Malpighian Tubule, an Essential Organ for Insects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ephydra Hians) Say at Mono Lake, California (USA) in Relation to Physical Habitat
Hydrobiologia 197: 193-205, 1990. F. A. Comln and T. G. Northcote (eds), Saline Lakes. 193 © 1990 Kluwer Academic Publishers. Printed in Belgium. Distribution and abundance of the alkali fly (Ephydra hians) Say at Mono Lake, California (USA) in relation to physical habitat David B. Herbst Sierra Nevada Aquatic Research Laboratory, University of California, Star Route 1, Box 198, Mammoth Lakes, CA 93546, USA Key words: Ephydra, life cycle, development, distribution, Mono Lake, substrate Abstract The distribution and abundance of larval, pupal, and adult stages of the alkali fly Ephydra hians Say were examined in relation to location, benthic substrate type, and shoreline features at Mono Lake. Generation time was calculated as a degree-day model for development time at different temperatures, and compared to the thermal environment of the lake at different depths. Larvae and pupae have a contagious distribution and occur in greatest abundance in benthic habitats containing tufa (a porous limestone deposit), and in least abundance on sand or sand/mud substrates. Numbers increase with increasing area of tufa present in a sample, but not on other rocky substrates (alluvial gravel/cobble or cemented sand). Standing stock densities are greatest at locations around the lake containing a mixture of tufa deposits, detrital mud sediments, and submerged vegetation. Shoreline adult abundance is also greatest in areas adjacent to tufa. The shore fly (ephydrid) community varies in composition among different shoreline habitats and shows a zonation with distance from shore. The duration of pupation (from pupa formation to adult eclosion) becomes shorter as temperature increases. The temperature dependence of pupa development time is not linear and results in prolonged time requirements to complete development at temperatures below 20 ° C. -
Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11 -
Chapter 3K. Environmental Setting, Impacts, and Mitigation Measures - Cultural Resources
Chapter 3K. Environmental Setting, Impacts, and Mitigation Measures - Cultural Resources This chapter addresses potential impacts of the alternatives on cultural resources in Mono Basin and Upper Owens River basin. Impacts are generally in the realm of potential disturbance to cultural resource sites from channel erosion, recreational activity, and restoration activities along the diverted streams and Owens River. Few effects would result from establishing higher or lower lake levels because no sites are expected to be present on the relicted lands. As described below, some diminishment in the use of the lake's food resources by Native Americans may have occurred during the diversion period, but choice of an alternative would little affect future resource utilization as long as resources of Native American importance are avoided during restoration activities. SOURCES OF INFORMATION Background Research A record search was conducted at the Eastern Information Center of the California Archaeological Inventory, University of California, Riverside, to determine the types and locations of known cultural resources within the areas of concern. Primary and secondary archeological, ethnographic, and historical sources were consulted for information pertaining to the areas of concern, including: # the National Register of Historic Places, # California Historical Landmarks, and # California Inventory of Historical Resources. Literature considered in this process is cited in the following discussions. Information on the Mono Lake Paiute is presented by Davis (1959, 1961, 1965, 1962, 1963, 1964), Curtis (1926), Kroeber (1925), and Merriam (1955, 1966:Part 1). Primary accounts of the Owens Valley Paiute are contained in Steward (1929, 1933, 1934, 1936, 1938a, 1938b). Additional information can be found in Davis (1961), Driver (1937), Kroeber (1925, 1939, 1959), and Merriam (1955). -
Biogeography and Physiological Adaptations of the Brine Fly Genus Ephydra (Diptera: Ephydridae) in Saline Waters of the Great Basin
Great Basin Naturalist Volume 59 Number 2 Article 3 4-30-1999 Biogeography and physiological adaptations of the brine fly genus Ephydra (Diptera: Ephydridae) in saline waters of the Great Basin David B. Herbst University of California, Mammoth Lakes and University of California, Santa Barbara Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Herbst, David B. (1999) "Biogeography and physiological adaptations of the brine fly genus Ephydra (Diptera: Ephydridae) in saline waters of the Great Basin," Great Basin Naturalist: Vol. 59 : No. 2 , Article 3. Available at: https://scholarsarchive.byu.edu/gbn/vol59/iss2/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 59(2), ©1999, pp. 127-135 BIOGEOGRAPHY AND PHYSIOLOGICAL ADAPTATIONS OF THE BRINE FLY GENUS EPHYDRA (DIPTERA: EPHYDRIDAE) IN SALINE WATERS OF THE GREAT BASIN David B. Herbst1 ABSTRACf.-Four species of the genus Ephydra are commonly found in saline waters within the hydrologic Great Basin: E. hians, E. gracilis, E. packardi, and E. auripes. Though none of these brine flies is endemic (distributions also occur outside the Great Basin), they all inhabit distinctive habitat types and form the characteristic benthic insect fauna ofinland saline-water habitats. The affinities ofeach species for different salinity levels and chemical compositions, and ephemeral to perennial habitats, appear to form the basis for biogeographic distribution patterns. -
Full Issue, Vol. 59 No. 2
Great Basin Naturalist Volume 59 Number 2 Article 16 4-30-1999 Full Issue, Vol. 59 No. 2 Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation (1999) "Full Issue, Vol. 59 No. 2," Great Basin Naturalist: Vol. 59 : No. 2 , Article 16. Available at: https://scholarsarchive.byu.edu/gbn/vol59/iss2/16 This Full Issue is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. T H E GREAT baslBASIBASIN naturalistNATURALI ST mot A VOLUME 59 NO 2 APRIL 1999 ML BEAN LIFE SCIENCE MUSEUM BRIGHAM YOUNG university GREAT BASIN naturalist httpwwwlibbyueduhttpwwwlibbyuedunmsamsnms FAX 8013783733801 378 3733 editor assistant editor richardwbaumannrighardRICHARD W BAUMANN NATHAN M SMITH 290 MLBM 190 MLBM PO box 20200 PO box 26879 brigham young university brigham young university provo UT 84602020084602 0200 provo UT 84602687984602 6879 8013785492801 378 5492 8013786688801 378 6688 emailE mail richarclbaumannbyuedurichardriehard baumannbyuedu emailE mail nathan smithbyuedu associate editors JAMES C CALLISON JR JERRY H SCRIVNER department of environmental technology department of biology utah valley state college ricks college orem UT 84058 redburgrexburgRexburg ID 83460110083460 1100 JEFFREY R JOHANSEN STANLEY D SMITH department of biology john carroll university -
Sugar Transporters Enable a Leaf Beetle to Accumulate Plant Defense Compounds
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Sugar transporters enable a leaf beetle to accumulate plant defense compounds 2 Zhi-Ling Yang1, Hussam Hassan Nour-Eldin2, Sabine Hänniger3, Michael Reichelt4, Christoph 3 Crocoll2, Fabian Seitz1, Heiko Vogel3 & Franziska Beran1* 4 5 1Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical 6 Ecology, Jena, Germany. 7 2DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, 8 University of Copenhagen, Frederiksberg, Denmark. 9 3Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany. 10 4Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany 11 Corresponding author: *[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Many herbivorous insects selectively accumulate plant toxins for defense against predators; 14 however, little is known about the transport processes that enable insects to absorb and store 15 defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish 16 flea beetle, accumulates high amounts of glucosinolate defense compounds in the hemolymph. -
Southern African Biomes and the Evolution of Palparini (Insecta: Neuroptera: Myrmeleontidae)
Acta Zoologica Academiae Scientiarum Hungaricae 48 (Suppl. 2), pp. 175–184, 2002 SOUTHERN AFRICAN BIOMES AND THE EVOLUTION OF PALPARINI (INSECTA: NEUROPTERA: MYRMELEONTIDAE) MANSELL, M. W. and B. F. N. ERASMUS* ARC – Plant Protection Research Institute, Private Bag X134, Pretoria, 0001 South Africa E-mail: [email protected] *Conservation Planning Unit, Department of Zoology & Entomology University of Pretoria, Pretoria, 0001 South Africa E-mail: [email protected] Southern Africa harbours 42 of the 88 known species of Palparini (Insecta: Neuroptera: Myrmeleontidae). Twenty-nine of the 42 species are endemic to the western parts of the subre- gion, including Namibia, Botswana, the Western, Northern and Eastern Cape, and North-West Provinces of South Africa. Geographical Information Systems analyses and climate change models have been used to reveal possible reasons for the high diversity and levels of endemism of Palparini in southern Africa. The analyses have indicated that climate, and the consequent rich variety of vegetation and soil types, have been the driving forces behind southern Africa being a major evolutionary centre for palparines and other Neuroptera. Key words: Neuroptera, Myrmeleontidae, Palparini, southern Africa, biomes, Geographical Information Systems INTRODUCTION The varied biomes of southern Africa have engendered a proliferation of lacewings (Insecta: Neuroptera). The subregion is a major evolutionary centre for Neuroptera, with many taxa being endemic to the countries south of the Cunene and Zambezi rivers. Twelve of the world’s 17 families of lacewings are repre- sented in South Africa, which has exceptionally rich faunas of the xerophilous Myrmeleontidae (antlions) and Nemopteridae (thread- and ribbon-winged lace- wings). -
Kutsavi, a Great Basin Indian Food
KUTSAVI, A GREAT BASIN INDIAN FOOD Robert F. Heizer When one becomes preoccupied with a topic or an area he ti apt to accumulate formidable piles of notee and references on cultural traits which are intriguing, but not highly significent. Often these accumu- lations evade utilization In the student's published works. The present note ts a by-product of a long and continuing interest in the archaeology and ethnology of the Great Basin, and because these data will probably never, to me have any particular significance, I offer them here in the hope that some other student may benefit from my literary gleanings. One of the most Interesting foods of tho Indians of the Intermon- tane-Platepu was kuteavi, the larva of a small fly (Ephydra hians Say) which was to be found from northern Neveda to Mono Lake on the eastern border of Celifornia. Native exploitation of this oconomic resource has been discusod by 0. Esslg (1) and J, Steward.(2) The present note will show the essential distribution of the use of Ephydra larvae ae. food. Among the earliest references to kutsavi collecttng at Mono Lake is that of Zenas Leonard in 1833. He BesY:k3) The water in ¾ihs lelke becomes stagnant and very disagreeable -- its surfece being covered with a green substence, similar to a. stagnant frog pond. In warm weether there is a. fly, about the size and similar to a grain of wheat, on this lake, in great num- bers. ... IWhen the wind rolls the waters onto the shore, these flies are left on the beech -- the female Indiens then carefully gether them into beekets made of willow .branches, and lay them exposed to the sun until they become perfectly dry, when theyg are laid away for winter provender. -
Annulares Nov. Gen. (Neuroptera, Myrmeleontidae, Palparini) Including Two New Species, with Comments on the Tribe Palparini1
© Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Denisia 13 | 17.09.2004 | 201-208 Antlions of southern Africa: Annulares nov. gen. (Neuroptera, Myrmeleontidae, Palparini) including two new species, with comments on the tribe Palparini1 M.W. MANSELL Abstract: A new genus and two new species of Palparini are described from southern Africa. - Three endemic species comprise the genus. They extend from western Namibia across the southern Kalahari region of Namibia, Botswana and South Africa, eastwards into the sandy areas of the northern Kruger National Park of South Africa. A five-toothed larva is known for one of the species, and the genus is further characterized by a prominent black stri- pe across the head and thorax, uniformly dark legs, clavate labial palpi with a slit-shaped sensory organ and a pro- minent gonarcal bulla in the males. Key words: Myrmeleontidae, Palparini, new genus, new species, larvae, southern Africa. Introduction ca. The central area of this distribution, the Kalahari sa- vannah of Namibia, South Africa and Botswana is inha- Southern Africa harbours the world's richest fauna of bited by P. annuiatus, while the other two species occupy Palparini (Neuroptera: Myrmeleontidae), with at least the western and eastern extremes of the distribution ran- 43 species in 8 genera, as well as several new and end- ge of the genus. The larva of P. annuiatus is known, and emic taxa. The generic placement of most Afrotropical is described here. species is largely unresolved, as the largest genus, Palpa- res RAMBUR 1842, comprises a polyphyletic assemblage of The contribution is concluded with a consideration taxa (MANSELL 1992a). -
Sugar Transporters Enable a Leaf Beetle to Accumulate Plant Defense Compounds
ARTICLE https://doi.org/10.1038/s41467-021-22982-8 OPEN Sugar transporters enable a leaf beetle to accumulate plant defense compounds Zhi-Ling Yang 1, Hussam Hassan Nour-Eldin 2, Sabine Hänniger 3, Michael Reichelt 4, ✉ Christoph Crocoll 2, Fabian Seitz1, Heiko Vogel 3 & Franziska Beran 1 Many herbivorous insects selectively accumulate plant toxins for defense against predators; however, little is known about the transport processes that enable insects to absorb and store 1234567890():,; defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish flea beetle, accumulates glucosinolate defense compounds from Brassicaceae in the hemolymph. Using phylogenetic analyses of coleopteran major facilitator superfamily transporters, we identify a clade of glucosinolate-specific transporters (PaGTRs) belonging to the sugar porter family. PaGTRs are predominantly expressed in the excretory system, the Malpighian tubules. Silencing of PaGTRs leads to elevated glucosinolate excretion, sig- nificantly reducing the levels of sequestered glucosinolates in beetles. This suggests that PaGTRs reabsorb glucosinolates from the Malpighian tubule lumen to prevent their loss by excretion. Ramsay assays corroborated the selective retention of glucosinolates by Mal- pighian tubules of P. armoraciae in situ. Thus, the selective accumulation of plant defense compounds in herbivorous insects can depend on the ability to prevent excretion. 1 Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany. 2 Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark. 3 Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany. 4 Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany. -
Ecological Physiology of the Larvel Brine Fly Ephydra
AN ABSTRACT OF THE THESIS OF David Bruce Herbst for the degree of Master of Science in Zoology presented on May 22, 1980 Title: Ecological Physiology of the Larval Brine Fly Ephydra (Hydropyrus) hians, an Alkaline-Salt Lake Inhabiting Ephydrid (Diptera). Redacted for Privacy Abstract approved: (I, Anrr. Frank P. Conte Dipterans of the family Ephydridae (shore and brine flies) are well known for their ability to tolerate and thrive in a wide variety of physically harsh circumstances. The immature stages of one such species of this family, Ephydra hians, are characteristically limited in distribution as benthic inhabitants of highly alkaline salt lakes in the arid regions of western North America. In order to examine the nature of this habitat specificity, the intraspecific comparative physiologyof osmotic and ionic regulation, energy metabolism and survival was examined in two populations of brine fly larvae which differ inthe historical-environmental stability of their native habitats. The population at Mono Lake, California, has, until recent times, been evolving under relatively stable conditions of water chemistryand habitat availablility (i.e., little fluctuation in salinity or littoral benthic habitat due to stable lake level). Since 1940 however, the lake level has been steadily dropping and the dissolved salt content increasing due to diversion of tributary water. The population at Abert Lake, Oregon, has by contrast been subject to severeshort-term changes in salinity and habitat availability throughout its history.Larvae were exposed to both alkaline andnon-alkaline brines. While both populations displayed hyposmotic regulation in alkalinesalt media, Mono Lake larvae consistently showed more effective maintenanceof homeostasis. -
PHYSIOLOGICALLY ACTIVE FACTORS in Ulik, CORPORA CARDIACA
PHYSIOLOGICALLY ACTIVE FACTORS IN Ulik, CORPORA CARDIACA OF INSECTS Jennifer Jones, B. Tech. Thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College. July 1978 Imperial College of Science and Technology, Department of Zoology and Applied Entomology, Prince Consort Road, London S.W.7 2 ABSTRACT A combination of column and thin layer chromatographic techniques has been used to resolve the factors in the corpora cardiaca of Locusta migratoria migratorioides and Periplaneta americana which can affect lipid metabolism, carbohydrate metabolism and water balance. The storage and glandular lobes of the locust corpora cardiaca can be separated by dissection, unlike the glandular and storage areas of the cockroach which are in intimate contact. Pure adipokinetic hormone (AKH), isolated from locust glandular lobes has been shown to produce on injection an elevation of haemolymph lipids in locusts and haemolymph carbohydrates in cockroaches. This hormone is important in the maintenance of prolonged flight activity in the locust. The hyperglycaemic response produced in cockroaches is likely to be a pharmacological effect. By applying processes developed for the purification of AKH to cockroach corpora cardiaca, a peptide factor(s) which possesses adipokinetic, hyperglycaemic and diuretic activities has been obtained. The factor is different from AKH because AKH does not possess diuretic activity and the cockroach factor has different separation characteristics and amino acid composition. The physiological role of this factor in cockroach flight has been investigated, but its potent diuretic activity may indicate its major function. 3 The locust diuretic hormone extracted from the storage lobes is distinct from AKH as it does not possess adipokinetic or hyperglycaemic activity, and appears to be a larger molecule than AKH.