Mycologist News

Total Page:16

File Type:pdf, Size:1020Kb

Mycologist News MYCOLOGIST NEWS The newsletter of the British Mycological Society 2012 (2) Edited by Dr. Pieter van West and Dr Anpu Varghese 2012 BMS Council BMS Council and Committee Members 2012 President Prof. Naresh Magan Vice-President Prof. Bruce Ing President Elect Dr. Geoff Robson Treasurer Prof. Geoff M Gadd Secretary Position vacant Publications Officer Dr. Pieter van West International Initiatives Adviser Prof. AJ Whalley Fungal Biology Research Committee representatives: Dr. Simon Avery; Prof Nick Read Fungal Education and Outreach Committee: Dr. Paul S. Dyer; Ms. Carol Hobart Field Mycology and Conservation: Dr. Stuart Skeates, Mrs Dinah Griffin Fungal Biology Research Committee Prof. Nick Read (Chair) retiring 31.12. 2013 Dr. Simon Avery retiring 31.12. 2012 Dr. Elaine Bignell retiring 31.12. 2013 Dr. Mark Ramsdale retiring 31.12. 2013 Dr. Pieter van West retiring 31.12. 2013 Dr. Sue Crosthwaite retiring 31.12. 2014 Prof. Mick Tuite retiring 31.12. 2014 Fungal Education and Outreach Committee Dr. Paul S. Dyer (Chair and FBR link) retiring 31.12. 2013 Dr. Ali Ashby retiring 31.12. 2013 Ms. Carol Hobart (FMC link) retiring 31.12. 2012 Dr. Sue Assinder retiring 31.12. 2013 Dr. Kay Yeoman retiring 31.12. 2013 Alan Williams retiring 31.12. 2014 Field Mycology and Conservation Committee Dr. Stuart Skeates (Chair, website & FBR link) retiring 31.12. 2014 Prof. Bruce Ing (Conservation) retiring 31.12. 2012 Dr. Paul Kirk (Database) retiring 31.12. 2012 Ms. Carol Hobart (Events and FEO link) retiring 31.12. 2012 Prof Richard Fortey retiring 31.12. 2013 Mrs. Sheila Spence (Recorders network co-ordinator) retiring 31.12. 2013 Mrs Dinah Griffin retiring 31.12. 2014 Dr. Martyn Ainsworth retiring 31.12. 2013 Contacts BMS Administrator President: [email protected] British Mycological Society Treasurer: [email protected] City View House Mycologist News: [email protected] Union Street BMS Administrator: [email protected] Manchester M12 4JD BMS Membership: [email protected] Tel: +44(0) 161 277 7638 / 7639 Fax: +44(0) 161 277 7634 2 From the Office Hello from the BMS office... Summers here (believe it or not!) and the various BMS meetings are underway. As we go to press the Corticoid and Amanita Workshops have taken place and we look forward to publishing reports from these events at some point in the future. The Deadline for registering for the Main BMS Scientific Meeting in Alicante has passed and the meeting looks certain to be very well attended. This is the 1st Main BMS meeting to be held outside the UK and should emphasise that the BMS is truly an international Society, with membership drawn from all over the world. The current wet weather, whilst a bit depressing for a lot of people, should help the coming foray season be very fruitful. As ever we welcome all ideas and items you would wish to share and will try to include all articles we can, especially any terrific photographs of fungi you can supply. Best wishes for coming months. Regards, The BMS office Team. Norman Porrett Sophie Embleton Administrator BMS Office Field Mycology Assistant Contents The Big Nature Day p4 Request for West Weald Inocybe Workshop p6 Newsletter National Botanic Garden of Wales— p7 Fungus Day Articles ‘Fun with Fungus’ at St Faith’s School p8 Do you have any items you would like to see published in the Newsletter which BMS Bursary Report p10 would be of interest to members? BMS Dune & Nutrient Deficient Grassland We would love to receive short reports of p12 Event any activities, upcoming events, items of interest, etc. BMS Autumn Open Meeting 2012 p15 Please send items to the office or email to: BMS Foray & Workshop Programme p16 [email protected] BMS Annual Scientific Meeting—Alicante p19 Photo Corner p20 Copy deadline for next issue: 1 September 2012 3 BMS, OPAL (Open Air Laboratories) & UN International Day of Biological Diversity On Sunday 27th May over fifty Natural History groups got together to take part in The Big Nature Day event at the Natural History Museum in London. The aim of the event was to celebrate the work of the OPAL (Open Air Laboratories) citizen science programme and focussed on showcasing the achievements of the OPAL programme in order to encourage more people to get involved. It also marked the UN International Day of Biological Diversity. More than five thousand members of the general public took part in the event (over 40% of the total visitors to the Museum on that day), where they were stimulated to take part in recording, monitoring, enjoying and protecting biodiversity and their local environment. The BMS Display Kay Yeoman and Naresh Magan talking ‘fungi’ The British Mycological Society display was very well attended, children were drawn to the stand by the chance to take away a red and white spotted ‘fly agaric balloon’ and chewy mushroom sweets. We were also fortunate to have been sponsored by ‘G’s Fresh who supplied us with dried wild and porcini mushrooms that we could give away to adults. Children were fascinated to see the ‘gills’ of Agaricus bisporus viewed under child friendly stereo microscopes and learnt that gills were the specialised structures where fungal spores were made. We looked at spore prints on microscope slides using a compound microscope which showed that the spore print pattern was made up of thousands of tiny spores that had fallen from the gills. Lynne brought along some of her soil plates with mycelium from a woodland saprotroph that demonstrate what the main body of a filamentous fungus looks like. These were also used as a prop to explain the answer to the ‘Fungus Decoder Quiz’ designed by Kay. Here, the fruit bodies of the six fungi listed in the BMS recording programme ‘have you seen this fungus?’ plus a few extra fruit bodies (whose common names resembled their fruit body appearance), had to be matched with their common name to reveal a letter code. The quiz sheet presented the fruit bodies in a particular order to spell out the word ‘Mycelium’ – the main body of a filamentous fungus. To further encourage the general public to take part in the BMS recording programme ‘have you seen this fungus?’ we ran the very visual activity ‘How the mushroom got its spots’. 4 ► Ali Ashby, Jenna and Lynne Boddy with ‘fly agaric’ balloons The life cycle of the fly agaric was explained in varying detail depending on the age of the participant and the importance of the fly agaric as an ectomycorrhizal fungus on birch and pine was emphasised. Children learnt how this mushroom gets its spots – the secret being the disintegration of the ‘universal veil’ as the mushroom cap expands. This was beautifully illustrated by Jenna and Ali, using a red balloon, tissue paper, water and lots of puff! The team worked well together on the day, sharing the work load and distributing our many leaflets and chewy sweets. It was important for BMS to be part of this new event, allowing us to liaise with our fellow learned societies and other enthusiastic amateurs, sharing our expertise and experience of public outreach and engagement to further promote the achievements of OPAL and their citizen science programme. Paul Dyer, Alan Williams, Stuart Skeates and Naresh Magan enjoying the day. It is clear that technology is allowing the collection and sharing of biological data that will provide a platform for new biological insights in the future, a future in which the British Mycological Society should play a pivotal role. Thanks to Naresh, Lynne, Stuart, Paul, Kay, Alan, Ali and Jenna for manning the stand on the day, Carol for preparing the FMC ‘have you seen this fungus?’ banner and leaflet, and Sophie and Norman in the BMS office for preparing the ‘Fantastic Fungus Facts’ leaflet and other materials for the event. Ali Ashby, June 2012 5 West Weald Fungus Recording Group Inocybe Workshop 25th September 2011 Sadly the genus Inocybe is a closed book to Penny’s comprehensive Powerpoint many field mycologists! presentation, with its clear descriptions and helpful pictures was later made available to Penny Cullington came down to Bookham, participants as a PDF file. This, the Stangl book, Surrey, in September and opened us a number and the ‘Keys’ now offer us powerful tools and of interesting pages. West Weald Fungus the confidence to tackle identification within this Recording Group, again aided by a ‘BMS Small genus. Grant’, held another of its one-day Workshops for its members, with invitations extended to the Ray Tantram 22nd October 2011 Hampshire Group. About 21 participants arrived, many with their own microscopes, some with the English version of the Stangl book. We were able to acquire copies of Penny’s Keys to supplement our investigations. Penny gave an excellent presentation which helped us initially to distinguish clearly between Inocybes and similar groups. There are 139 British species, and these divide into thee subgenera and also further sections, and include species with both smooth and nodulose spores. Examination of cystidia on gills and stipe offer critical identifying features, and so it is important not to handle stipes when collecting. We had an opportunity to examine fresh specimens, mostly brought by Penny, and I was personally delighted to find one of my Inocybe erubescens Norbury Park – A WWFRG ‘unknowns’ to be Inocybe calospora, with its Spring Foray - May 2009 intriguing ‘marine-mine-shaped’ spores and beautiful metuloid caulocystidia. Attention all members who have redundant microscopes. The BMS is again this year running the very popular Beginner courses (Identification Skills Workshop) to encouraging people to use a microscope to aid identification. We are struggling to provide enough instruments for use, and we’re wondering if any of our membership have any microscopes that are surplus to requirements.
Recommended publications
  • Checklist of Argentine Agaricales 4
    Checklist of the Argentine Agaricales 4. Tricholomataceae and Polyporaceae 1 2* N. NIVEIRO & E. ALBERTÓ 1Instituto de Botánica del Nordeste (UNNE-CONICET). Sargento Cabral 2131, CC 209 Corrientes Capital, CP 3400, Argentina 2Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET) Intendente Marino Km 8.200, Chascomús, Buenos Aires, CP 7130, Argentina CORRESPONDENCE TO *: [email protected] ABSTRACT— A species checklist of 86 genera and 709 species belonging to the families Tricholomataceae and Polyporaceae occurring in Argentina, and including all the species previously published up to year 2011 is presented. KEY WORDS—Agaricomycetes, Marasmius, Mycena, Collybia, Clitocybe Introduction The aim of the Checklist of the Argentinean Agaricales is to establish a baseline of knowledge on the diversity of mushrooms species described in the literature from Argentina up to 2011. The families Amanitaceae, Pluteaceae, Hygrophoraceae, Coprinaceae, Strophariaceae, Bolbitaceae and Crepidotaceae were previoulsy compiled (Niveiro & Albertó 2012a-c). In this contribution, the families Tricholomataceae and Polyporaceae are presented. Materials & Methods Nomenclature and classification systems This checklist compiled data from the available literature on Tricholomataceae and Polyporaceae recorded for Argentina up to the year 2011. Nomenclature and classification systems followed Singer (1986) for families. The genera Pleurotus, Panus, Lentinus, and Schyzophyllum are included in the family Polyporaceae. The Tribe Polyporae (including the genera Polyporus, Pseudofavolus, and Mycobonia) is excluded. There were important rearrangements in the families Tricholomataceae and Polyporaceae according to Singer (1986) over time to present. Tricholomataceae was distributed in six families: Tricholomataceae, Marasmiaceae, Physalacriaceae, Lyophyllaceae, Mycenaceae, and Hydnaginaceae. Some genera belonging to this family were transferred to other orders, i.e. Rickenella (Rickenellaceae, Hymenochaetales), and Lentinellus (Auriscalpiaceae, Russulales).
    [Show full text]
  • Studies of Species of Hebeloma (FR.) KUMMER from the Great Lakes Region of North America I
    ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Studies of Species of Hebeloma (FR.) KUMMER from the Great Lakes Region of North America I. *) Alexander H. SMITH Professor Emeritus, University Herbarium University of Michigan Ann Arbor, Michigan, USA Introduction The genus Hebeloma is a member of the family Cortinariaceae of the order Agaricales. In recent times it has emerged from relative taxonomic obscurity largely, apparently, because most of its species are thought to be mycorrhiza formers with our forest trees, and this phase of forest ecology is now much in the public eye. The genus, as recognized by SMITH, EVENSON & MITCHEL (1983) is essentially that of SINGER (1975) with some adjustments in the infrageneric categories recognized. It is also, the same, for the most part, as the concept proposed by the late L. R. HESLER in his unfinished manuscript on the North American species which SMITH is now engaged in completing. In the past there have been few treatments of the North American species which recognized more than a dozen species. MURRILL (1917) recognized 49 species but a number of these have been transferred to other genera. In the recent past, how- ever, European mycologists have showed renewed interest in the genus as is to be noted by the papers of ROMAGNESI (1965), BRUCHET (1970), and MOSER (1978). The species included here are some that have been observed for years by the author (1929—1983) in local localities, and the obser- vations on them have clarified their identity and allowed their probable relationships to be proposed.
    [Show full text]
  • IL MONDO DEI FUNGHI Appunti Di Micologia
    Maria Rosaria Tieri – Nino Tieri IL MONDO DEI FUNGHI appunti di micologia 1 Collana : “I quaderni della natura ” © Dispensa tratta da : FUNGHI D‟ABRUZZO Edizioni Paper's World S. Atto Teramo di Maria Rosaria Tieri e Nino Tieri FUNGHI IN CUCINA Edizioni Menabò di Maria Rosaria Tieri e Nino Tieri Con la preziosa collaborazione del prof. Mimmo Bernabeo Copertina di Nino Tieri © I diritti sono riservati. Il divieto di riproduzione è totale, anche a mezzo fotocopia e per uso interno. Nessuna parte di questa pubblicazione potrà essere riprodotta, archiviata in sistemi di ricerca o trasmessa in qualunque forma elettronica, meccanica, registrata o altro. 2 BREVE STORIA DELLA MICOLOGIA Le origini dei funghi sono di sicuro antichissime, di certo, i funghi, come organismi eucarioti, apparvero sulla terra più di 500 milioni di anni fa. La documentazione, circa la loro presenza, viene dedotta dai resti fossili venuti recente- mente alla luce, risalenti a moltissimi milioni di anni fa: nei resti del carbonifero (300 milioni di anni fa) sono, infatti, riconoscibili varietà di funghi ancora oggi presenti tra le specie della flora fungina. Le popolazioni primordiali, agli inizi della civiltà umana, hanno avuto sicuramente di- mestichezza con i funghi, sia per scopi alimentari che per pratiche religiose ed arti- stiche. Oggi non siamo a conoscenza del significato che i funghi rappresentavano per l‟uomo primitivo. Non è noto, infatti, se egli se ne nutrisse o se li ignorasse, né tanto- meno se fosse in grado di distinguere le specie eduli da quelle velenose. Tra gli oggetti ritrovati nello zaino dell‟uomo di Similaun, risalente a più di 5000 anni fa, vi erano anche funghi allucinogeni secchi.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Chemical Elements in Ascomycetes and Basidiomycetes
    Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M.
    [Show full text]
  • Hebelomina (Agaricales) Revisited and Abandoned
    Plant Ecology and Evolution 151 (1): 96–109, 2018 https://doi.org/10.5091/plecevo.2018.1361 REGULAR PAPER Hebelomina (Agaricales) revisited and abandoned Ursula Eberhardt1,*, Nicole Schütz1, Cornelia Krause1 & Henry J. Beker2,3,4 1Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 2Rue Père de Deken 19, B-1040 Bruxelles, Belgium 3Royal Holloway College, University of London, Egham, Surrey TW20 0EX, United Kingdom 4Plantentuin Meise, Nieuwelaan 38, B-1860 Meise, Belgium *Author for correspondence: [email protected] Background and aims – The genus Hebelomina was established in 1935 by Maire to accommodate the new species Hebelomina domardiana, a white-spored mushroom resembling a pale Hebeloma in all aspects other than its spores. Since that time a further five species have been ascribed to the genus and one similar species within the genus Hebeloma. In total, we have studied seventeen collections that have been assigned to these seven species of Hebelomina. We provide a synopsis of the available knowledge on Hebelomina species and Hebelomina-like collections and their taxonomic placement. Methods – Hebelomina-like collections and type collections of Hebelomina species were examined morphologically and molecularly. Ribosomal RNA sequence data were used to clarify the taxonomic placement of species and collections. Key results – Hebelomina is shown to be polyphyletic and members belong to four different genera (Gymnopilus, Hebeloma, Tubaria and incertae sedis), all members of different families and clades. All but one of the species are pigment-deviant forms of normally brown-spored taxa. The type of the genus had been transferred to Hebeloma, and Vesterholt and co-workers proposed that Hebelomina be given status as a subsection of Hebeloma.
    [Show full text]
  • Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities
    Welsh Dune Fungi: Data Collation, Evaluation and Conservation Priorities S.E. Evans & P.J. Roberts Evidence Report No 134 About Natural Resources Wales Natural Resources Wales is the organisation responsible for the work carried out by the three former organisations, the Countryside Council for Wales, Environment Agency Wales and Forestry Commission Wales. It is also responsible for some functions previously undertaken by Welsh Government. Our purpose is to ensure that the natural resources of Wales are sustainably maintained, used and enhanced, now and in the future. We work for the communities of Wales to protect people and their homes as much as possible from environmental incidents like flooding and pollution. We provide opportunities for people to learn, use and benefit from Wales' natural resources. We work to support Wales' economy by enabling the sustainable use of natural resources to support jobs and enterprise. We help businesses and developers to understand and consider environmental limits when they make important decisions. We work to maintain and improve the quality of the environment for everyone and we work towards making the environment and our natural resources more resilient to climate change and other pressures. Page 2 of 57 www.naturalresourceswales.gov.uk Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way.
    [Show full text]
  • MUSHROOMS of the OTTAWA NATIONAL FOREST Compiled By
    MUSHROOMS OF THE OTTAWA NATIONAL FOREST Compiled by Dana L. Richter, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI for Ottawa National Forest, Ironwood, MI March, 2011 Introduction There are many thousands of fungi in the Ottawa National Forest filling every possible niche imaginable. A remarkable feature of the fungi is that they are ubiquitous! The mushroom is the large spore-producing structure made by certain fungi. Only a relatively small number of all the fungi in the Ottawa forest ecosystem make mushrooms. Some are distinctive and easily identifiable, while others are cryptic and require microscopic and chemical analyses to accurately name. This is a list of some of the most common and obvious mushrooms that can be found in the Ottawa National Forest, including a few that are uncommon or relatively rare. The mushrooms considered here are within the phyla Ascomycetes – the morel and cup fungi, and Basidiomycetes – the toadstool and shelf-like fungi. There are perhaps 2000 to 3000 mushrooms in the Ottawa, and this is simply a guess, since many species have yet to be discovered or named. This number is based on lists of fungi compiled in areas such as the Huron Mountains of northern Michigan (Richter 2008) and in the state of Wisconsin (Parker 2006). The list contains 227 species from several authoritative sources and from the author’s experience teaching, studying and collecting mushrooms in the northern Great Lakes States for the past thirty years. Although comments on edibility of certain species are given, the author neither endorses nor encourages the eating of wild mushrooms except with extreme caution and with the awareness that some mushrooms may cause life-threatening illness or even death.
    [Show full text]
  • A Contribution to the Knowledge of Larger Basidiomycetes of Albania
    PHYTOLOGIA BALCANICA 24 (2): 187 – 193, Sofia, 2018 187 A contribution to the knowledge of larger basidiomycetes of Albania Boris Assyov Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria, e-mail: [email protected] Received: May 09, 2018 ▷Accepted: August 07, 2018 Abstract. The author presents a list of fungi, encountered during a field trip in Albania, which yielded collection of 112 species, including 45 recorded for the first time for that country. Key words: Agaricomycotina, Albanian mycota, Balkan Peninsula, Basidiomycota, macromycetes Introduction plantation of Pinus nigra J.F. Arn., 21.10.2016 (Fig. 1a); [3] Qafa e Qarrit Pass, between the junctions to Pepel- In terms of mycology, Albania is undoubtedly the least lash and Helmës villages, 40°28'03.0"N, 20°40'25.3"E, in explored country in Southeast Europe. Larger fungi sparse woodlands of Quercus trojana Webb. with scat- and larger basidiomycetes, in particular, make no ex- tered trees of P. nig ra and scrub layer of Juniperus sp. and ception, with only a few published contributions that Buxus sempervirens L., 21.10.2016 (Fig. 1b); [4] between are available at present (Pacioni 1984, Ivančević & Helmës and Mollas villages, 40°26'37.0"N, 20°40'08.5"E, Kara delev 2013, Karadelev & al. 2014, Mersinllari & al. in riparian habitats, 21.10.2016; [5] northwards of 2017). Several other species, along with distributional Gozhdarazhde village, along the road between Ersekë data on the already published entities could be found and Leskovik, 40°15'13.0"N, 20°37'07.7"E, in woodlands in the available online Database of the Albanian Fun- of Q.
    [Show full text]
  • Antitumor and Immunomodulatory Activities of Medicinal Mushroom Polysaccharides and Polysaccharide-Protein Complexes in Animals and Humans (Review)
    MYCOLOGIA BALCANICA 2: 221–250 (2005) 221 Antitumor and immunomodulatory activities of medicinal mushroom polysaccharides and polysaccharide-protein complexes in animals and humans (Review) Solomon P. Wasser *, Maryna Ya. Didukh & Eviatar Nevo Institute of Evolution, University of Haifa, Mt Carmel, 31905 Haifa, Israel M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkovskaya St., 01001 Kiev, Ukraine Received 24 September 2004 / Accepted 9 June 2005 Abstract. Th e number of mushrooms on Earth is estimated at 140 000, yet perhaps only 10 % (approximately 14 000 named species) are known. Th ey make up a vast and yet largely untapped source of powerful new pharmaceutical products. Particularly, and most important for modern medicine, they present an unlimited source for polysaccharides with anticancer and immunostimulating properties. Many, if not all Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelia, and culture broth. Th e data about mushroom polysaccharides are summarized for 651 species and seven intraspecifi c taxa from 182 genera of higher Hetero- and Homobasidiomycetes. Th ese polysaccharides are of diff erent chemical composition; the main ones comprise the group of β-glucans. β-(1→3) linkages in the main chain of the glucan and further β-(1→ 6) branch points are needed for their antitumor action. Numerous bioactive polysaccharides or polysaccharide- protein complexes from medicinal mushrooms are described that appear to enhance innate and cell-mediated immune responses, and exhibit antitumour activities in animals and humans. Stimulation of host immune defense systems by bioactive polymers from medicinal mushrooms has signifi cant eff ects on the maturation, diff erentiation, and proliferation of many kinds of immune cells in the host.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Early Diverging Clades of Agaricomycetidae Dominated by Corticioid Forms
    Mycologia, 102(4), 2010, pp. 865–880. DOI: 10.3852/09-288 # 2010 by The Mycological Society of America, Lawrence, KS 66044-8897 Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms Manfred Binder1 sister group of the remainder of the Agaricomyceti- Clark University, Biology Department, Lasry Center for dae, suggesting that the greatest radiation of pileate- Biosciences, 15 Maywood Street, Worcester, stipitate mushrooms resulted from the elaboration of Massachusetts 01601 resupinate ancestors. Karl-Henrik Larsson Key words: morphological evolution, multigene Go¨teborg University, Department of Plant and datasets, rpb1 and rpb2 primers Environmental Sciences, Box 461, SE 405 30, Go¨teborg, Sweden INTRODUCTION P. Brandon Matheny The Agaricomycetes includes approximately 21 000 University of Tennessee, Department of Ecology and Evolutionary Biology, 334 Hesler Biology Building, described species (Kirk et al. 2008) that are domi- Knoxville, Tennessee 37996 nated by taxa with complex fruiting bodies, including agarics, polypores, coral fungi and gasteromycetes. David S. Hibbett Intermixed with these forms are numerous lineages Clark University, Biology Department, Lasry Center for Biosciences, 15 Maywood Street, Worcester, of corticioid fungi, which have inconspicuous, resu- Massachusetts 01601 pinate fruiting bodies (Binder et al. 2005; Larsson et al. 2004, Larsson 2007). No fewer than 13 of the 17 currently recognized orders of Agaricomycetes con- Abstract: The Agaricomycetidae is one of the most tain corticioid forms, and three, the Atheliales, morphologically diverse clades of Basidiomycota that Corticiales, and Trechisporales, contain only corti- includes the well known Agaricales and Boletales, cioid forms (Hibbett 2007, Hibbett et al. 2007). which are dominated by pileate-stipitate forms, and Larsson (2007) presented a preliminary classification the more obscure Atheliales, which is a relatively small in which corticioid forms are distributed across 41 group of resupinate taxa.
    [Show full text]