The Revised Classification for Scarabaeoidea: What the Hell Is Going On?

Total Page:16

File Type:pdf, Size:1020Kb

The Revised Classification for Scarabaeoidea: What the Hell Is Going On? View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 11-27-2004 The Revised Classification for Scarabaeoidea: What the Hell is Going On? Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Mary Liz Jameson University of Nebraska State Museum, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Ratcliffe, Brett C. and Jameson, Mary Liz, "The Revised Classification for Scarabaeoidea: What the Hell is Going On?" (2004). Papers in Entomology. 25. https://digitalcommons.unl.edu/entomologypapers/25 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in SCARABS 15 (November 2004), pp. 3-10. Published by Coleopterists Society; online at http://www-museum.unl.edu/research/entomology/Scarabs-Newsletter.htm The Revised Classification for Scarabaeoidea: What the Hell is Going On? by Brett C. Ratcliffe and Mary Liz Jameson Systematics Research Collections W436 Nebraska Hall, University of Nebraska Lincoln, NE 68588-0514 bratcliff[email protected] and [email protected] Considering the turmoil and vast changes in the classification of the superfamily Scarabaeoidea during the last 20 years, particularly in North America, we were asked to provide an update for the readers of Scarabs wherein we offer our perspectives. Much of what follows is extracted from our scarabaeoid introduction in American Beetles (Jameson and Ratcliffe 2002). By the time this overview is printed, there may have been more changes in the classification because of the rapidly accumulating evidence supporting new hypotheses. These rapid changes are a result of intensified study of the family groups using both traditional morphological evidence combined Brett and Mary Liz with increasingly insightful The superfamily Scarabaeoidea molecular studies. While possibly is a large, diverse, cosmopolitan disruptive now, these new studies group of beetles. As a personal are exciting because, for the aside (and, of course, with no first time, we are establishing bias), these are probably the finest the higher classification of the beetles in the world. Scarabaeoids Scarabaeoidea based on evidence are adapted to most habitats, and facts rather than intuition. and they can be fungivores, This research confirms many of herbivores, necrophages, our hypotheses of classification coprophages, saprophages, and Ed. Note: Dave Hawks is but also clearly refutes others. sometimes carnivores. They are conducting DNA studies Be on the lookout for future widely distributed around the on the Scarabaeoidea publications by Team Scarab and globe, even living in the Arctic David Hawks! in animal burrows. Some scarabs exhibit parental care and sociality. Page 3 Some are myrmecophilous, is not resolved and continues termitophilous, or ectoparasitic. to be debated. The hierarchical Many possess extravagant horns, level of families and subfamilies others are able to roll into a within the Scarabaeoidea is in compact ball, and still others disarray and remains unresolved. are highly armored for inquiline In most U.S. literature prior to life. A very few are occasionally the 1970s (e.g., Arnett 1968), the agricultural pests that may Scarabaeoidea included three destroy crops (even beetles have families: Passalidae, Lucanidae, to eat!) while others are used in and Scarabaeidae. This three- the biological control of dung family system of classification was and dung flies. Scarabaeoids are the “traditional” North American popular beetles due to their large system and had several practical size, bright colors, and interesting and conceptual advantages. First, natural histories. Early Egyptians it recognized the shared, derived revered the scarab as a god, characters that unite subfamilies Jean-Henri Fabre Jean-Henri Fabre studied their within the family Scarabaeidae. behavior, and Charles Darwin Second, it provided a classification used observations of scarabs in his system that allowed easy retrieval theory of sexual selection. of hierarchical information based on the fact that subfamilies were What characterizes a part of the family Scarabaeidae scarabaeoid? (e.g., life history, morphology, larval type). Phylogenetic research The antennal club is lamellate, the indicates, however, that the family prothorax is often highly modified Scarabaeidae (in the traditional for burrowing (with large coxae, sense) is not a monophyletic usually with concealed trochantins group. Accordingly, most workers and closed cavities), the protibia now follow the 12-family system is usually dentate with a single established by Browne and Scholtz spur, the wing venation is reduced (1995, 1999) and Lawrence and and with a strong intrinsic spring Newton (1995). This system mechanism for folding, tergite 8 places emphasis on the differences forms a true pygidium and is not that separate taxa rather than concealed by tergite 7, there are the similarities that unite them. four Malpighian tubules, and larvae Whereas families, subfamilies, are scarabaeiform (cylindrical, c- and tribes in the staphylinoids and shaped). curculionoids are being combined because of shared characters (thus What is the current status of the increasing efficient data retrieval), classification? the scarabaeoids are being split into numerous families because Monophyly of the superfamily of supposed differences (thus, in Scarabaeoidea is well-founded our view, decreasing information and undisputed (Lawrence and retrieval, at least in the short term). Britton 1991). The sister group The debate concerning scarabaeoid Page 4 for the Scarabaeoidea, however, classification systems illustrates the weak phylogenetic foundation of approximately 21,000 species are the superfamily. This problem is in the subfamilies Melolonthinae, the result of a number of factors Dynastinae, Rutelinae, and including (1) lack of thorough Cetoniinae (the “higher” scarabs). study of all scarabaeoid taxa, (2) Only a few phylogenetic analyses lack of diagnostic characters for have addressed relationships of all taxa, (3) lack of phylogenetic pleurostict subtribes, genera, or study of all taxa, (4) prevailing species (Ratcliffe 1976; Ratcliffe and philosophies regarding categorical Deloya 1992; Jameson 1990, 1996, levels, and (5) emphasis in 1998; Jameson et al. 1994; Krell research on the less speciose 1993; Montreuil 2000; Paucar 2003; groups of scarabaeoids and lack Smith 2003), and only one analysis of research on the more speciose has been conducted to address groups (such as the subfamilies tribal or subfamilial relationships of Scarabaeidae including the (Browne and Scholtz 1999). Melolonthinae, Rutelinae, Dynastinae, Aphodiinae, and Historically, the superfamily Cetoniinae). Scarabaeoidea was divided into Charles Darwin two generalized groups based Within the Scarabaeoidea there on the position of the abdominal is a disparity in the knowledge spiracles; the Laparosticti and between less speciose basal Pleurosticti. Pleurostict scarabs lineages and the more speciose were characterized by having groups of “higher” Scarabaeidae. most of the abdominal spiracles For example, the family situated on the upper portion of the Trogidae includes approximately sternites (Ritcher 1969; Woodruff 300 species in four genera. 1973) and included taxa whose Excellent revisionary, larval, and adults feed on leaves, flowers and phylogenetic studies are available pollen, and whose larvae feed for this group (Baker 1968; Scholtz primarily on roots and decaying 1982, 1986, 1990, 1991, 1993; wood. Laparostict scarabs, on the Scholtz and Peck 1990). Excellent other hand, were characterized monographs are also available for by having most of the abdominal the approximately 600 species of spiracles located on the pleural Geotrupidae (Howden 1955, 1964, membrane between the tergites 1979, 1985a-b, 1992; Howden and sternites (Ritcher 1969) and and Cooper 1977; Howden and included taxa whose adults and Martínez 1978) and the Trogidae larvae feed on dung, carrion, (Vaurie 1955), and these provide hides, and feathers. The position the foundation for addressing of the spiracles, however, is not a relationships within this group. consistent character (Ritcher 1969), In comparison, the family and, in recent years, subfamilies Scarabaeidae (sensu Lawrence and tribes that were once included and Newton 1995) includes in the Laparosticti have been raised approximately 91% of the species to higher taxonomic status (family (ca 27,800) of Scarabaeoidea. and subfamily, respectively). Within the Scarabaeidae, Page 5 The composition of the characters or suites of characters. Scarabaeoidea remains a topic of debate. Lawrence and Newton Underlying the classification (1995) proposed 13 families (12 problem is, of course, the fact that found in the Nearctic, Belohinidae we are dealing with constructs is Madagascan), and Scholtz that are 200 years old and that and Browne (1996) and Browne pre-date evolutionary theory. and Scholtz (1995, 1998, 1999) Linnaean classifications were proposed 13 families (all Nearctic, based on overall morphological including Bolboceratidae; similarity rather than shared, Belohinidae was not addressed). We
Recommended publications
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • Coleoptera Species of Forensic Importance from Brazil: an Updated List
    G Model RBE-49; No. of Pages 11 ARTICLE IN PRESS Revista Brasileira de Entomologia xxx (2015) xxx–xxx REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution w ww.rbentomologia.com Systematics, Morphology and Biogeography Coleoptera species of forensic importance from Brazil: an updated list a,∗ a b Lúcia Massutti de Almeida , Rodrigo César Corrêa , Paschoal Coelho Grossi a Laboratório de Sistemática e Bioecologia de Coleoptera, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, PR, Brazil b Universidade Federal Rural de Pernambuco, Recife, PE, Brazil a b s t r a c t a r t i c l e i n f o Article history: A list of the Coleoptera of importance from Brazil, based on published records was compiled. The checklist Received 21 May 2015 contains 345 species of 16 families allocated to 16 states of the country. In addition, three species of two Accepted 14 August 2015 families are registered for the first time. The fauna of Coleoptera of forensic importance is still not entirely Available online xxx known and future collection efforts and taxonomic reviews could increase the number of known species Associate Editor: Rodrigo Krüger considerably in the near future. © 2015 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Entomologia. This is an Keywords: Beetles open access article under the CC BY-NC-ND license Cleridae (http://creativecommons.org/licenses/by-nc-nd/4.0/). Dermestidae Forensic entomology Silphidae Introduction behaviour are needed before their importance can be fully under- stood (see Midgley et al., 2010). The diversity of Coleoptera and The development of forensic entomology in Brazil was well the lack of taxonomic studies have direct effect in how the beetles reported by Pujol-Luz et al.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum, University of Nebraska State Museum 2003 A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B. T. Smith University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, and the Other Ecology and Evolutionary Biology Commons Smith, Andrew B. T., "A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini)" (2003). Bulletin of the University of Nebraska State Museum. 3. http://digitalcommons.unl.edu/museumbulletin/3 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B. T. Smith Bulletin of the University of Nebraska State Museum Volume 15 A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) by Andrew B. T. Smith UNIVERSITY. OF, ( NEBRASKA "-" STATE MUSEUM Published by the University of Nebraska State Museum Lincoln, Nebraska 2003 Bulletin of the University of Nebraska State Museum Volume 15 Issue Date: 7 July 2003 Editor: Brett C. Ratcliffe Cover Design: Angie Fox Text design and layout: Linda J. Ratcliffe Text fonts: New Century Schoolbook and Arial Bulletins may be purchased from the Museum. Address orders to: Publications Secretary W436 Nebraska Hall University of Nebraska State Museum Lincoln, NE 68588-0514 U.S.A.
    [Show full text]
  • TCC Mayara Thais Fernandes Final
    Mayara Thais Fernandes LEVANTAMENTO DA FAUNA ENTOMOLÓGICA EM CARCAÇA DE SUÍNO EM AMBIENTE DE RESTINGA NO PARQUE ESTADUAL DA SERRA DO TABULEIRO Trabalho de Conclusão de Curso submetido ao Centro de Ciências Biológicas da Universidade Federal de Santa Catarina para a obtenção do Grau de Bacharel em Ciências Biológicas. Orientador: Professor Dr. Carlos José de Carvalho Pinto Florianópolis 2014 AGRADECIMENTOS Primeiramente eu gostaria de agradecer aos meus pais, pois sem eles nada disso seria possível. Obrigada por todo o suporte, não apenas financeiro, mas principalmente emocional. Vocês que sempre estiveram ao meu lado, me apoiando, me incentivando e me auxiliando em cada tomada de decisão, sem interferir, apenas me mostrando e me fazendo perceber o caminho a seguir, mesmo que algumas vezes o caminho escolhido não fosse exatamente o que vocês haviam sonhado para mim. Em especial, gostaria de agradecer ao meu Pai que fez todas as coletas desse TCC comigo, em algumas ocasiões inclusive viu coisas que eu não havia visto e que fez todo o trabalho fotográfico. Amo vocês, e não há palavras para descrever meu orgulho em ter vocês como pais. Gostaria de agradecer também à minha irmã Greisse que sempre me apoiou, mesmo depois dos meus muitos fracassos, ela sempre esteve lá me ajudando e me motivando a continuar. Te amo maninha! Ao meu padrinho Luiz Paulo que sempre foi como um segundo pai pra mim; à minha madrinha emprestada Marla; à minha madrinha Rosa minha madrinha de batismo e de coração; à Edna minha madrinha de crisma que sempre me amou como madrinha mesmo eu não tendo me crismado; aos meus tios e primos pois sem família não somos ninguém, em especial às minhas avós Oscarina e Castorina ( in memorian ) obrigada por todo o carinho e pelos mimos, amo vocês! As famílias da Tarsi e da Rosana, famílias de coração, ligação muito forte.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Dimensional Limits for Arthropod Eyes with Superposition Optics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 44 (2004) 2213–2223 www.elsevier.com/locate/visres Dimensional limits for arthropod eyes with superposition optics Victor Benno Meyer-Rochow a,*,Jozsef Gal b a School of Engineering and Sciences, International University Bremen (IUB), Campus Ring 6, Research II, D-28759 Bremen, Germany b Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt. 62, H-6701 Szeged, Hungary Received 10 December 2003; received in revised form 16 April 2004 Abstract An essential feature of the superposition type of compound eye is the presence of a wide zone, which is transparent and devoid of pigment and interposed between the distal array of dioptric elements and the proximally placed photoreceptive layer. Parallel rays, collected by many lenses, must (through reflection or refraction) cross this transparent clear-zone in such a way that they become focused on one receptor. Superposition depends mostly on diameter and curvature of the cornea, size and shape of the crystalline cone, lens cylinder properties of cornea and cone, dimensions of the receptor cells, and width of the clear-zone. We examined the role of the latter by geometrical, geometric-optical, and anatomical measurements and concluded that a minimal size exists, below which effective superposition can no longer occur. For an eye of a given size, it is not possible to increase the width of the clear-zone cz ¼ dcz=R1 and decrease R2 (i.e., the radius of curvature of the distal retinal surface) and/or c ¼ dc=R1 without reaching a limit.
    [Show full text]
  • Phylogenetic Analysis of Geotrupidae (Coleoptera, Scarabaeoidea) Based on Larvae
    Systematic Entomology (2004) 29, 509–523 Phylogenetic analysis of Geotrupidae (Coleoptera, Scarabaeoidea) based on larvae JOSE´ R. VERDU´ 1 , EDUARDO GALANTE1 , JEAN-PIERRE LUMARET2 andFRANCISCO J. CABRERO-SAN˜ UDO3 1Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Spain; 2CEFE, UMR 5175, De´ partement Ecologie des Arthropodes, Universite´ Paul Vale´ ry, Montpellier, France; and 3Departamento Biodiversidad y Biologı´ a Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain Abstract. Thirty-eight characters derived from the larvae of Geotrupidae (Scarabaeoidea, Coleoptera) were analysed using parsimony and Bayesian infer- ence. Trees were rooted with two Trogidae species and one species of Pleocomidae as outgroups. The monophyly of Geotrupidae (including Bolboceratinae) is supported by four autapomorphies: abdominal segments 3–7 with two dorsal annulets, chaetoparia and acanthoparia of the epipharynx not prominent, glossa and hypopharynx fused and without sclerome, trochanter and femur without fossorial setae. Bolboceratinae showed notable differences with Pleocomidae, being more related to Geotrupinae than to other groups. Odonteus species (Bolboceratinae s.str.) appear to constitute the closest sister group to Geotrupi- nae. Polyphyly of Bolboceratinae is implied by the following apomorphic char- acters observed in the ‘Odonteus lineage’: anterior and posterior epitormae of epipharynx developed, tormae of epipharynx fused, oncyli of hypopharynx devel- oped, tarsal claws reduced or absent, plectrum and pars stridens of legs well developed and apex of antennal segment 2 with a unique sensorium. A ‘Bolbelas- mus lineage’ is supported by the autapomorphic presence of various sensoria on the apex of the antennal segment, and the subtriangular labrum (except Eucanthus). This group constituted by Bolbelasmus, Bolbocerosoma and Eucanthus is the first evidence for a close relationship among genera, but more characters should be analysed to test the support for the clade.
    [Show full text]
  • Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): Proposed Precedence Over Odonteus Samouelle, 1819 (June)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State December 2002 Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): proposed precedence over Odonteus Samouelle, 1819 (June) Mary Liz Jameson University of Nebraska - Lincoln, [email protected] H. F. Howden Canadian Museum of Nature, Ottawa, Canada Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz and Howden, H. F., "Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): proposed precedence over Odonteus Samouelle, 1819 (June)" (2002). Papers in Entomology. 89. https://digitalcommons.unl.edu/entomologypapers/89 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 246 Bulletin of Zoological Nomenclature 59(4) December 2002 Case 3097 Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): proposed precedence over Odonteus Samouelle, 1819 (June) M.L. Jameson University of Nebraska State Museum, W436 Nebraska Hall, Lincoln, Nebraska 685884.514, U.S. A. (e-mail: mjameson1 @unl.edu) H.F. Howden Canadian Museum of Nature, P. 0. Box 3443, Station 'D',Ottawa, Canada Kl P 6P4 (e-mail: [email protected]) Abstract. The purpose of this application, under Articles 23.9.3 and 8 1.2.3 of the Code, is to conserve the generic name Bolboceras Kirby, 1819 for a group of scarab beetles (family GEOTRUPIDAE)by giving it conditional precedence over the older name Odonteus Samouelle, 18 19 whenever they are considered to be synonyms.
    [Show full text]
  • Some Corrections and Remarks Regarding the Nomenclature Of
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 6-30-2017 Some corrections and remarks regarding the nomenclature of Neotropical Athyreini, Passalini, Phanaeini, Rutelini, Cyclocephalini, Dynastini and Oryctini (Coleoptera: Scarabaeoidea) Auke J. Hielkema Paramaribo, Suriname, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Hielkema, Auke J., "Some corrections and remarks regarding the nomenclature of Neotropical Athyreini, Passalini, Phanaeini, Rutelini, Cyclocephalini, Dynastini and Oryctini (Coleoptera: Scarabaeoidea)" (2017). Insecta Mundi. 1075. http://digitalcommons.unl.edu/insectamundi/1075 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0561 Some corrections and remarks regarding the nomenclature of Neotropical Athyreini, Passalini, Phanaeini, Rutelini, Cyclocephalini, Dynastini and Oryctini (Coleoptera: Scarabaeoidea) Auke J. Hielkema Curitibastraat 46A, Beni’s Park Paramaribo, Suriname Date of Issue: June 30, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Auke J. Hielkema
    [Show full text]