING EUROPEAN CIVILISATION: EUROPE’S SUPERGRID Eddie O’Connor Marcos Byrne Introduction 1. What Europe will look like in 2050. I. What will our electrical demand be? II. How influential will rooftop solar and storage be? III. What effect will electric vehicles have on this demand? IV. How will the demand be met by renewables? 2. What Resources are available to meet this demand. I. Where will the main sources of generation be located? II. How can we access the areas of great potential? 3. How we can distribute this renewable energy. I. How do we interconnect countries with great wind and/or solar resources with those with weaker renewable resources? II. What are the challenges involved? Hemispheric Temperature Change – Annual Mean Hemispheric Temperature Change - 5-Year Running Mean 1.4 1.2 Northern Hemishpere 5-Year Running Mean 1 Southern Hemisphere 5-Year Running Mean 0.8 0.6 0.4 0.2 0 -0.2 Hemispheric Temperature Change (C) Change Temperature Hemispheric -0.4 -0.6 1880 1900 1920 1940 1960 1980 2000 2020 EU 2020 Strategy and the Paris Climate Agreement • 20% reduction in greenhouse gas emissions (from 1990 levels). • 20% of EU energy from renewables • This target varies between countries depending on their starting points. • 20% increase in energy efficiency. • The 2020 strategy feeds into future targets such as reducing EU emissions by 40% by 2040. • All EU countries are also part of the Paris Climate Agreement. Source: UNEP What does European demand look like now? EU Electricity Generation by Fuel Type 4,000 3,500 3,335 3,269
    [Show full text]