Evolution of the Vertebrate Kidney Baffles Evolutionists

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Vertebrate Kidney Baffles Evolutionists Answers Research Journal 14 (2021): 37–44. www.answersingenesis.org/arj/v14/vertebrate_kidney_evolution.pdf Evolution of the Vertebrate Kidney Baffles Evolutionists Jerry Bergman, Genesis Apologetics, PO Box 1326, Folsom, California 95763-1326. Abstract An unbridgeable gap exists between the simple urinary system used in invertebrates and the far more complex kidney system used in all vertebrates. No direct evidence of the evolution of one system into the other exists, nor have any viable “just-so” stories been proposed to explain the evolution of the simple invertebrate urinary system into the complex vertebrate kidney-urinary system. The common reason evolutionists give for the lack of evidence to bridge this chasm is that soft tissue is usually not preserved in the fossil record. The problem with this claim is thousands of so-called “living fossils” exist that are claimed to be anatomically close to their hundreds of millions years old design which should display evidence of the less evolved organs. Thus, if kidney evolution occurred, evidence of primitive kidneys in living animals that bridged the two very different systems would exist. Comparisons with living fossils reveals a “paleontologic record [that] is ambiguous and open to controversy” (Romer and Parsons 1986, 399). Another problem for evolution is that a design is employed even in the simplest, least-evolved mammals, that is very similar to that used in the highest-evolved primates, including humans (Romagnani, Lasagni, and Remuzzi 2013). All vertebrates use very close to the same design, and the few variations that exist are relatively minor. The main reason the designs are very similar is that, functioning effectively to remove waste products requires a specific, irreducibly complex kidney design. Keywords: kidney anatomy and physiology, evolution of body organs, fossil record, intelligent design, irreducible complexity, living fossils Introduction absorbed from our indiscriminate gastrointestinal Mahasen opines that, the “Evolution of the kidney tracts,” (Vize 2004, 345) a function which is actually is a hot topic for many researchers and biologists part of the critical as there is no better place to see the impact of task of keeping our internal environment in an ideal, evolutionary pressures on organ development balanced state. Our glands, our muscles, our bones, than in the kidney” (Mahasen 2016). This review our tendons, even our brains, are called upon to do examines the evidence for this “hot topic,” of kidney only one kind of physiological work, while our kidneys evolution from the simple system that functions to are called upon to perform an innumerable variety of remove waste products in invertebrates. The fact is, operations. Bones can break, muscles can atrophy, “the human kidney appears to be extraordinarily glands can loaf, even the brain can go to sleep, without complex” and well designed (Vize 2004, 344). The immediately endangering our survival, but when kidney is also the kidneys fail to manufacture the proper . blood an excellent biochemical model showing design in [composition] neither bone, muscle, gland nor brain nature. Design implies a designer. The development can carry on (Vize 2004, 344; emphasis added). of the kidney follows a very precise pattern and time The primary material the mammalian kidney schedule. The anatomy and physiology of the kidney removes is urea, the major waste product of protein and the entire urinary system are complex and metabolism, but numerous toxins are also removed. precise. The kidneys perform an incredible function. The kidneys must produce a healthy balance in In one day’s time, they filter the equivalence of sixty the blood of water, salts, and minerals (including times the total plasma. (Speck 1994, 505, 508). especially sodium, calcium, phosphorus, and potassium). The kidneys also remove waste products The Importance of the Kidney produced by the body’s somatic cells (Ringoir, The kidneys’ critical importance, as summarized Vanholder, and Massry 2012). by Vize, is: “the composition of the blood is determined not by what the mouth ingests but by Basic Kidney Types and Functions what the kidneys keep; they are the master chemists The invertebrate excretory-kidney system is of our internal environment” (Vize 2004, 344). They generally divided into three basic types—contractile also “remove from the blood the infinite variety vacuoles, protonephridia, and the true kidney, the of foreign substances which are constantly being metanephridium. ISSN: 1937-9056 Copyright © 2021 Answers in Genesis, Inc. All content is owned by Answers in Genesis (“AiG”) unless otherwise indicated. AiG consents to unlimited copying and distribution of print copies of Answers Research Journal articles for non-commercial, non-sale purposes only, provided the following conditions are met: the author of the article is clearly identified; Answers in Genesis is acknowledged as the copyright owner; Answers Research Journal and its website, www.answersresearchjournal.org, are acknowledged as the publication source; and the integrity of the work is not compromised in any way. For website and other electronic distribution and publication, AiG consents to republication of article abstracts with direct links to the full papers on the ARJ website. All rights reserved. For more information write to: Answers in Genesis, PO Box 510, Hebron, KY 41048, Attn: Editor, Answers Research Journal. The views expressed are those of the writer(s) and not necessarily those of the Answers Research Journal Editor or of Answers in Genesis. 38 Jerry Bergman The contractile vacuoles used in protozoa, The protonephridia design consists of flame such as the amoeba, are not true excretory organs cells. Flame cells are a cluster of cilia that resemble but function primarily to remove water to regulate a flickering flame when microscopely examined the organism’s electrolyte balance. Excess water is (Valverde-Islas et at. 2011). The cilia propel waste collected in vesicles surrounding the cell membrane, matter through the tubules and out of the body which are then emptied into contractile vacuoles. through excretory pores on the body surface. This When the contractile vacuoles accumulate enough system is use in flatworms, annelids, nemertines and fluid, the excess passes through a membrane pore rotifers. into the surrounding environment. The cellular wastes are also excreted by ordinary exocytosis by The First True Kidney contractile vacuoles merging with the cell membrane, Metanephridium is the first system that could then expelling the wastes into the environment. be properly called a kidney (see figs. 1 and 2). It Some fish have chloride-secreting glands on is used in many invertebrate animals including their gills, while iguanas, marine turtles, snakes, crustaceans, arthropods, mollusks, and annelids. and birds that scoop fish out of the water, all have This system consists of a series of nephridium salt glands that excrete excess salt. Thus they tubules that terminates into a ciliated flame cell serve some of the same functions as kidneys (Kent where specific ions and molecules are reabsorbed. 1992, 510). These salt glands, however, use a very Materials remaining in the flame cells, including different design than kidneys and, therefore, are water, surplus ions, metabolic waste, toxins, and not considered by evolutionists to be evolutionary excess hormones, are removed from the organism precursors to kidneys. Furthermore, all of these by directing them down funnel-shaped ciliated creatures have kidneys in addition to salt glands, so bodies called nephrostomes. These wastes are then one would not expect the salt gland to have evolved expelled into the environment through an excretory into the kidney or vice versa. Rather, they are extra- pore called the nephridiopore, located on the animal’s renal salt-excretion mechanisms that are not located body surface (Buchsbaum 1987, 299). in the same place as kidneys (Kent 1992, 510). For Malpighian tubule is a comparatively simple example, the salt excretion glands of lizards (for osmoregulatory system used in insects, myriapods example, the chuckwalla) and some marine birds (including millipedes and centipedes), arachnids, are located near the eye orbits and empty into the and tardigrades (that is, water bears). The system nasal canals (Kent 1992, 510–511). Sweat glands are consists of thin, delicate, convoluted, blind-branching another extra-renal method that mammals use to tubules extending away from the alimentary eliminate excess salt. canal. The excretory system is formed by a bank of Transverse Intestine Pharynx nerve Eyespot Mouth and anus Cerebral ganglia Longitudinal nerve cords Peripheral nerves Cilia Nucleus Excretory canal Tubule Tube cell Flame cell Excretory pore Fig. 1. Metanephridium in a planarian flatworm. Contrast this with the vertebrate kidney in fig. 2. Image: https:// courses.lumenlearning.com/suny-wmopen-biology2/chapter/superphylum-lophotrochozoa/. 39 Cortical blood vessels Arcuate blood vessels Interlobar blood vessels Minor calyx Renal vein Major calyx Renal pelvis Renal Renal hilum nerve Pyramid Renal artery Papilla Medulla Renal column Ureter Cortex Capsule Fig. 2. A cross section of the body of the human kidney. Image: https://upload.wikimedia.org/wikipedia/ commons/8/87/2610_The_Kidney.jpg. OpenStax College, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons. Malpighian tubules. Malpighian tubules are slender Kangaroo rats require a highly efficient water
Recommended publications
  • Sugar Transporters Enable a Leaf Beetle to Accumulate Plant Defense Compounds
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Sugar transporters enable a leaf beetle to accumulate plant defense compounds 2 Zhi-Ling Yang1, Hussam Hassan Nour-Eldin2, Sabine Hänniger3, Michael Reichelt4, Christoph 3 Crocoll2, Fabian Seitz1, Heiko Vogel3 & Franziska Beran1* 4 5 1Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical 6 Ecology, Jena, Germany. 7 2DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, 8 University of Copenhagen, Frederiksberg, Denmark. 9 3Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany. 10 4Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany 11 Corresponding author: *[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Many herbivorous insects selectively accumulate plant toxins for defense against predators; 14 however, little is known about the transport processes that enable insects to absorb and store 15 defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish 16 flea beetle, accumulates high amounts of glucosinolate defense compounds in the hemolymph.
    [Show full text]
  • Sugar Transporters Enable a Leaf Beetle to Accumulate Plant Defense Compounds
    ARTICLE https://doi.org/10.1038/s41467-021-22982-8 OPEN Sugar transporters enable a leaf beetle to accumulate plant defense compounds Zhi-Ling Yang 1, Hussam Hassan Nour-Eldin 2, Sabine Hänniger 3, Michael Reichelt 4, ✉ Christoph Crocoll 2, Fabian Seitz1, Heiko Vogel 3 & Franziska Beran 1 Many herbivorous insects selectively accumulate plant toxins for defense against predators; however, little is known about the transport processes that enable insects to absorb and store 1234567890():,; defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish flea beetle, accumulates glucosinolate defense compounds from Brassicaceae in the hemolymph. Using phylogenetic analyses of coleopteran major facilitator superfamily transporters, we identify a clade of glucosinolate-specific transporters (PaGTRs) belonging to the sugar porter family. PaGTRs are predominantly expressed in the excretory system, the Malpighian tubules. Silencing of PaGTRs leads to elevated glucosinolate excretion, sig- nificantly reducing the levels of sequestered glucosinolates in beetles. This suggests that PaGTRs reabsorb glucosinolates from the Malpighian tubule lumen to prevent their loss by excretion. Ramsay assays corroborated the selective retention of glucosinolates by Mal- pighian tubules of P. armoraciae in situ. Thus, the selective accumulation of plant defense compounds in herbivorous insects can depend on the ability to prevent excretion. 1 Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany. 2 Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark. 3 Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany. 4 Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
    [Show full text]
  • PHYSIOLOGICALLY ACTIVE FACTORS in Ulik, CORPORA CARDIACA
    PHYSIOLOGICALLY ACTIVE FACTORS IN Ulik, CORPORA CARDIACA OF INSECTS Jennifer Jones, B. Tech. Thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College. July 1978 Imperial College of Science and Technology, Department of Zoology and Applied Entomology, Prince Consort Road, London S.W.7 2 ABSTRACT A combination of column and thin layer chromatographic techniques has been used to resolve the factors in the corpora cardiaca of Locusta migratoria migratorioides and Periplaneta americana which can affect lipid metabolism, carbohydrate metabolism and water balance. The storage and glandular lobes of the locust corpora cardiaca can be separated by dissection, unlike the glandular and storage areas of the cockroach which are in intimate contact. Pure adipokinetic hormone (AKH), isolated from locust glandular lobes has been shown to produce on injection an elevation of haemolymph lipids in locusts and haemolymph carbohydrates in cockroaches. This hormone is important in the maintenance of prolonged flight activity in the locust. The hyperglycaemic response produced in cockroaches is likely to be a pharmacological effect. By applying processes developed for the purification of AKH to cockroach corpora cardiaca, a peptide factor(s) which possesses adipokinetic, hyperglycaemic and diuretic activities has been obtained. The factor is different from AKH because AKH does not possess diuretic activity and the cockroach factor has different separation characteristics and amino acid composition. The physiological role of this factor in cockroach flight has been investigated, but its potent diuretic activity may indicate its major function. 3 The locust diuretic hormone extracted from the storage lobes is distinct from AKH as it does not possess adipokinetic or hyperglycaemic activity, and appears to be a larger molecule than AKH.
    [Show full text]
  • Malpighian Tubules in Larvae of Diatraea Saccharalis (Lepidoptera
    Advances in Entomology, 2014, 2, 202-210 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ae http://dx.doi.org/10.4236/ae.2014.24029 Malpighian Tubules in Larvae of Diatraea saccharalis (Lepidoptera; Crambidae): A Morphological Comparison between Non-Parasitized and Parasitized by Cotesia flavipes (Hymenoptera; Braconidae) Gislei Maria Rigoni1, Helio Conte2 1Departamento de Ciências Biológicas, Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, Brazil 2Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá (UEM), Maringá, Brazil Email: [email protected], [email protected] Received 9 September 2014; revised 11 October 2014; accepted 20 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In Diatraea saccharalis larvae, the Malpighian tubules are found along the digestive tube, extend- ing from the middle mesenteric region to the end of the posterior intestine, where they come in contact with the rectum to form the cryptonephridium. Scanning and transmission electron mi- croscopy of non-parasitized and parasitized larvae by Cotesia flavipes have indicated that the tu- bules consist of secretory and reabsorption cells. In parasitized larvae, the occurrence of hemo- cytes and teratocytes around the tubules is indicative of their role in immunological defense; how- ever, they were not observed in non-parasitized larvae. At day 9 of parasitism, the mitochon- dria-containing vacuoles and myelin-like figures show signs of degeneration. The results of this study have confirmed that C. flavipes manipulates the physiology and biochemistry of D.
    [Show full text]
  • Modelling Malpighian Tubule Crystals Within the Predatory Soil Mite Pergamasus Longicornis (Mesostigmata: Parasitidae)
    Exp Appl Acarol DOI 10.1007/s10493-017-0137-7 Modelling Malpighian tubule crystals within the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae) Clive E. Bowman1 Received: 15 March 2017 / Accepted: 9 May 2017 Ó The Author(s) 2017. This article is an open access publication Abstract The occurrence of refractive crystals (aka guanine) is characterised in the Mal- pighian tubules of the free-living predatory parasitiform soil mite Pergamasus longicornis (Berlese) from a temporal series of histological sections during and after feeding on larval dipteran prey. The tubular system behaves as a single uniform entity during digestion. Malpighian mechanisms are not the ‘concentrative’ mechanism sought for the early stasis in gut size during the second later phase of prey feeding. Nor are Malpighian changes asso- ciated with the time of ‘anal dabbing’ during feeding. Peak gut expansion precedes peak Malpighian tubule guanine crystal occurrence in a hysteretic manner. There is no evidence of Malpighian tubule expansion by fluid alone. Crystals are not found during the slow phase of liquidised prey digestion. Malpighian tubules do not appear to be osmoregulatory. Mal- pighian guanine is only observed 48 h to 10 days after the commencement of feeding. Post digestion guanine crystal levels in the expanded Malpighian tubules are high—peaking as a pulse 5 days after the start of feeding (i.e. after the gut is void of food at 52.5 h). The half-life of guanine elimination from the tubules is 53 h. Evidence for a physiological input cascade is found—the effective half-life of guanine appearance in the Malpighian tubules being 7.8–16.7 h.
    [Show full text]
  • Gut Contents, Digestive Half-Lives and Feeding State Prediction in the Soil Predatory Mite Pergamasus Longicornis (Mesostigmata: Parasitidae)
    Exp Appl Acarol (2017) 73:11–60 DOI 10.1007/s10493-017-0174-2 Gut contents, digestive half-lives and feeding state prediction in the soil predatory mite Pergamasus longicornis (Mesostigmata: Parasitidae) Clive E. Bowman1 Received: 13 June 2017 / Accepted: 23 August 2017 / Published online: 1 September 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Mid- and hind-gut lumenal changes are described in the free-living predatory soil mite Pergamasus longicornis (Berlese) from a time series of histological sections scored during and after feeding on fly larval prey. Three distinct types of tangible material are found in the lumen. Bayesian estimation of the change points in the states of the gut lumenal contents over time is made using a time-homogenous first order Markov model. Exponential processes within the gut exhibit ‘stiff’ dynamics. A lumen is present throughout the midgut from 5 min after the start of feeding as the gut rapidly expands. It peaks at about 21.5 h–1.5 days and persists post-feeding (even when the gut is contracted) up until fasting/starvation commences 10 days post start of feeding. The disappearance of the lumen commences 144 h after the start of feeding. Complete disappearance of the gut lumen may take 5–9 weeks from feeding commencing. Clear watery prey material arrives up to 10 min from the start of feeding, driving gut lumen expansion. Intracellular digestion triggered by maximum gut expansion is indicated. Detectable granular prey material appears in the lumen during the concentrative phase of coxal droplet production and, despite a noticeable collapse around 12 h, lasts in part for 52.5 h.
    [Show full text]
  • N N N 2U11/U57825 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date ;n n /n 19 May 2011 (19.05.2011) 2U11/U57825 Al (51) International Patent Classification: (74) Agent: LAHRTZ, Fritz; Isenbruck Bosl Horschler LLP, A01K 67/033 (2006.01) C12N 15/63 (2006.01) Prinzregentenstrasse 68, 81675 Munchen (DE). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP20 10/006982 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 16 November 2010 (16.1 1.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Langi English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 10 2009 053 469.5 SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 16 November 2009 (16.1 1.2009) DE TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 10 2009 054 265.5 (84) Designated States (unless otherwise indicated, for every 23 November 2009 (23.1 1.2009) DE kind of regional protection available): ARIPO (BW, GH, 10001476.0 12 February 2010 (12.02.2010) EP GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/308,143 25 February 2010 (25.02.2010) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, FRAUNHOFER-GESELLSCHAFT ZUR EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, FORDERUNG DER ANGEWANDTEN LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, FORSCHUNG E.V.
    [Show full text]
  • Biology Guide Exams from 2016.Pdf
    Biology guide First assessment 2016 Biology guide First assessment 2016 Diploma Programme Biology guide Published February 2014 Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the International Baccalaureate Organization (UK) Ltd Peterson House, Malthouse Avenue, Cardiff Gate Cardiff, Wales CF23 8GL United Kingdom Website: www.ibo.org © International Baccalaureate Organization 2014 The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes. The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of the IB, or as expressly permitted by law or by the IB’s own rules and policy. See http://www.ibo.org/copyright. IB merchandise and publications can be purchased through the IB store at http://store.ibo.org.
    [Show full text]
  • Developmental Studies on Malpighian Tubule Structure and Function in Spodoptera Littoralis
    Durham E-Theses Developmental studies on Malpighian tubule structure and function in Spodoptera Littoralis Al-Ahmadi, Saeed S.R. How to cite: Al-Ahmadi, Saeed S.R. (1993) Developmental studies on Malpighian tubule structure and function in Spodoptera Littoralis, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5693/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 DEVELOPMENTAL STUDIES ON MALPIGHIAN TUBULE STRUCTURE AND FUNCTION IN SPODOPTERA LITTORALIS By Saeed S.R. Al-Ahmadi B. Sc., M. Sc. (King Abdul Aziz University Saudi Arabia) The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. Being a thesis submitted for the degree of Doctor of Philosophy of the University of Durham September, 1993 (Graduate Society) University of Durham 9 DEC 1993 DECLARATION I hereby declare that the work presented in this thesis is based on research carried out by me, and that this work has not been presented anywhere else for a degree and has not been published before.
    [Show full text]
  • Journal of Science
    Research Article GU J Sci 33(3): 630-644 (2020) DOI: 10.35378/gujs.690948 Gazi University Journal of Science http://dergipark.gov.tr/gujs The Spherocrystals in the Tubule Epithelial Cells and Ultrastructure of the Malpighian Tubules of Adult Isophya nervosa (Orthoptera, Tettigoniidae) Damla AMUTKAN MUTLU * , Zekiye SULUDERE Gazi University, Faculty of Science, Department of Biology, 06500 Ankara, Turkey Highlights • The ultrastructure of the Malpighian tubules (MTs) of Isophya nervosa was examined. • Different shapes of spherocrystals were observed in the MTs cells. • SEM-EDX analysis of the spherocrystals was conducted. • Differences and similarities of the MTs in Isophya nervosa with other species were revealed. Article Info Abstract The excretory system in insects consists of Malpighian tubules (MTs) which are responsible for Received: 19/02/2020 osmoregulation. The functions of the MTs are the removal of the last products of metabolism Accepted: 11/04/2020 and the transfer of the toxic compounds into the hindgut. The MTs of the insects vary structurally. In this study, the MTs of Isophya nervosa Ramme, 1951, which is a species that belongs to Orthoptera order, were investigated by light and electron microscopes. Adult Keywords individuals of Isophya nervosa were collected in Kızılcahamam, Ankara in 2017 and 2018. Elemental analysis Extracted MTs were fixed in Formaldehyde for light microscopy, in glutaraldehyde for electron SEM-EDX microscopes. They were examined and photographed after dehydration, blocking, sectioning Spherocrystal and staining processes were completed. This species has a great number of MTs. One end of the Excretory system MTs in this species is attached to the ileum and the other closed end is free in hemolymph.
    [Show full text]
  • Characterization of the Fishing Lines in Titiwai (= Arachnocampa
    RESEARCH ARTICLE Characterization of the Fishing Lines in Titiwai (=Arachnocampa luminosa Skuse, 1890) from New Zealand and Australia Janek von Byern1,2☯*, Victoria Dorrer3☯, David J. Merritt4, Peter Chandler5, Ian Stringer6, Martina Marchetti-Deschmann3, Andrew McNaughton7, Norbert Cyran2, Karsten Thiel8, Michael Noeske8, Ingo Grunwald8 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria, 2 University of Vienna, Faculty of Life Science, Core Facility Cell Imaging & Ultrastructure Research, Vienna, Austria, 3 Technical University Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria, 4 The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia, 5 Spellbound a11111 Cave, Waitomo, New Zealand, 6 Department of Conservation, Wellington, New Zealand, 7 University of Otago, School of Medical Sciences, Department of Anatomy, Otago Centre for Confocal Microscopy, Otago, New Zealand, 8 Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Citation: von Byern J, Dorrer V, Merritt DJ, Abstract Chandler P, Stringer I, Marchetti-Deschmann M, et al. (2016) Characterization of the Fishing Lines in Animals use adhesive secretions in a plethora of ways, either for attachment, egg anchor- Titiwai (=Arachnocampa luminosa Skuse, 1890) age, mating or as either active or passive defence. The most interesting function, however, from New Zealand and Australia. PLoS ONE 11 is the use of adhesive threads to capture prey, as the bonding must be performed within mil- (12): e0162687. doi:10.1371/journal. pone.0162687 liseconds and under unsuitable conditions (movement of prey, variable environmental con- ditions, unfavourable attack angle, etc.) to be nonetheless successful.
    [Show full text]
  • Review: Malpighian Tubule, an Essential Organ for Insects
    Pacheco et al., Entomol Ornithol Herpetol 2014, 3:2 Entomology, Ornithology & Herpetology http://dx.doi.org/10.4172/2161-0983.1000122 ResearchReview Article Article OpenOpen Access Access Review: Malpighian Tubule, an Essential Organ for Insects Cláudia Aparecida Pacheco1, Kaio Cesar Chaboli Alevi2*, Amanda Ravazi2 and Maria Tercília Vilela de Azeredo Oliveira2 1Centro Universitário do Norte Paulista, UNORP, São José do Rio Preto, SP, Brasil 2Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP/IBILCE, São José do Rio Preto, SP, Brasil Abstract We did an overhaul on morphophysiology characteristics, cryptonephric system and secondary specializations in the Malpighian tubules of the class Insecta. This review grouped the most important information about this important organ that has different functions essential for insects. Keywords: Malpighian tubules; Insecta class; Excretory system; The secretion rates of fluid and ions by Malpighian tubules Cocoon of insects are controlled by peptides. The tubular secretion rate is controlled by the interaction of two or more factors that are produced Malpighian Tubules: Morphophysiology Characteristics in the haemolymph. These interactions can be classified as synergistic The Insecta class comprises approximately 1.000.000 species factors affecting as diuretics, so that fluid secretion is stimulated. In distributed in 32 orders [1]. The excretory system in insects and terrestrial cooperative interaction, the factors of diuretics may act in cooperation, arthropods consists of structures called Malpighian tubules. This organ, through their full effects on transportation routes of cations and like the posterior intestine forms the primary system in insects for ionic, anions.
    [Show full text]