Mammals Reptiles Amphibians Partial Species List Bats Carnivores

Total Page:16

File Type:pdf, Size:1020Kb

Mammals Reptiles Amphibians Partial Species List Bats Carnivores Bats Small Mammals National Park Service Eastern pipistrelle (Pipistrellus subflavus) U.S. Department of the Interior Big brown bat (Eptesicus fuscus) Congaree National Park Red bat (Lasiurus borealis) Southern short-tailed shrew (Blarina carolinensis) Silver-haired bat (Lasionycteris noctivagans) Southeastern shrew (Sorex longirostris) Hoary bat (Lasiurus cinereus) Star-nosed Mole (Condylura cristata) Evening bat (Nycticeius humeralis) Cotton mouse (Peromyscus gossypinus) ,@LL@KR Little brown myotis (Myotis lucifugus) Eastern harvest mouse (Reithrodontomys humulis) Mexican free-tailed bat (Tadarida brasiliensis) 1DOSHKDR LOGHAH@MR Rafinque’s big eared bat (Corynorhinus rafinesquii) /@QSH@K2ODBHDR+HRS Southeastern myotis (Myotis austroriparius) Rabbits Carnivores Eastern cottontail (Sylvilagus floridanus) Marsh rabbit (Sylvilagus palustris) Gray fox (Urocyon cinereoargenteus) River otter (Lontra canadensis) Bobcat (Lynx rufus) Squirrels Raccoon (Procyon lotor) Striped skunk (Mephitis mephitis) Fox squirrel (Sciurus niger) Coyote (Canis latrans) Gray squirrel (Sciurus carolinensis) Southern flying squirrel (Glaucomys volans) Hooved Animals Marsupials Virginia opossum (Didelphis virginiana) White-tail deer (Odocoileus virginianus) Wild Pig (Sus scrofa) 5(2(38.41/ 1*2 $7/$1($-"$8.41 ,$1(" Reptiles/Amphibians 3TQSKDR %QNFR3N@CR Common musk turtle (Sternotherus odoratus) Barking treefrog (Hyla gratiosa) Common snapping turtle (Chelydra serpentina) Brimley’s chorus frog (Pseudacris brimleyi) Eastern box turtle (Terrapene carolina) Bronze frog (Rana clamitans clamitans) Eastern mud turtle (Kinosternon subrubrum) Bullfrog (Rana catesbeiana) 2M@JDR 5DMNLNTR Eastern river cooter (Pseudemys concinna) Carpenter frog (Rana virgatipes) Canebrake rattlesnake (Crotalus horridus) Spotted turtle (Clemmys guttata) Eastern narrow-mouthed toad (Gastrophryne Copperhead (Agkistrodon contortrix) Yellow-bellied slider (Trachemys scripta) carolinensis) Cottonmouth (Agkistrodon piscivorus) Eastern spadefoot toad (Scaphiopus holbrooki) Gray/Cope’s gray treefrog (Hyla versicolor/ chrysoscelis) 2M@JDR -NM UDMNLNTR Green frog (Rana clamitans) Banded water snake (Nerodia fasciata) +HY@QCR Green treefrog (Hyla cinerea) Broad-headed skink (Eumeces laticeps) Black racer (Coluber constrictor) Ornate chorus frog (Pseudacris ornata) Five-lined skink (Eumeces fasciatus) Brown snake (Storeria dekayi) Pickerel frog (Rana palustris) Green anole (Anolis carolinensis) Brown water snake (Nerodia taxispilota) Pine woods treefrog (Hyla femoralis) Ground skink (Scincella lateralis) Coachwhip (Masticophis flagellum) River frog (Rana heckscheri) Southeastern five-lined skink (Eumeces Eastern hognose snake (Heterodon platirhinos) Southern chorus frog (Pseudacris nigrita) inexpectatus) Eastern kingsnake (Lampropeltis getula) Southern cricket frog (Acris gryllus) Garter snake (Thamnophis sirtalis) Southern leopard frog (Rana sphenocephala Mud snake (Farancia abacura) utricularia) Plainbelly water snake (Nerodia erythrogaster) 2@K@L@MCDQR Southern toad (Bufo terrestris) Dwarf waterdog (Necturus punctatus) Rat snake (Elaphe obsoleta) Spring peeper (Pseudacris crucifer) Greater siren (Siren lacertina) Redbelly snake (Storeria occiptomaculata) Squirrel treefrog (Hyla squirella) Long-tailed salamander (Eurycea longicauda) Ribbon snake (Thamnophis sauritus) Upland chorus frog (Pseudacris triseriata) Marbled salamander (Ambystoma opacum) Ringneck snake (Diadophis punctatus) Mole salamander (Ambystoma talpoideum) Rough green snake (Opheodrys aestivus) Mud salamander (Pseudotriton monanus) Rough green snake (Opheodrys aestivus) Slimy salamander (Plethodon glutinosus complex) Worm snake (Carphophis amoenus) Southern dusky salamander (Desmognathus auriculatus) Three-lined salamander (Eurycea guttolineata).
Recommended publications
  • Squirrels and Allies (Sciuridae Spp.)
    Squirrels and Allies (Sciuridae Spp.) There are about 275 species of tree, ground, and flying squirrels throughout the world, ranging from the five-inch pygmy squirrel (Myosciurus pumilio) of Africa to the nearly three-foot giant squirrel (Ratufa indica) of Asia. Currently, there are five species of squirrel found in Rhode Island: The Eastern gray squirrel, the Southern flying squirrel, the red squirrel, the chipmunk, and the woodchuck. Tree squirrels are those species that nest in trees, while ground squirrels nest in underground burrows. This publication is intended to provide information on the above species found in Rhode Island. Eastern Gray Squirrel (Sciurus carolinensis) Gray squirrels are the most common species of squirrel in Rhode Island. They are a tree squirrel, however they spend much of their time on the ground, and have adapted well to human-altered environments. They are commonly found in urban and suburban habitats. Gray squirrels can be grayish-brown, gray or black, with a white or light brown underside. Adults range in size from 15 to 20 inches, and between 1 to 1 ½ pounds. Their bushy tail accounts for almost half of their length. Gray squirrels may live between four and eight years in the wild, but they have been known to live up to ten years in captivity. They are active mainly during the day and do not hibernate. In the winter they spend days at a time in their nests, leaving only to gather food. Their habitat is mainly any wooded area with mast producing trees, where they live in tree cavities or leaf nests.
    [Show full text]
  • The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
    www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation.
    [Show full text]
  • Wood Frog (Rana Sylvatica): a Technical Conservation Assessment
    Wood Frog (Rana sylvatica): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project March 24, 2005 Erin Muths1, Suzanne Rittmann1, Jason Irwin2, Doug Keinath3, Rick Scherer4 1 U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave. Bldg C, Fort Collins, CO 80526 2 Department of Biology, Bucknell University, Lewisburg, PA 17837 3 Wyoming Natural Diversity Database, University of Wyoming, P.O. Box 3381, Laramie, WY 82072 4 Colorado State University, GDPE, Fort Collins, CO 80524 Peer Review Administered by Society for Conservation Biology Muths, E., S. Rittman, J. Irwin, D. Keinath, and R. Scherer. (2005, March 24). Wood Frog (Rana sylvatica): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/woodfrog.pdf [date of access]. ACKNOWLEDGMENTS The authors would like to acknowledge the help of the many people who contributed time and answered questions during our review of the literature. AUTHORS’ BIOGRAPHIES Dr. Erin Muths is a Zoologist with the U.S. Geological Survey – Fort Collins Science Center. She has been studying amphibians in Colorado and the Rocky Mountain Region for the last 10 years. Her research focuses on demographics of boreal toads, wood frogs and chorus frogs and methods research. She is a principle investigator for the USDOI Amphibian Research and Monitoring Initiative and is an Associate Editor for the Northwestern Naturalist. Dr. Muths earned a B.S. in Wildlife Ecology from the University of Wisconsin, Madison (1986); a M.S. in Biology (Systematics and Ecology) from Kansas State University (1990) and a Ph.D.
    [Show full text]
  • Mitochondrial Genomes of the United States Distribution
    fevo-09-666800 June 2, 2021 Time: 17:52 # 1 ORIGINAL RESEARCH published: 08 June 2021 doi: 10.3389/fevo.2021.666800 Mitochondrial Genomes of the United States Distribution of Gray Fox (Urocyon cinereoargenteus) Reveal a Major Phylogeographic Break at the Great Plains Suture Zone Edited by: Fernando Marques Quintela, Dawn M. Reding1*, Susette Castañeda-Rico2,3,4, Sabrina Shirazi2†, Taxa Mundi Institute, Brazil Courtney A. Hofman2†, Imogene A. Cancellare5, Stacey L. Lance6, Jeff Beringer7, 8 2,3 Reviewed by: William R. Clark and Jesus E. Maldonado Terrence C. Demos, 1 Department of Biology, Luther College, Decorah, IA, United States, 2 Center for Conservation Genomics, Smithsonian Field Museum of Natural History, Conservation Biology Institute, National Zoological Park, Washington, DC, United States, 3 Department of Biology, George United States Mason University, Fairfax, VA, United States, 4 Smithsonian-Mason School of Conservation, Front Royal, VA, United States, Ligia Tchaicka, 5 Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, United States, 6 Savannah River State University of Maranhão, Brazil Ecology Laboratory, University of Georgia, Aiken, SC, United States, 7 Missouri Department of Conservation, Columbia, MO, *Correspondence: United States, 8 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States Dawn M. Reding [email protected] We examined phylogeographic structure in gray fox (Urocyon cinereoargenteus) across † Present address: Sabrina Shirazi, the United States to identify the location of secondary contact zone(s) between eastern Department of Ecology and and western lineages and investigate the possibility of additional cryptic intraspecific Evolutionary Biology, University of California Santa Cruz, Santa Cruz, divergences.
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon
    Journal of Book of Mormon Studies Volume 10 Number 2 Article 8 7-31-2001 Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon Andrew C. Skinner Follow this and additional works at: https://scholarsarchive.byu.edu/jbms BYU ScholarsArchive Citation Skinner, Andrew C. (2001) "Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon," Journal of Book of Mormon Studies: Vol. 10 : No. 2 , Article 8. Available at: https://scholarsarchive.byu.edu/jbms/vol10/iss2/8 This Feature Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Journal of Book of Mormon Studies by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Title Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon Author(s) Andrew C. Skinner Reference Journal of Book of Mormon Studies 10/2 (2001): 42–55, 70–71. ISSN 1065-9366 (print), 2168-3158 (online) Abstract The serpent is often used to represent one of two things: Christ or Satan. This article synthesizes evi- dence from Egypt, Mesopotamia, Phoenicia, Greece, and Jerusalem to explain the reason for this duality. Many scholars suggest that the symbol of the serpent was used anciently to represent Jesus Christ but that Satan distorted the symbol, thereby creating this para- dox. The dual nature of the serpent is incorporated into the Old Testament, the New Testament, and the Book of Mormon. erpent ymbols & SSalvation in the ancient near east and the book of mormon andrew c.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Regional Differences in Wild North American River Otter (Lontra Canadensis) Behavior and Communication
    The University of Southern Mississippi The Aquila Digital Community Dissertations Spring 2020 Regional Differences in Wild North American River Otter (Lontra canadensis) Behavior and Communication Sarah Walkley Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Biological Psychology Commons, Cognitive Psychology Commons, Comparative Psychology Commons, Integrative Biology Commons, and the Zoology Commons Recommended Citation Walkley, Sarah, "Regional Differences in Wild North American River Otter (Lontra canadensis) Behavior and Communication" (2020). Dissertations. 1752. https://aquila.usm.edu/dissertations/1752 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. REGIONAL DIFFERENCES IN WILD NORTH AMERICAN RIVER OTTER (LONTRA CANADENSIS) BEHAVIOR AND COMMUNICATION by Sarah N. Walkley A Dissertation Submitted to the Graduate School, the College of Education and Human Sciences and the School of Psychology at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by: Dr. Hans Stadthagen, Committee Chair Dr. Heidi Lyn Dr. Richard Mohn Dr. Carla Almonte ____________________ ____________________ ____________________ Dr. Hans Stadthagen Dr. Sara Jordan Dr. Karen S. Coats Committee Chair Director of School Dean of the Graduate School May 2020 COPYRIGHT BY Sarah N. Walkley 2020 Published by the Graduate School ABSTRACT This study focuses on the vocalization repertoires of wild North American river otters (Lontra canadensis) in New York and California. Although they are the same species, these two established populations of river otters are separated by a significant distance and are distinct from one another.
    [Show full text]
  • Checklist Reptile and Amphibian
    To report sightings, contact: Natural Resources Coordinator 980-314-1119 www.parkandrec.com REPTILE AND AMPHIBIAN CHECKLIST Mecklenburg County, NC: 66 species Mole Salamanders ☐ Pickerel Frog ☐ Ground Skink (Scincella lateralis) ☐ Spotted Salamander (Rana (Lithobates) palustris) Whiptails (Ambystoma maculatum) ☐ Southern Leopard Frog ☐ Six-lined Racerunner ☐ Marbled Salamander (Rana (Lithobates) sphenocephala (Aspidoscelis sexlineata) (Ambystoma opacum) (sphenocephalus)) Nonvenomous Snakes Lungless Salamanders Snapping Turtles ☐ Eastern Worm Snake ☐ Dusky Salamander (Desmognathus fuscus) ☐ Common Snapping Turtle (Carphophis amoenus) ☐ Southern Two-lined Salamander (Chelydra serpentina) ☐ Scarlet Snake1 (Cemophora coccinea) (Eurycea cirrigera) Box and Water Turtles ☐ Black Racer (Coluber constrictor) ☐ Three-lined Salamander ☐ Northern Painted Turtle ☐ Ring-necked Snake (Eurycea guttolineata) (Chrysemys picta) (Diadophis punctatus) ☐ Spring Salamander ☐ Spotted Turtle2, 6 (Clemmys guttata) ☐ Corn Snake (Pantherophis guttatus) (Gyrinophilus porphyriticus) ☐ River Cooter (Pseudemys concinna) ☐ Rat Snake (Pantherophis alleghaniensis) ☐ Slimy Salamander (Plethodon glutinosus) ☐ Eastern Box Turtle (Terrapene carolina) ☐ Eastern Hognose Snake ☐ Mud Salamander (Pseudotriton montanus) ☐ Yellow-bellied Slider (Trachemys scripta) (Heterodon platirhinos) ☐ Red Salamander (Pseudotriton ruber) ☐ Red-eared Slider3 ☐ Mole Kingsnake Newts (Trachemys scripta elegans) (Lampropeltis calligaster) ☐ Red-spotted Newt Mud and Musk Turtles ☐ Eastern Kingsnake
    [Show full text]
  • Toads and Frogs
    Wildlife Center Classroom Series Amazing Amphibians: Toads and Frogs Wednesday September 13, 2017 Alex Wehrung, WCV: Ok, good afternoon everyone! It’s time for this month’s Wildlife Center Classroom Series, featuring some of my favorite animals: Alex Wehrung, WCV Alex Wehrung, WCV: I’m glad to see a lot of our regulars online today, but if we have any viewers out there joining us during a Classroom Series for the first time, let me know in the comments! Comment From BarbG cutest picture Alex Wehrung, WCV: Right?! That's the Fowler's Toad featured on our Current Patients page! Wildlife Center Classroom Series: Amazing Amphibians: Toads and Frogs Page 1 Comment From Lydia in VA ʕ•́ᴥ•̀ʔ Looking forward to class! I am in the process of learning more about native frogs and toads since we have moved and built a frog and toad palace. LOL Have been on VHS (Virginia Herp Society) page a lot lately Comment From Lydia in VA ʕ•́ᴥ•̀ʔ Hi Alex! This is a topic I am very interested in! Comment From Guest It's my first time! I'm excited Alex Wehrung, WCV: Welcome, Guest! We're glad to see you online! Comment From Lydia in VA ʕ•́ᴥ•̀ʔ Is this Guest one I was talking to on Sunday? About these classes? I hope so! Comment From Guest Thank you! Glad to be here :) Alex Wehrung, WCV: Today we’ll go over some of the basics of toad and frog anatomy, biology, and ecology to better understand this awesome critters and learn just how important they are.
    [Show full text]
  • Successful Reproduction of the Mole Salamander Ambystoma Talpoideum in Captivity, with an Emphasis on Stimuli Environmental Determinants
    SHORT NOTE The Herpetological Bulletin 141, 2017: 28-31 Successful reproduction of the mole salamander Ambystoma talpoideum in captivity, with an emphasis on stimuli environmental determinants AXEL HERNANDEZ Department of Environmental Sciences, Faculty of Sciences and Technics, University Pasquale Paoli of Corsica, Corte, 20250, France Author Email: [email protected] ABSTRACT - Generating and promoting evidence-based husbandry protocols for urodeles, commonly known as newts and salamanders, is urgently needed because most of the up-to-date ex situ programs are focused on frogs and toads than Urodela. Data on biology, life history, ecology and environmental parameters are lacking for many species and are needed to establish suitable husbandry and breeding conditions in captive environments. Two adult females and two adult males, of the mole salamander Ambystoma talpoideum successfully reproduced in captivity. It was found that reproduction of this species depends on various complex stimuli: including natural photoperiod 12:12, rainwater (acidic to neutral pH) and an aquarium full of various debris. Additionally high temperature variations ranging from 2 °C to 17 °C (a decrease followed by an increase) between November and February showed that it is possible to breed adults in aquariums provided the right stimuli are applied at the right moment of time in winter. A. talpoideum shows an explosive breeding mode as previously reported for the whole genus Ambystoma. INTRODUCTION with an emphasis on the environmental determinant stimuli involved. These data may assist in improving breeding these ince the 1980s, the current global amphibian extinction salamanders under artificial conditions. crisis has been discussed and acknowledged (Wake, A.
    [Show full text]
  • Northern Spring Salamander Fact Sheet
    WILDLIFE IN CONNECTICUT STATE THREATENED SPECIES © COURTESY D. QUINN © COURTESY Northern Spring Salamander Gyrinophilus p. porphyriticus Background and Range The northern spring salamander is a brightly-colored member of the lungless salamander family (Plethodontidae). True to its name, it resides in cool water springs and streams, making it an excellent indicator of a clean, well- oxygenated water source. Due to its strict habitat and clean water requirements, it is only found in a handful of locations within Connecticut. The Central Connecticut Lowlands divide this amphibian's range into distinct populations. Litchfield and Hartford Counties support the greatest populations of spring salamanders. This salamander is listed as a threatened species in Connecticut. In North America, the spring salamander occurs from extreme southeastern Canada south through New England, west to Ohio, and south down the Appalachians as far as northern Georgia and Alabama. Description This large, robust salamander ranges in color from salmon to reddish-brown to purplish-brown, with a translucent white underbelly. The snout appears “square” when viewed from above and the salamander has well-defined grooves near its eyes to its snout. The tail is laterally flattened with a fin-like tip. Young spring salamanders are lighter in color and have small gills. Their coloration does not have deeper reddish tints until adulthood. Total length ranges from 5 to 7.5 inches. Habitat and Diet Spring salamanders require very clean, cool, and well-oxygenated water. They can be found in streams, brooks, and seepage areas. Preferred habitat lies within steep, rocky hemlock forests. This species is intolerant to disturbances.
    [Show full text]