bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Sugar transporters enable a leaf beetle to accumulate plant defense compounds 2 Zhi-Ling Yang1, Hussam Hassan Nour-Eldin2, Sabine Hänniger3, Michael Reichelt4, Christoph 3 Crocoll2, Fabian Seitz1, Heiko Vogel3 & Franziska Beran1* 4 5 1Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical 6 Ecology, Jena, Germany. 7 2DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, 8 University of Copenhagen, Frederiksberg, Denmark. 9 3Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany. 10 4Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany 11 Corresponding author: *
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433712; this version posted March 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Many herbivorous insects selectively accumulate plant toxins for defense against predators; 14 however, little is known about the transport processes that enable insects to absorb and store 15 defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish 16 flea beetle, accumulates high amounts of glucosinolate defense compounds in the hemolymph.