Ethylene Glycol Induces Calcium Oxalate Crystal Deposition

Total Page:16

File Type:pdf, Size:1020Kb

Ethylene Glycol Induces Calcium Oxalate Crystal Deposition View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector http://www.kidney-international.org original article & 2011 International Society of Nephrology see commentary on page 327 Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis Yung-Hsiang Chen1,4, Hsin-Ping Liu1,4, Huey-Yi Chen1,2, Fuu-Jen Tsai1,2, Chiao-Hui Chang1, Yuan-Ju Lee3, Wei-Yong Lin1 and Wen-Chi Chen1,2 1Graduate Institute of Integrated Medicine, Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan; 2Department of Urology, Department of Obstetrics and Gynecology, Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan and 3Department of Urology, National Taiwan University Hospital, Taipei, Taiwan Several animal species are used to study calcium oxalate Urolithiasis is a common human disorder affecting B9.6% urolithiasis; however, an ideal model has yet to be identified. of the population in Taiwan and a range of 10–12% of the We used Drosophila as a model organism and fed the flies population in industrialized countries.1,2 The progressive lithogenic agents such as ethylene glycol, hydroxyl-L-proline, increase of the social cost for treatment of urolithiasis may be and sodium oxalate. At different times, the Malpighian related to increased incidence of the disease and/or to an tubules, the kidney equivalent of insects, were dissected and increase in costs for diagnosing and treating renal stones. a polarized light microscope used to highlight the Many factors can induce urolithiasis or cause a predisposi- birefringent crystals. Scanning electron microscopy and tion to its development. Such factors include dehydration, energy-dispersive X-ray spectroscopy confirmed that the particular medications, alkaline urinary pH, hypercalciuria, crystal composition was predominately calcium oxalate. hyperoxaluria, and a family history of the disorder.3 In Furthermore, administration of potassium citrate successfully humans, calcium oxalate (CaOx) is the major component of reduced the quantity of and modulated the integrity of the uroliths, and CaOx stones constitute B80% of all stones.4 ethylene glycol-induced crystals. Thus, the Drosophila model Therefore, most investigations of urolithiasis have focused on of bio-mineralization produces crystals in the urinary system CaOx stones. Although several species may be used as animal through many lithogenic agents, permits observation of crystal models for the study of human CaOx stone disease, an ideal formation, and is amenable to genetic manipulation. This animal model has yet to be identified.5 The ideal animal model may mimic the etiology and clinical manifestations of model should mimic the true pathogenesis of the human calcium oxalate stone formation and aid in identification of disease and allow genetic manipulation with convenient thegeneticbasisofthisdisease. observation of results as well as being cost effective and easy 6 Kidney International (2011) 80, 369–377; doi:10.1038/ki.2011.80; to breed. published online 30 March 2011 Kidney stones in both humans and hyperoxaluric rats are KEYWORDS: calcium oxalate; Drosophila melanogaster; ethylene glycol; located on renal papillary surfaces and consist of an organic nephrolithiasis/urolithiasis; potassium citrate matrix and crystals of CaOx and/or calcium phosphate. Hyperoxaluria can induce CaOx nephrolithiasis in both humans and rats. Dietary factors play an important role in kidney stone formation.7,8 Oxalate metabolism is considered to be almost identical in rats and humans. Thus, there are many similarities between experimental nephrolithiasis induced in rats and human kidney stone formation. A rat model of CaOx nephrolithiasis can be used to investigate the mechanisms involved in human kidney stone formation.5,9 Thus, the disease is experimentally induced and the rats are Correspondence: Wen-Chi Chen or Wei-Yong Lin, Graduate Institute of generally made hyperoxaluric either by administration of 10,11 Integrated Medicine, Department of Urology, China Medical University and excess oxalate, exposure to the toxin ethylene glycol (EG), 12 13 Hospital, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan. hydroxyl-L-proline (HLP), sodium oxalate (NaOx), or E-mail: [email protected] or [email protected] various nutritional manipulations. The advantages of the rat 4These authors contributed equally to this study. model include a high rate of stone formation, convenient Received 29 March 2010; revised 9 January 2011; accepted 1 February animal breeding, and a well-known anatomy. However, the 2011; published online 30 March 2011 costs of breeding and care of experimental rats have been Kidney International (2011) 80, 369–377 369 original article Y-H Chen et al.: Drosophila model for stone disease increasing. In addition, the costs of performing gene formation models in Drosophila and to identify a simple and knockout experiments in rats are also high and occasionally convenient model with significant CaOx crystal deposition in accompanied by technical difficulties. Other problems that the Malpighian tubules, several lithogenic agents (including may arise with the use of rats may include cases of normal EG, HLP, and NaOx that were used in previous rat models) animals having natural inhibitors of abnormal mineralization were fed to individual insects of the Canton-S (CS) strain of and cases of uncharacterized genetic promoters of metabolic D. melanogaster. At different periods during the experiment, pathways related to stone formation or destruction. Malpighian tubules were dissected and a polarized light Dionne and Schneider14 have described two features of microscope was used to highlight the birefringent crystals of Drosophila melanogaster that make it particularly valuable as CaOx. Figure 1a shows a view of the classical morphology of a model organism. First, the tools available for studying Malpighian tubules. The CaOx birefringent crystals appeared Drosophila are very accommodating for the study of basic as early as 14–21 days after ingestion of EG, HLP, and NaOx biology. Second, Drosophila is a good model for researching in the Malpighian tubules of Drosophila when viewed with human disease, such as cancer, neurological disorders, polarized light (Figure 1b). Monohydrate CaOx crystals diabetes, and drug addiction, because any findings translate (clear or jewel-like gloss; six-sided prisms or various forms; well into medicine.14 All multicellular organisms have a Figure 1c) are more common than the typical dihydrate specialized organ for concentrating and excreting wastes from CaOx crystals (Maltese cross or envelope-shaped crystals the body. The kidneys in vertebrates and the Malpighian induced by feeding of a herbal formula; Figure 1d). Various tubules in Drosophila accomplish these functions. Mammals forms of monohydrate CaOx crystals shapes were also and Drosophila have similar features during renal tubular identified. Free crystals were extensive, with many incorpo- development.15,16 MacPherson et al. have reported that rated in casts. Their size is estimated to vary approximately Malpighian tubules act as a genetically tractable system in between 5 and 20 mm. Most crystals were identified within the regulation of ions and epithelial fluid transport.17 the ‘enlarged initial (distal) segment’ of the anterior Recently, investigations of the genomics of the Malpighian Malpighian tubules. Crystal formation was evaluated using tubules have revealed far more extensive roles for these a polarized light microscope. Figure 1d indicates the different structures. The tubules have the capability to actively excrete degrees (À, þ , þþ, and þþþ) of CaOx crystal a very broad range of organic solutes and xenobiotics such as deposition in the Malpighian tubules. Each blinded specimen insecticides.18 The major excretory epithelia in insects are the was evaluated by three investigators who assessed crystal Malpighian tubules and hindgut, which act in concert to formation using a crystal score of 0 ¼ none, 1 ¼ weak, form the functional kidney. Secretion of fluid and ions by 2 ¼ moderate, and 3 ¼ strong. To avoid interassay variability, Malpighian tubules may be followed by reabsorption of all samples used for this scoring method were observed from water, ions, or useful metabolites.19–21 samples under the same polarization conditions. The recently described models of animal stone disease may The optimized drug concentrations, crystal-inducing help us better understand and ultimately treat nephrolithiasis period, and incidence of crystal formation for different in humans. Given the number of similarities between lithogenic agents are shown in Table 1. We successfully treatment patterns for humans and animals, many urologic induced ‘moderate to strong’ CaOx crystal formation in human treatments are now being integrated into the Malpighian tubules of Drosophila with the hyperoxaluria- treatment of domestic animals.22 In our previous study, we causing agents, EG, HLP, and NaOx, in a dose-dependent used EG to induce kidney calculus formation in rats and manner. As EG caused the most consistent results for the identified examples of Chinese herbal formulas that can CaOx crystal deposition in the Malpighian tubules, we inhibit this effect.10,11 Herein, we report a novel Drosophila recommend using EG (0.5% in fly medium) as the major animal model for the study of stone
Recommended publications
  • Sugar Transporters Enable a Leaf Beetle to Accumulate Plant Defense Compounds
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Sugar transporters enable a leaf beetle to accumulate plant defense compounds 2 Zhi-Ling Yang1, Hussam Hassan Nour-Eldin2, Sabine Hänniger3, Michael Reichelt4, Christoph 3 Crocoll2, Fabian Seitz1, Heiko Vogel3 & Franziska Beran1* 4 5 1Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical 6 Ecology, Jena, Germany. 7 2DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, 8 University of Copenhagen, Frederiksberg, Denmark. 9 3Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany. 10 4Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany 11 Corresponding author: *[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Many herbivorous insects selectively accumulate plant toxins for defense against predators; 14 however, little is known about the transport processes that enable insects to absorb and store 15 defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish 16 flea beetle, accumulates high amounts of glucosinolate defense compounds in the hemolymph.
    [Show full text]
  • Sugar Transporters Enable a Leaf Beetle to Accumulate Plant Defense Compounds
    ARTICLE https://doi.org/10.1038/s41467-021-22982-8 OPEN Sugar transporters enable a leaf beetle to accumulate plant defense compounds Zhi-Ling Yang 1, Hussam Hassan Nour-Eldin 2, Sabine Hänniger 3, Michael Reichelt 4, ✉ Christoph Crocoll 2, Fabian Seitz1, Heiko Vogel 3 & Franziska Beran 1 Many herbivorous insects selectively accumulate plant toxins for defense against predators; however, little is known about the transport processes that enable insects to absorb and store 1234567890():,; defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish flea beetle, accumulates glucosinolate defense compounds from Brassicaceae in the hemolymph. Using phylogenetic analyses of coleopteran major facilitator superfamily transporters, we identify a clade of glucosinolate-specific transporters (PaGTRs) belonging to the sugar porter family. PaGTRs are predominantly expressed in the excretory system, the Malpighian tubules. Silencing of PaGTRs leads to elevated glucosinolate excretion, sig- nificantly reducing the levels of sequestered glucosinolates in beetles. This suggests that PaGTRs reabsorb glucosinolates from the Malpighian tubule lumen to prevent their loss by excretion. Ramsay assays corroborated the selective retention of glucosinolates by Mal- pighian tubules of P. armoraciae in situ. Thus, the selective accumulation of plant defense compounds in herbivorous insects can depend on the ability to prevent excretion. 1 Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany. 2 Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark. 3 Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany. 4 Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
    [Show full text]
  • PHYSIOLOGICALLY ACTIVE FACTORS in Ulik, CORPORA CARDIACA
    PHYSIOLOGICALLY ACTIVE FACTORS IN Ulik, CORPORA CARDIACA OF INSECTS Jennifer Jones, B. Tech. Thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College. July 1978 Imperial College of Science and Technology, Department of Zoology and Applied Entomology, Prince Consort Road, London S.W.7 2 ABSTRACT A combination of column and thin layer chromatographic techniques has been used to resolve the factors in the corpora cardiaca of Locusta migratoria migratorioides and Periplaneta americana which can affect lipid metabolism, carbohydrate metabolism and water balance. The storage and glandular lobes of the locust corpora cardiaca can be separated by dissection, unlike the glandular and storage areas of the cockroach which are in intimate contact. Pure adipokinetic hormone (AKH), isolated from locust glandular lobes has been shown to produce on injection an elevation of haemolymph lipids in locusts and haemolymph carbohydrates in cockroaches. This hormone is important in the maintenance of prolonged flight activity in the locust. The hyperglycaemic response produced in cockroaches is likely to be a pharmacological effect. By applying processes developed for the purification of AKH to cockroach corpora cardiaca, a peptide factor(s) which possesses adipokinetic, hyperglycaemic and diuretic activities has been obtained. The factor is different from AKH because AKH does not possess diuretic activity and the cockroach factor has different separation characteristics and amino acid composition. The physiological role of this factor in cockroach flight has been investigated, but its potent diuretic activity may indicate its major function. 3 The locust diuretic hormone extracted from the storage lobes is distinct from AKH as it does not possess adipokinetic or hyperglycaemic activity, and appears to be a larger molecule than AKH.
    [Show full text]
  • Malpighian Tubules in Larvae of Diatraea Saccharalis (Lepidoptera
    Advances in Entomology, 2014, 2, 202-210 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ae http://dx.doi.org/10.4236/ae.2014.24029 Malpighian Tubules in Larvae of Diatraea saccharalis (Lepidoptera; Crambidae): A Morphological Comparison between Non-Parasitized and Parasitized by Cotesia flavipes (Hymenoptera; Braconidae) Gislei Maria Rigoni1, Helio Conte2 1Departamento de Ciências Biológicas, Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, Brazil 2Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá (UEM), Maringá, Brazil Email: [email protected], [email protected] Received 9 September 2014; revised 11 October 2014; accepted 20 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In Diatraea saccharalis larvae, the Malpighian tubules are found along the digestive tube, extend- ing from the middle mesenteric region to the end of the posterior intestine, where they come in contact with the rectum to form the cryptonephridium. Scanning and transmission electron mi- croscopy of non-parasitized and parasitized larvae by Cotesia flavipes have indicated that the tu- bules consist of secretory and reabsorption cells. In parasitized larvae, the occurrence of hemo- cytes and teratocytes around the tubules is indicative of their role in immunological defense; how- ever, they were not observed in non-parasitized larvae. At day 9 of parasitism, the mitochon- dria-containing vacuoles and myelin-like figures show signs of degeneration. The results of this study have confirmed that C. flavipes manipulates the physiology and biochemistry of D.
    [Show full text]
  • Evolution of the Vertebrate Kidney Baffles Evolutionists
    Answers Research Journal 14 (2021): 37–44. www.answersingenesis.org/arj/v14/vertebrate_kidney_evolution.pdf Evolution of the Vertebrate Kidney Baffles Evolutionists Jerry Bergman, Genesis Apologetics, PO Box 1326, Folsom, California 95763-1326. Abstract An unbridgeable gap exists between the simple urinary system used in invertebrates and the far more complex kidney system used in all vertebrates. No direct evidence of the evolution of one system into the other exists, nor have any viable “just-so” stories been proposed to explain the evolution of the simple invertebrate urinary system into the complex vertebrate kidney-urinary system. The common reason evolutionists give for the lack of evidence to bridge this chasm is that soft tissue is usually not preserved in the fossil record. The problem with this claim is thousands of so-called “living fossils” exist that are claimed to be anatomically close to their hundreds of millions years old design which should display evidence of the less evolved organs. Thus, if kidney evolution occurred, evidence of primitive kidneys in living animals that bridged the two very different systems would exist. Comparisons with living fossils reveals a “paleontologic record [that] is ambiguous and open to controversy” (Romer and Parsons 1986, 399). Another problem for evolution is that a design is employed even in the simplest, least-evolved mammals, that is very similar to that used in the highest-evolved primates, including humans (Romagnani, Lasagni, and Remuzzi 2013). All vertebrates use very close to the same design, and the few variations that exist are relatively minor. The main reason the designs are very similar is that, functioning effectively to remove waste products requires a specific, irreducibly complex kidney design.
    [Show full text]
  • Modelling Malpighian Tubule Crystals Within the Predatory Soil Mite Pergamasus Longicornis (Mesostigmata: Parasitidae)
    Exp Appl Acarol DOI 10.1007/s10493-017-0137-7 Modelling Malpighian tubule crystals within the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae) Clive E. Bowman1 Received: 15 March 2017 / Accepted: 9 May 2017 Ó The Author(s) 2017. This article is an open access publication Abstract The occurrence of refractive crystals (aka guanine) is characterised in the Mal- pighian tubules of the free-living predatory parasitiform soil mite Pergamasus longicornis (Berlese) from a temporal series of histological sections during and after feeding on larval dipteran prey. The tubular system behaves as a single uniform entity during digestion. Malpighian mechanisms are not the ‘concentrative’ mechanism sought for the early stasis in gut size during the second later phase of prey feeding. Nor are Malpighian changes asso- ciated with the time of ‘anal dabbing’ during feeding. Peak gut expansion precedes peak Malpighian tubule guanine crystal occurrence in a hysteretic manner. There is no evidence of Malpighian tubule expansion by fluid alone. Crystals are not found during the slow phase of liquidised prey digestion. Malpighian tubules do not appear to be osmoregulatory. Mal- pighian guanine is only observed 48 h to 10 days after the commencement of feeding. Post digestion guanine crystal levels in the expanded Malpighian tubules are high—peaking as a pulse 5 days after the start of feeding (i.e. after the gut is void of food at 52.5 h). The half-life of guanine elimination from the tubules is 53 h. Evidence for a physiological input cascade is found—the effective half-life of guanine appearance in the Malpighian tubules being 7.8–16.7 h.
    [Show full text]
  • Gut Contents, Digestive Half-Lives and Feeding State Prediction in the Soil Predatory Mite Pergamasus Longicornis (Mesostigmata: Parasitidae)
    Exp Appl Acarol (2017) 73:11–60 DOI 10.1007/s10493-017-0174-2 Gut contents, digestive half-lives and feeding state prediction in the soil predatory mite Pergamasus longicornis (Mesostigmata: Parasitidae) Clive E. Bowman1 Received: 13 June 2017 / Accepted: 23 August 2017 / Published online: 1 September 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Mid- and hind-gut lumenal changes are described in the free-living predatory soil mite Pergamasus longicornis (Berlese) from a time series of histological sections scored during and after feeding on fly larval prey. Three distinct types of tangible material are found in the lumen. Bayesian estimation of the change points in the states of the gut lumenal contents over time is made using a time-homogenous first order Markov model. Exponential processes within the gut exhibit ‘stiff’ dynamics. A lumen is present throughout the midgut from 5 min after the start of feeding as the gut rapidly expands. It peaks at about 21.5 h–1.5 days and persists post-feeding (even when the gut is contracted) up until fasting/starvation commences 10 days post start of feeding. The disappearance of the lumen commences 144 h after the start of feeding. Complete disappearance of the gut lumen may take 5–9 weeks from feeding commencing. Clear watery prey material arrives up to 10 min from the start of feeding, driving gut lumen expansion. Intracellular digestion triggered by maximum gut expansion is indicated. Detectable granular prey material appears in the lumen during the concentrative phase of coxal droplet production and, despite a noticeable collapse around 12 h, lasts in part for 52.5 h.
    [Show full text]
  • N N N 2U11/U57825 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date ;n n /n 19 May 2011 (19.05.2011) 2U11/U57825 Al (51) International Patent Classification: (74) Agent: LAHRTZ, Fritz; Isenbruck Bosl Horschler LLP, A01K 67/033 (2006.01) C12N 15/63 (2006.01) Prinzregentenstrasse 68, 81675 Munchen (DE). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP20 10/006982 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 16 November 2010 (16.1 1.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Langi English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 10 2009 053 469.5 SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 16 November 2009 (16.1 1.2009) DE TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 10 2009 054 265.5 (84) Designated States (unless otherwise indicated, for every 23 November 2009 (23.1 1.2009) DE kind of regional protection available): ARIPO (BW, GH, 10001476.0 12 February 2010 (12.02.2010) EP GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/308,143 25 February 2010 (25.02.2010) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, FRAUNHOFER-GESELLSCHAFT ZUR EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, FORDERUNG DER ANGEWANDTEN LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, FORSCHUNG E.V.
    [Show full text]
  • Biology Guide Exams from 2016.Pdf
    Biology guide First assessment 2016 Biology guide First assessment 2016 Diploma Programme Biology guide Published February 2014 Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the International Baccalaureate Organization (UK) Ltd Peterson House, Malthouse Avenue, Cardiff Gate Cardiff, Wales CF23 8GL United Kingdom Website: www.ibo.org © International Baccalaureate Organization 2014 The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes. The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of the IB, or as expressly permitted by law or by the IB’s own rules and policy. See http://www.ibo.org/copyright. IB merchandise and publications can be purchased through the IB store at http://store.ibo.org.
    [Show full text]
  • Developmental Studies on Malpighian Tubule Structure and Function in Spodoptera Littoralis
    Durham E-Theses Developmental studies on Malpighian tubule structure and function in Spodoptera Littoralis Al-Ahmadi, Saeed S.R. How to cite: Al-Ahmadi, Saeed S.R. (1993) Developmental studies on Malpighian tubule structure and function in Spodoptera Littoralis, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5693/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 DEVELOPMENTAL STUDIES ON MALPIGHIAN TUBULE STRUCTURE AND FUNCTION IN SPODOPTERA LITTORALIS By Saeed S.R. Al-Ahmadi B. Sc., M. Sc. (King Abdul Aziz University Saudi Arabia) The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. Being a thesis submitted for the degree of Doctor of Philosophy of the University of Durham September, 1993 (Graduate Society) University of Durham 9 DEC 1993 DECLARATION I hereby declare that the work presented in this thesis is based on research carried out by me, and that this work has not been presented anywhere else for a degree and has not been published before.
    [Show full text]
  • Journal of Science
    Research Article GU J Sci 33(3): 630-644 (2020) DOI: 10.35378/gujs.690948 Gazi University Journal of Science http://dergipark.gov.tr/gujs The Spherocrystals in the Tubule Epithelial Cells and Ultrastructure of the Malpighian Tubules of Adult Isophya nervosa (Orthoptera, Tettigoniidae) Damla AMUTKAN MUTLU * , Zekiye SULUDERE Gazi University, Faculty of Science, Department of Biology, 06500 Ankara, Turkey Highlights • The ultrastructure of the Malpighian tubules (MTs) of Isophya nervosa was examined. • Different shapes of spherocrystals were observed in the MTs cells. • SEM-EDX analysis of the spherocrystals was conducted. • Differences and similarities of the MTs in Isophya nervosa with other species were revealed. Article Info Abstract The excretory system in insects consists of Malpighian tubules (MTs) which are responsible for Received: 19/02/2020 osmoregulation. The functions of the MTs are the removal of the last products of metabolism Accepted: 11/04/2020 and the transfer of the toxic compounds into the hindgut. The MTs of the insects vary structurally. In this study, the MTs of Isophya nervosa Ramme, 1951, which is a species that belongs to Orthoptera order, were investigated by light and electron microscopes. Adult Keywords individuals of Isophya nervosa were collected in Kızılcahamam, Ankara in 2017 and 2018. Elemental analysis Extracted MTs were fixed in Formaldehyde for light microscopy, in glutaraldehyde for electron SEM-EDX microscopes. They were examined and photographed after dehydration, blocking, sectioning Spherocrystal and staining processes were completed. This species has a great number of MTs. One end of the Excretory system MTs in this species is attached to the ileum and the other closed end is free in hemolymph.
    [Show full text]
  • Characterization of the Fishing Lines in Titiwai (= Arachnocampa
    RESEARCH ARTICLE Characterization of the Fishing Lines in Titiwai (=Arachnocampa luminosa Skuse, 1890) from New Zealand and Australia Janek von Byern1,2☯*, Victoria Dorrer3☯, David J. Merritt4, Peter Chandler5, Ian Stringer6, Martina Marchetti-Deschmann3, Andrew McNaughton7, Norbert Cyran2, Karsten Thiel8, Michael Noeske8, Ingo Grunwald8 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria, 2 University of Vienna, Faculty of Life Science, Core Facility Cell Imaging & Ultrastructure Research, Vienna, Austria, 3 Technical University Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria, 4 The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia, 5 Spellbound a11111 Cave, Waitomo, New Zealand, 6 Department of Conservation, Wellington, New Zealand, 7 University of Otago, School of Medical Sciences, Department of Anatomy, Otago Centre for Confocal Microscopy, Otago, New Zealand, 8 Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Citation: von Byern J, Dorrer V, Merritt DJ, Abstract Chandler P, Stringer I, Marchetti-Deschmann M, et al. (2016) Characterization of the Fishing Lines in Animals use adhesive secretions in a plethora of ways, either for attachment, egg anchor- Titiwai (=Arachnocampa luminosa Skuse, 1890) age, mating or as either active or passive defence. The most interesting function, however, from New Zealand and Australia. PLoS ONE 11 is the use of adhesive threads to capture prey, as the bonding must be performed within mil- (12): e0162687. doi:10.1371/journal. pone.0162687 liseconds and under unsuitable conditions (movement of prey, variable environmental con- ditions, unfavourable attack angle, etc.) to be nonetheless successful.
    [Show full text]