A Q Uatic Biodiversity & Ecosystem S

Total Page:16

File Type:pdf, Size:1020Kb

A Q Uatic Biodiversity & Ecosystem S io tic B dive a rs qu i ty L A i & v e E r p c o o o s l , U y K s . t 3 e 0 t m h A s u g us 5 t - 01 4t r 2 h Septembe Compiled and edited by Hanna Schuster CONTENTS Contents 1 Welcome 1 2 Organising Committee 3 3 Supporters and Sponsors 4 4 Programme Overview 5 5 Plenary Speakers 7 Welcomeplenaries: aregionalperspective . 9 SteveHawkins .......................... 9 Brian Moss . 11 Biodiversity, ecosystem functioning and stability . 13 Emma Johnston . 13 KevinMcCann .......................... 14 Brian Silliman . 15 Responses to environmental change . 16 David Dudgeon . 16 Brian Helmuth . 18 Evolutionary biology . 20 ChristineMaggs ......................... 20 George Turner . 22 Lynn van Herwerden . 23 Conservation,managementandpolicy . 24 David Lodge . 24 Jake Rice . 26 6 Oral contributions 29 GlobalEnvironmentalChange. 31 Biodiversity, Ecosystem Functioning and Services . 81 Conservation, Management and Policy . 127 DispersalandConnectivity . 175 FoodWebsandTrophicDynamics . 199 Evolutionary Biology . 215 Fisheries and Aquaculture . 231 7 Poster contributions 247 1 1 Welcome Welcome to the Aquatic Biodiversity and Ecosystems Conference! We are delighted that you could join us in the UNESCO World Heritage Site of Liverpool for what is sure to be a fantastic meeting, showcasing the best aquatic science from around the globe. As a one-off meeting with we are very proud to have attracted nearly 300 delegates from 114 institutes in 30 countries. We feel that we have a balanced programme with representation across a range of freshwater, transitional and marine habitats from industry, students, early career and established scientists. We are also very proud to say that we have excellent gender balance with almost 50% female delegates. The overarching theme of this conference is "evolution, interactions and global change in aquatic ecosystems", with the following themes: • Evolutionary Biology • Dispersal and Connectivity • Food Webs and Trophic Dynamics • Biodiversity, Ecosystem Functioning Services • Global Environmental Change • Fisheries and Aquaculture • Conservation, Management and Policy Inside this booklet you will find all of the necessary information required to navi- gate around the conference throughout the week. There are too many restaurants to even begin to try to advise you where to eat, but rest assured that there is plenty of choice to suit every palate. Please also see the Liverpool Pub Guide for suggestions of places to visit on the "Cultural Walk: the Imbibing Emporiums of Liverpool". We have specifically selected some cracking pubs that touch on some of the historic and cultural aspects of the city. We hope that you enjoy the walk and get an appreciation for this fantastic city. Please feel free to come and chat to any of the organising committee if you need information on anything throughout the week. Louise Firth on behalf of the Organising Committee Hanna Schuster, Katrin Bohn, Ian Donohue, Chris Frid, Martin Genner, Iwan Jones, Tony Knights, Nessa O’Connor, Leonie Robinson, Gray Williams and Steve Hawkins 2 1 WELCOME Welcome to Liverpool and the Aquatic Biodiversity and Ecosystems Conference 2015. We hope you enjoy the city and the conference. The University of Liverpool has a long tradition in both marine and freshwater science that continues strongly to this day. The first Oceanography Department in the UK was opened in 1919 supported by strong endowment from Sir William Herdman FRS. Herdman who was Professor of Zoology at the University College Liverpool was also a leading light in the Liverpool Marine Biology Committee which ran a laboratory on PuffinIslandoff Anglesey and then founded a Marine Biological Station on the Isle of Man in 1892. This was subsequently transferred to the University in 1919 on formation of the Oceanography Department. The laboratory became the first department in the United Kingdom offering single Honours degrees in Marine Biology. Sadly the Port Erin Marine Laboratory closed in 2006, but Marine Biology has successfully transferred to the main campus in the School of Environment, benefitting much from its co-location with the oceanog- raphers. The National Oceanography Centre, Liverpool (formerly the Proudman Oceanographic Laboratory) has a long history going back to the Liverpool Obser- vatory and Tidal Institute focussing on tidal predictions, sea level measurements and modelling nearshore and shelf shore oceanography and sediment dynamics. Equally strong is the history of work on algae and aquatic plants in both marine and freshwater systems in the former Botany Department. In Zoology, Noel Hynes pioneered the use of biological indicators of water quality and much else in the 1950s and 1960s. There was ground breaking work on freshwater fish by Jack Jones and colleagues. Brian Moss has continued the tradition with work on still waters in recent years. Thus Liverpool is a fitting venue for a meeting deliberately setting out to link ma- rine and freshwater ecology. Several of the organising committee have links with Liverpool - directly or indirectly. My personal links stretch back to 1973 when as a17yearoldIcametoLiverpooltostudy(wellsomeofthetime)marinebiology - but also did much freshwater biology in the first two years. Thus on behalf of the organising committee - welcome to the Aquatic Biodiversity and Ecosystems Conference 2015. The meeting partially follows up on the Plant-Animal Interactions conference that was run 25 years ago. It is deliberately broader in scope - hopefully integrating concepts and practice across freshwater and marine ecology. Just as important, it is an opportunity to sample what the city has to offer - some of it in Imperial rather than SI units. Steve Hawkins 3 2 Organising Committee Conference Chair: Dr Louise Firth School of Geography, Earth & Environmental Science, Plymouth University, UK Scientific Committee: Prof Steve Hawkins Ocean & Earth Science, University of Southampton, UK Dr Hanna Schuster Ocean & Earth Science, University of Southampton, UK Dr Katrin Bohn Ocean & Earth Science, University of Southampton, UK Dr Ian Donohue School of Natural Sciences, Trinity College Dublin, Ireland Prof Chris Frid School of Environment, Griffith University, Australia Dr Martin Genner School of Biological Sciences, University of Bristol, UK Dr Iwan Jones School of Biological & Chemical Sciences, Queen Mary University London, UK Dr Antony Knights School of Marine Science & Engineering, Plymouth University, UK Dr Nesssa O’Connor School of Biological Sciences, Queens University Belfast, UK Dr Leonie Robinson School of Environmental Sciences, Liverpool University, UK Prof Gray Williams Swire Institute of Marine Science, University of Hong Kong, PR China 4 3 SUPPORTERS AND SPONSORS 3 Supporters and Sponsors Vice-Chancellor Office ! 4 Programme Overview MONDAY' TUESDAY' WEDNESDAY' THURSDAY' FRIDAY' Morning' Theatre'A:'Welcome'' Theatre'A:'Housekeeping'' Theatre'A:'Housekeeping' Theatre'A:'Housekeeping' ' Theatre'A:'Housekeeping' Theatre'A:'Plenary' Theatre'A:'Plenary' Theatre'A:'Plenary' ' Theatre'A:'Plenary'' Parallel'sessions' Parallel'sessions' Parallel'sessions' Parallel'sessions' A' B' C' D' A' B' C' D' A' B' C' D' A' B' C' D' Global'Environmental'Change Global'Environmental'Change Global'Environmental'Change Global'Environmental'Change Conservation,'Management' Conserva Conservation,'Management' Conservation,'Management' Dispersal'and'Connectivity Dispersal'and'Connectivity Parallel'sessions' Fisheries'and'Aquaculture Functioning'and'Services Functioning'and'Services Functioning'and' Biodiversity,'Ecosystem' Biodiversity,'Ecosystem' Biodiversity,'Ecosystem' Evolutionary'Biology A' B' C' D' and'Policy and'Policy and'Policy and'Policy tion,'Management' Food'Webs'and'Trophic' Global'Environmental' ' Dispersal'and' Fishe Connectivity Aquaculture Dynamics Services Change ' ' ' ' r ies'and' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Theatre'A:'Short'Plenaries' Theatre'A:'Plenary' Theatre'A:'Plenary' Theatre'A:'Plenary' ' End'of'Conference' Lunch' Afternoon' Parallel'sessions' Theatre'A:'Plenary' Theatre'A:'Plenary' Workshops' Workshops' A' B' C' D' B' D' B' D' Conservation,'Management'and'Policy Biodiversity,'Ecosystem'Functioning' N Parallel'sessions' Parallel'sessions' Interactions'in'the'marine'benthos: ' ' a'regional'and'habitat'perspective Freshwater'biodiversity'loss:'how'do'we' Interactions'in'the'marine'benthos:'' a ' A' B' C' D' A' B' C' D' regional'and'habitat'perspective Evolutionary'Biology tackle'it? Global'Environmental'Change Conservation,' Functioning'and'Services Food'Webs'and'Trophic' Biodiversity,'Ecosystem' Functioning'and'Services and'Services Biodiversity,'Ecosystem' Global'Environmental' ' Dynamics (FBA'workshop) and'Policy Change ' Management' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Theatre'A:'Plenary'' Theatre'A:'Plenary' Theatre'A:'Plenary' End'of'Workshops' 5 Cultural'Walk:'The'imbibing' Poster'Session' Free'Evening' Conference'Dinner' emporiums'of'Liverpool' ! ! ! ! ! ! ! ! ! ! ! ! ! 7 5 Plenary Speakers 9 Welcome plenaries: a regional perspective STEVE HAWKINS Steve Hawkins started research on rocky shores at the University of Liverpool in 1975, inspired by a field-course project supervised by George Russell on limpet-seaweed interactions. His final year project and PhD (both with Richard Hartnoll at Port Erin) explored distribution pat- terns on rocky shores, using field experiments on interac- tions between species to explore patchiness and zonation. A NERC personal post-doc fellowship at the Marine Bio- logical Association (MBA), Plymouth with Alan Southward
Recommended publications
  • (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: the Genera Nodilittorina, Austrolittorina and Afrolittorina
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 75–122. ISSN 0067-1975 The Subfamily Littorininae (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: The Genera Nodilittorina, Austrolittorina and Afrolittorina DAVID G. REID* AND SUZANNE T. WILLIAMS Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom [email protected] · [email protected] ABSTRACT. The littorinine gastropods of the temperate southern continents were formerly classified together with tropical species in the large genus Nodilittorina. Recently, molecular data have shown that they belong in three distinct genera, Austrolittorina, Afrolittorina and Nodilittorina, whereas the tropical species are members of a fourth genus, Echinolittorina. Austrolittorina contains 5 species: A. unifasciata in Australia, A. antipodum and A. cincta in New Zealand, and A. fernandezensis and A. araucana in western South America. Afrolittorina contains 4 species: A. africana and A. knysnaensis in southern Africa, and A. praetermissa and A. acutispira in Australia. Nodilittorina is monotypic, containing only the Australian N. pyramidalis. This paper presents the first detailed morphological descriptions of the African and Australasian species of these three southern genera (the eastern Pacific species have been described elsewhere). The species-level taxonomy of several of these has been confused in the past; Afrolittorina africana and A. knysnaensis are here distinguished as separate taxa; Austrolittorina antipodum is a distinct species and not a subspecies of A. unifasciata; Nodilittorina pyramidalis is separated from the tropical Echinolittorina trochoides with similar shell characters. In addition to descriptions of shells, radulae and reproductive anatomy, distribution maps are given, and the ecological literature reviewed.
    [Show full text]
  • Title CYCLOPOID COPEPODS of the FAMILY
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository CYCLOPOID COPEPODS OF THE FAMILY Title CHONDRACANTHIDAE PARASITIC ON NEW ZEALAND MARINE FISHES Author(s) Ho, Ju-Shey PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1975), 22(5): 303-319 Issue Date 1975-11-29 URL http://hdl.handle.net/2433/175898 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University CYCLOPOID COPEPODS OF THE FAMILY CHONDRACANTHIDAE PARASITIC ON NEW ZEALAND MARINE FISHES Ju-SHEY HO Department of Biology, California State University, Long Beach, California 90840 U.S.A. With Text-figures 1-10 Chondracanthidae is a family of highly transformed cyclopoid copepods that are found exclusively on marine demersal fish. Although a complete life history of this family of copepods is still unknown, it seems, judging from the available infor­ mation of their larval development, that the parasites do not require an intermediate host. Both adult and larva are found in the oral-branchial cavity of the fish, attaching to the host tissue by their powerful, hook-like second antenna. Although a few species are known to live in the nasal cavity, they have not been found on the body surface or fins of the fish. The male is characteristically dwarf and attaches to the genital area of the female throughout its life. In many species, the transformed female has a pair of small processes on the posteroventral surface of the trunk just in front of the genital segment. The pigmy male holds on to one of these two processes by its transformed hook-like second antennae.
    [Show full text]
  • Research Note
    THE NAUTILUS 130(3):132–133, 2016 Page 132 Research Note A tumbling snail (Gastropoda: The width of the shell, based on the camera’s scale dots, Vetigastropoda: Margaritidae) seems to have been close to 40 mm, with the extended foot as much as 100 mm. The characteristic covered In August 2015, the NOAA ship OKEANOS EXPLORER con- umbilicus can only partially be seen in the photograph, ducted deep-sea studies in the northwestern Hawaiian so the identification remains uncertain. Hickman (2012) Islands, which now are within the Papahanaumokuakea noted that species of Gaza from the Gulf of Mexico Marine National Monument. The ship deployed the might be associated with chemosynthetic communi- remotely operated vehicle DEEP DISCOVERER (D2 ROV), ties, but the mollusk in the photographs was living on whose live video feed was shared with researchers on manganese-encrusted basalt. shore via satellite transmission. Hickman (2003; 2007) reported “foot thrashing” as an On 5 August 2015, the D2 ROV was exploring angular escape response to predators and in the laboratory by basalt blocks and sediment patches on the steep inner “mechanical disturbance” in the trochoidean gastropods slope of Maro Crater, an unusual 6 km-wide crater east Umbonium vestiarium (Linnaeus, 1758), Isanda coronata of Maro Reef (25.16o N, 169.88o W, 2998–3027 m). The A. Adams, 1854, and other species of the family cameras recorded what appeared to be a fish attacking or Solariellidae. The observations provided here are the first being attacked by some other unidentified animal. When of such behavior in Gaza spp. and among the few reports the ROV cameras were zoomed in on the encounter, the on behavior of non-cephalopod deep-sea mollusks.
    [Show full text]
  • Algae & Marine Plants of Point Reyes
    Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella
    [Show full text]
  • The State of the World's Aquatic Genetic Resources for Food and Agriculture 1
    2019 ISSN 2412-5474 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME 2019 Required citation: FAO. 2019. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131608-5 © FAO, 2019 Some rights reserved. This work is available under a CC BY-NC-SA 3.0 IGO licence 2018 © FAO, XXXXXEN/1/05.18 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode).
    [Show full text]
  • Università Di Bologna in Cotutela Con Università Dell'algarve
    Allma Mater Studiiorum – Uniiversiità dii Bollogna in cotutela con Università dell’Algarve DOTTORATO DI RICERCA IN Scienze Della Terra, Della Vita E Dell’Ambiente Ciclo XXIX Settore Concorsuale di afferenza: 05/C1 Ecologia Settore Scientifico disciplinare: BIO/07 Ecologia GENETIC BACKGROUND, RANGE SHIFTS AND ASSOCIATED MICROBIAL RESPONSES OF CANOPY ALGAE UNDER CHANGING ENVIRONMENT Presentata da: Roberto Buonomo Coordinatore Dottorato Relatori Prof. Barbara Mantovani Prof. Laura Airoldi Prof. Ester A. Serrão Co–relatori Dr. Aschwin H. Engelen Esame finale anno 2017 “Dove inizia la fine del mare? O addirittura: cosa diciamo quando diciamo: mare? Diciamo l'immenso mostro capace di divorare qualsiasi cosa, o quell'onda che ci schiuma intorno ai piedi? L'acqua che puoi tenere nel cavo della mano o l'abisso che nessuno può vedere? Diciamo tutto in una sola parola o in una sola parola tutto nascondiamo? Sto qui, a un passo dal mare, e neanche riesco a capire, lui, dov'è. Il mare. Il mare.” – Alessandro Baricco, Oceano Mare Genetic background, range shifts and associated microbial responses of canopy algae under changing environment ABSTRACT Marine forests are a key habitat across temperate rocky shores, increasing dimensional complexity, local biodiversity, and productivity. However, canopy-forming algae are experiencing a general global decline, mostly driven by human pressures on coastal ecosystems and global changes. In contrast with their high ecological relevance, little is known about how their genetic diversity, dispersal and connectivity can be affected by global changes, despite the expected consequences for population resilience. I focused on studying brown macroalgae of the genus Cystoseira, one of the leading canopy-forming seaweed genera along European coasts, coupling molecular and ecological approaches to understand several processes that affect these marine forests.
    [Show full text]
  • Marine Brown Algae (Phaeophyta) from the North Coast of Papua New Guinea, with a Description of Dictyota Mugneana Sp. Nov
    Cryptogamie, Algal., 2001, 22 (1): IS-40 0 2001 Adac/l?ditions scientifiques et medicales Elsevier SAS. Tous droits reserves SOl81-1568(00)01047-3/PLA Marine brown algae (Phaeophyta) from the north coast of Papua New Guinea, with a description of Dictyota mugneana sp. nov. Eric COPPEJANp*, Olivier DE CLERCKb and Frederik LELIAERT Research group Phycology, Department Biology, Ghent University, K.L. Ledeganckstraat, 35 9000. Ghent, Belgium (Received 10 July 2000, accepted 14 November 2000) Abstract - The marine benthic brown algae of the north coast of Papua New Guinea (mainly from Madang province) are documented, based on collections made by the first author, between 1980 and 1990. All records [34 identified taxa (+Sargassum spp.)] are listed with bibliographic, taxonomic, nomenclatural and biogeographical notes. The specimens belonging to the genus Dictyota are identified according to recent species definitions. D. magneana De Clerck et Coppejans is described as new to science. Only some representatives of the genus Sargassum have been identified to species level. The phaeophycean flora of the north coast is very similar to that of the south coast (Port Moresby area); nevertheless some differences can be observed. 0 2001 Adac/Editions scientifiques et medicales Elsevier SAS Phaeophyta I Papua New Guinea I checklist I Dictyota magneana sp. nav. R&urn6 - Les PhCophyckes hcnthiques de la tote Nord de la Papouasie Nouvelle Guinee (surtout de la Province de Madang) sont documentees, base sur les collections du premier auteur, effect&es entre 1980 et 1990. Pour chaque espece (+ de 34 taxons) des don&es bibliographiques, taxonomiques, nomenclaturales et biogeographiques sont ajoutr5es.
    [Show full text]
  • ACTA ICHTHYOLOGICA ET PISCATORIA Jadwiga GRABDA
    ACTA ICHTHYOLOGICA ET PISCATORIA Vol. V, Faac. 1 Szczecin, 197 5 Jadwiga GRABDA,lhrahimAbdel Fattah Mahmoud SOLIMAN Parultolcgy COPEPODS - PARASITES OF THE GENUS MERLUCCIUS FROM THE ATLANTIC OCEAN AND MEDITERRANEAN SEA PASOZYTNICZE WIDl:.ONOGI RYB RODZAJU MERLUCCIUS Z OCEANU ATLANTYCKIEGO I MORZA SRODZIEMNEGO Institute of Ichthyology 3 species of parasitic copepods were found on Atlantic hakes caught off the western coasts of Europe, Africa, the Medi­ terranean Sea (off Alexandria), and North America. The species are: Chondracanthus fnerluccii, Brachiel/a merluccii and Parabrachiella australis. The parasites importance as indicators of the affinities between hakes is discussed. Various hypotheses concerning the origin of the genus Merluccius are presented. INTRODUCTION Studies on parasites as biological indicators of their host's population status, affinities, migrations, origin and zoogeographic distribution are a valuable method to explain many problems of biology of fish. The parasitic species of a narrow specificity are particularly interesting as indicators. The parasitic copepods of the genera Chondracanthus, Brachiella and Parabrachiellaappear to play such a role in hake. During the investigations on species variability within the genus Merluccius from the Atlantic and Mediterranean Sea (Soliman, 1973), the parasitic copepods were collected in order to utilize them as possible indicators of specific affiliations and affinities between the hakes investigated. MATERIALS AND METHOD The parasites were collected in 1971 � 1973 from mouth and gill cavities of the fishes exami1ied. 32 Jadwiga Grabda, Ibrahim Abdel Fattah Mahmoud Soliman Table 1 and the chart enclosed (Fig. 1) summarize number of fishesexamined, fishing grounds and catching time of particular hake stocks. 45' "1' tJt�H m-����;-��������-f-������������-"<t--==,__���11,' o' ,s· 45' Fig.
    [Show full text]
  • Taonia Abbottiana Sp.Nov. (Dictyotales, Phaeophyceae)
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2004 Adac. Tous droits reserves. This manuscript is an author version with the final publication available and may be cited as: Littler, D. S., & Littler, M. M. (2004). Taonia abbottiana sp. nov. (Dictyotales, Phaeophyceae) from the tropical western Atlantic. Cryptogamie Algologie, 25(4), 419-427. Cryptogamie, Algol., 2004, 25 (4): 419-427 © 2004 Adac. Tous droits reserves Taonia abbottiana sp. nov. (Dictyotales, Phaeophyceae) from the Tropical Western Atlantic1 Diane S. LITTLERa, b* & Mark M. LITTLERb aDivision of Marine Science, Harbor Branch Oceanographic Institution, 5600 U.S. 1 North, Fort Pierce, Florida 34946, USA. b National Museum of Natural History, Department of Botany, NHB-166, P.O. Box 37012, Smithsonian Institution, Washington, D. C. 20013-7012, USA. (Received 19 May 2004, accepted 18 August 2004) Abstract - A new species of brown algae, Taonia abbottiana D.S. Littler et M.M. Littler, is described from the tropical western Atlantic. To date, this is the only member of the genus reported from the region. Taonia abbottiana differs from other species of the genus in having (1) sporangia raised above the surface layer on a stalk composed of two cells, and (2) in addition having a surface cortical layer of differentiated cells that are smaller than those of the medullary layers. Taonia abbottiana has often been confused with Stypopodium zonate, but the two differ anatomically in the development of cells directly behind the growing margin and, when living at similar depths, T.
    [Show full text]
  • Echinolittorina Peruviana (Lamarck, 1822): Antecedentes De La Especie
    Sociedad Malacológica de Chile (SMACH) Amici Molluscarum 18: 39-42 (2010) Echinolittorina peruviana (Lamarck, 1822): antecedentes de la especie Viviana M. Castillo y Donald I. Brown Laboratorio de Biología de la Reproducción y del Desarrollo, Departamento de Biología y Ciencias Ambientales, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile. E-mail: [email protected] Clasificación Clase Gastropoda Cuvier, 1795 en cuya base interna se observa una línea blanca, Subclase Orthogastropoda Ponder y Lindberg, 1997 curvada hacia la columela, que es cóncava a recta Superorden Caenogastropoda Cox, 1960 de color café lechoso o muy oscuro (Guzmán et al ., Orden Sorbeoconcha Ponder y Lindberg, 1997 1998). La protoconcha no se observa (Reid, Suborden Hypsogastropoda Ponder y Lindberg, 1997 2002a). Los individuos adultos poseen externa- Infraorden Littorinimorpha Golikov y Starobogatov, 1975 mente una coloración muy característica, con Superfamilia Littorinoidea Children, 1834 líneas blancas y negras verticales en forma de zig- Familia Littorinidae Gray, 1840 zag (Guzmán et al ., 1998; Reid, 2002a); en cam- Subfamilia Littorininae Children, 1834 bio, los juveniles son de color negro (Jordán y Género Echinolittorina Habe, 1956 Ramorino, 1975). La cabeza y los tentáculos son de color negro, con un borde blanco alrededor del ojo; la rádula tiene una longitud que fluctúa entre 2,8 y Sinonimia 3,4 mm (Reid, 2002a). Para Echinolittorina peruviana (Lamarck, 1822) se han recuperado de la literatura los siguientes sinónimos (Reid, 2002a; Guzmán et al ., 1998): Distribución geográfica Phasianella peruviana Lamarck, 1822 Su distribución latitudinal, según distintos autores, Littorina peruviana Gray, 1839 tiene como límite sur Valparaíso (Chile) Turbo zebra Wood, 1828 (Marincovich, 1973; Álamo y Valdivieso, 1987); Littorina zebra Phillipi, 1847 sin embargo, Aldea y Valdovinos (2005) recien- Littorina zebra var.
    [Show full text]
  • Investigating the Genetic Origin of Three Fucus Morphotypes Using Microsatellite Analysis
    Investigating the genetic origin of three Fucus morphotypes using microsatellite analysis Frida Catharina Skovereng Knoop Master of Marine Biology, June 2021 Supervisors: Inga Kjersti Sjøtun, Pedro Miguel de Azevedo Ribeiro, Geir Dahle Department of Biological Sciences, University of Bergen 1 Acknowledgements First, I would like to say thank you Kjersti, for shaping the thesis and for giving me the opportunity to participate in this project. Without exception, you have been so kind and supportive throughout the whole process. Although I only got to explore a small part of the vast world of algae, it surely has been an inspirational and interesting journey full of new learnings. Thank you for your guidance and patience in the field, the lab, and for always answering my questions. I could not ask for a better supervisor, and it has been a pleasure to work with you. Pedro, thank you for being an excellent co-supervisor. During this thesis, I very much appreciated your positive attitude and patience. Thank you for taking your time to explain the processes behind the molecular work and for guiding me through the statistical part, which I found particularly challenging. During stressful times, your support kept me calm and made sure I did not lose focus. Also, your feedback was very much appreciated. A special thank you to co-supervisor Geir Dahle at the Institute of Marine Science (IMR) for taking your time to help with the genetic analysis, the ABI Machine, and allele scoring, which was only possible at IMR. I also want to thank you for sharing your knowledge regarding microsatellite analysis, being helpful with the statistics, and providing good feedback.
    [Show full text]
  • Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012
    Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012. Final report Report Number: ER12-184 Performing Company: Sponsor: Natural England Ecospan Environmental Ltd Framework Agreement No. 22643/04 52 Oreston Road Ecospan Project No: 12-218 Plymouth Devon PL9 7JH Tel: 01752 402238 Email: [email protected] www.ecospan.co.uk Ecospan Environmental Ltd. is registered in England No. 5831900 ISO 9001 Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012. Author(s): M D R Field Approved By: M J Hutchings Date of Approval: December 2012 Circulation 1. Gavin Black Natural England 2. Angela gall Natural England 2. Mike Field Ecospan Environmental Ltd ER12-184 Page 1 of 46 Plymouth Sound and Estuaries SAC: Kelp Forest Condition Assessment 2012. Contents 1 EXECUTIVE SUMMARY ..................................................................................................... 3 2 INTRODUCTION ................................................................................................................ 4 3 OBJECTIVES ...................................................................................................................... 5 4 SAMPLING STRATEGY ...................................................................................................... 6 5 METHODS ......................................................................................................................... 8 5.1 Overview .........................................................................................................................
    [Show full text]