Marine Biofilms: Targets of Cyanobacterial

Total Page:16

File Type:pdf, Size:1020Kb

Marine Biofilms: Targets of Cyanobacterial Marine biofilms: targets of cyanobacterial compounds towards a natural D antifouling strategy Jorge Tiago Vieira Ferreirinha Antunes Doutoramento em Biologia Departamento de Biologia Ano de 2019 Orientador Doutor Pedro Leão, CIIMAR Coorientador Prof. Doutor Vitor Vasconcelos, FCUP and CIIMAR ii Marine biofilms: targets of cyanobacterial bioactive compounds towards a natural antifouling strategy SFRH/BD/99003/2013 Jorge Tiago Vieira Ferreirinha Antunes Blue Biotechnology and Ecotoxicology (BBE) and Cyano Natural Products (CNP) research teams Interdisciplinary Centre of Marine and Environmental Research (CIIMAR) Supervisor: Pedro Leão, CIIMAR Co-supervisor: Professor Vítor Vasconcelos, FCUP and CIIMAR Faculty of Sciences of University of Porto, 2019 iii Jorge Antunes acknowledges a PhD scholarship SFRH/BD/99003/2013 from FCT (Fundação para a Ciência e Tecnologia). This work was supported by FCT - Foundation for Science and Technology - under project UID/Multi/04423/2013 and by the Structured Program of R&D&I INNOVMAR - Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), which was funded by the Northern Regional Operational Programme (NORTE2020) through the European Regional Development Fund (ERDF) and by the project CVMAR+I (0302_CVMAR_I_1_P) funded by the program Interreg V Portugal-Spain (POCTEP) through the ERDF. Funding was also provided by the project NASCEM PTDC/BTA-BTA/31422/2017 (POCI- 01-0145-FEDER-031422), financed by the FCT, COMPETE2020 and PORTUGAL2020. iv Personal acknowledgements Writing this dissertation was, for me, one of the most challenging tasks I ever endeavored, one I would surely fail if not for the help of a number of wonderful people I was lucky enough to meet. In particular, I would like to sincerely thank my supervisor, Doutor Pedro Leão, the best guide I could ever hope for his insightful, good humor– and always illuminating – commentaries. I also thank him for his constant thoroughness and constant readiness to help. His willingness to give me enough scientific independence during this project of discovery, and to challenge me for always strive for the best, surely allowed me to grow as a researcher and as a scientist. I would like also to heartily thank my co-supervisor, Professor Doutor Vitor Vasconcelos for accepting my proposal to conduct this thesis in a such an interesting topic, and for welcoming me again in such a dynamic, good-spirited and exceptional team. His helpfulness, generosity and scientific knowledge along these last years, made me joyful to work in such an outstanding institution such as CIIMAR. I also thank all my colleagues particularly in the BBE and CNP teams, as well in other CIIMAR teams for all their support, and friendship who are unfortunately too many to mention all by name. I would like to mention, however some who helped me more directly both in the lab, as well in fruitful scientific discussions, and who helped me to carry on through this difficult process until the end. Therefore, a special mention to Anoop, Aldo, António, Tito, Cidália, Adriana and Teresa. An even more special mention to Joana, my closest teammate during these last years, for her friendship and help during our marine fouling scientific projects, the best colleague I could hope for. Finally, I would like to thank my family for their unconditional support and patience, particularly my parents for their understanding and love, to whom I dedicate this thesis, and who are the true biologists. v Abstract Marine biofouling remains an unresolved problem with serious economic impact for different industries. Marine biofilms are the initial step of the marine fouling process in artificial surfaces and are the preferential substrata for the settlement of macroinvertebrate larvae and macroalgae spores. In this thesis, an extensive and critical literature review was carried out to digest current information on the distribution of marine biofilms, the already known chemical cues involved in their formation, as well the overall importance of marine biofilms for the marine fouling process. In addition, to understand how the marine biofilm formation process evolves, we employed amplicon-based NGS (Next-generation sequencing) methodologies to characterize early-stage marine biofilms growing on steel surfaces in two distinct seasons in the port of Leixões in Northern Portugal. The 16S rRNA gene sequencing data analysis demonstrated distinct taxonomic and functional profiles of the marine biofilm communities in the sampled seasons, suggesting that seasonality is a major factor influencing the diversity of those prokaryotic communities. Furthermore, the sampled biofilms revealed the presence of pathogenic taxa which, accordingly to our knowledge was not reported previously, and whose abundance was significantly influenced by temporal variations. This knowledge should be important for future anti-fouling and anti-corrosion purposes. After years of application of toxic antifoulants to control biofouling, there is a strong necessity for the development of environmentally friendly antifouling products, and cyanobacteria are a particularly encouraging source of new natural antifouling compounds. An extensive screening was therefore performed with crude organic extracts of 61 cyanobacterial strains of the LEGE Culture Collection (LEGE CC) to test their anti-fouling potential. The obtained fractions of several cyanobacterial strains revealed significant activity against the growth of microfouling organisms involved in marine biofilm formation (bacteria and diatoms) and inhibited the quorum-sensing (QS) phenomenon, which is associated with biofilm formation. Subsequent work resulted in a set of HPLC-PDA purified bioactive fractions from a marine cyanobacterial strain whose structure is being elucidated by spectroscopic methods. vi Additionally, the already known cyanobacterial compounds portoamides, isolated from a marine cyanobacterium from the LEGE CC, were also tested for their antifouling potential. A multi-bioassay approach revealed a wide spectrum antimicrofouling, anti- macroinvertebrate settlement, and anti-biofilm activity of those compounds, while displaying no toxicity to target and non-target organisms, suggesting that portoamides have a potential to be used as new environmentally friendly antifouling agents. We have also optimized an anti-biofilm assay protocol that should be of interest for the discovery of bioactive compounds with anti- marine biofilm activity which is indispensable for the discovery of efficient broad-spectrum antifouling compounds. Keywords: anti-biofilm; antifouling; bioactive compounds; cyanobacteria compounds; marine biofilms; marine biofouling; next-generation-sequencing; quorum-sensing. vii Resumo As camadas incrustantes causadas por organismos marinhos são um problema com grandes consequências económicas para diferentes indústrias. Os biofilmes marinhos são o primeiro passo no processo de colonização das camadas incrustantes em superfícies artificiais, e constituem superfícies preferenciais para a colonização e adesão de larvas de macroinvertebrados, e de esporos de macrogalgas. Neste projeto de doutoramento, um artigo de revisão foi escrito para discutir a distribuição de biofilmes marinhos, os compostos químicos envolvidos na sua formação, assim como a importância dos biofilmes no contexto das camadas incrustantes marinhas. A tecnologia de sequenciação de nova geração foi adotada para caracterizar os biofilmes marinhos que cresceram em superfícies de metal em duas estações distintas do ano no porto de Leixões, no Norte de Portugal. A análise dos dados de sequenciação de 16S RNA demonstrou um perfil taxonómico e funcional distinto nas duas estações do ano, sugerindo que o tempo e a estação do ano influenciam fortemente a composição taxonómica e funcional desses biofilmes. Adicionalmente, foram identificados nesses biofilmes grupos taxonómicos associados a situações patogénicas que, segundo o nosso conhecimento, não tinham sido descritos em estudos anteriores sobre biofilmes marinhos e cuja abundância foi significativamente influenciada pelas variações temporais testadas. Esta informação pode ter relevância para futuras estratégias eficientes de controlo de crescimento de camadas incrustantes e de biofilmes marinhos. Depois de anos de aplicação de produtos anti-incrustante tóxicos, existe uma grande necessidade do desenvolvimento de produtos que não sejam danosos para o ambiente, e as cianobactérias são uma fonte particularmente relevante para a descoberta de novos compostos naturais devido ao potencial bioativo dos seus metabolitos secundários. Neste projeto de doutoramento, um rastreio abrangente foi efetuado com os crudes de 61 estirpes de cianobactérias da coleção de culturas do LEGE (LEGE CC) para identificar o seu potencial anti-incrustante. Várias estirpes demonstraram uma significativa bioatividade contra bactérias marinhas e diatomáceas, e viii inibiram igualmente o fenómeno de percepção de quórum (quorum-sensing). Trabalho posterior levou à obtenção de uma fração bioativa purificada por HPLC-PDA, cuja estrutura será elucidada por métodos de espectrometria de massa de alta resolução. Adicionalmente, os já conhecidos compostos de cianobactérias, portoamidas, isolados de uma cianobactéria pertencente à LEGE CC, também foram testados contras os mesmo painéis de organismos. Uma série de ensaios distintos revelou uma abrangente atividade destes compostos, assim como uma significativa
Recommended publications
  • Marine Microorganisms: Evolution and Solution to Pollution Fu L Li1, Wang B1,2
    COMMENTARY Marine microorganisms: Evolution and solution to pollution Fu L Li1, Wang B1,2 Li FL, Wang B. Marine microorganisms: Evolution and solution to pollution. J Mar Microbiol. 2018;2(1):4-5. nce ocean nurtured life, now she needs our care. Marine microorganism will be an opportunity to further understand ourselves and to seek for new Ois the host of ocean in all ages. We should learn from them humbly. methods of fighting old infections. Marine microorganism is tightly bond with human during the history of evolution and nowadays’ environment pollution. Along with industrial revolution, our marine ecosystem suffered serious pollutions. Microplastics are tiny plastic particles (<5 mm) (Figure 1B), Although the topic is still in debate, life is probably originated from which poison marine lives. Because these microplastics are very hard to be submarine in hydrothermal vent systems (1). In the journey of evolution, our degraded, it is predicted that there will be more microplastics than fish in biosphere was completely dominated by microbes for a very long time (Figure ocean by the year 2050 (7). Since marine sediments are considered as the sink 1A). Human being evolves with those microorganisms. Consequently, of microplastics and marine microbes are key dwellers of marine sediments, the influences of microorganisms can be found in all aspects of human more attention should be paid on the interactions between microplastics biology. More than 65% of our genes originated with bacteria, archaea, and and marine microbes. Actually, a call for this has been published in 2011 unicellular eukaryotes, including those genes responsible for host-microbe (8).
    [Show full text]
  • Marine Biofilms on Different Fouling Control Coating Types 3 Reveal Differences in Microbial Community Composition and 4 Abundance 5 6 Maria Papadatou 1 | Samuel C
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443447; this version posted May 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ORIGINAL ARTICLE 2 Marine biofilms on different fouling control coating types 3 reveal differences in microbial community composition and 4 abundance 5 6 Maria Papadatou 1 | Samuel C. Robson 2,3 | Sergey Dobretsov 4,5 | Joy E.M. Watts 1,3 | Jennifer Longyear 6 | 7 Maria Salta 1 8 9 1 School of Biological Sciences, University of Portsmouth, Portsmouth, UK 10 2 School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK 11 3 Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK 12 4 Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman 13 5 Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Oman 14 6 AkzoNobel/ International Paint Ltd, Felling, Gateshead, UK 15 16 Correspondence: Maria Salta, School of Biological Sciences, University of Portsmouth, Portsmouth, UK. Email: [email protected] 17 Funding Information: University of Portsmouth: 35030/SC00049BIOL 18 19 Abstract 20 Marine biofouling imposes serious environmental and economic impacts on marine applications, especially in 21 the shipping industry. To combat biofouling, protective coatings are applied on vessel hulls which are divided 22 into two major groups: biocidal and non-toxic fouling-release. The aim of the current study was to explore the 23 effect of coating type on microbial biofilm community profiles to better understand the differences between 24 the communities developed on fouling control biocidal antifouling and biocidal-free coatings.
    [Show full text]
  • Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
    sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean.
    [Show full text]
  • I Biofouling in Salmon Aquaculture
    Biofouling in Salmon Aquaculture: the effectiveness of alternative netting materials and coatings in coastal British Columbia by Courtney D. Edwards BSc. University of Victoria, 2008 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Geography © Courtney D. Edwards, 2012 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. i Biofouling in Salmon Aquaculture: the effectiveness of alternative netting materials and coatings in coastal British Columbia by Courtney D. Edwards BSc. University of Victoria, 2008 Supervisory Committee Co-Supervisor Dr. S.F. Cross (Department of Geography) Co-Supervisor Dr. M. Flaherty (Department of Geography) ii Supervisory Committee Co-Supervisor Dr. S.F. Cross (Department of Geography) Co-Supervisor Dr. M. Flaherty (Department of Geography) Abstract Biofouling in salmon aquaculture is an important issue. The use of copper based antifoulants contributes to marine pollution and managing biofouling on untreated nets incurs a heavy cost on the industry. What is needed is an antifoulant coating that balances the needs of the industry with good environmental practices. This study describes the effectiveness of seven alternative netting treatments and two copper based treatments as compared to an untreated nylon net. Effectiveness was measured in terms of percent net occlusion, percent cover of major fouling groups and biomass. Following eight months immersion, results show that the alternative treatments did not out-perform the untreated nylon control, and that the two copper treatments significantly outperformed the control and all of the alternative treatments tested in this study.
    [Show full text]
  • Evaluating and Mitigating Introduction of Marine Non-Native Species Via Vessel Biofouling
    ICES AD HOC REPORT 2019 ICES Viewpoint background document: Evaluating and mitigating introduction of marine non-native species via vessel biofouling Editors Bella S. Galil ● Cynthia McKenzie Authors Bella S. Galil ● Cynthia McKenzie ● Sarah Bailey Marnie Campbell ● Ian Davidson ● Lisa Drake ● Chad Hewitt Anna Occhipinti-Ambrogi ● Richard Piola International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: Galil, B.S., McKenzie, C., Bailey, S., Campbell M., Davidson, I., Drake, L., Hewitt, C., Occhipinti-Ambrogi, A., and Piola, R. 2019. ICES Viewpoint background document: Evaluating and mitigating introduction of marine non-native species via vessel bio- fouling. ICES Ad Hoc Report 2019. 17 pp. http://doi.org/10.17895/ices.pub.4680 For permission to reproduce material from this publication, please apply to the mate- rial in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.
    [Show full text]
  • Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives
    marine drugs Review Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives Emiliana Tortorella 1,†, Pietro Tedesco 1,2,†, Fortunato Palma Esposito 1,3,†, Grant Garren January 1,†, Renato Fani 4, Marcel Jaspars 5 and Donatella de Pascale 1,3,* 1 Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy; [email protected] (E.T.); [email protected] (P.T.); [email protected] (F.P.E.); [email protected] (G.G.J.) 2 Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, INSA, 31400 Toulouse, France 3 Stazione Zoologica “Anthon Dorn”, Villa Comunale, I-80121 Naples, Italy 4 Department of Biology, University of Florence, Sesto Fiorentino, I-50019 Florence, Italy; renato.fani@unifi.it 5 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, Scotland AB24 3UE, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-0816-132-314; Fax: +39-0816-132-277 † These authors equally contributed to the work. Received: 23 July 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: The increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity. The deep-sea environment is a unique habitat, and deep-sea microorganisms, because of their adaptation to this extreme environment, have the potential to produce novel secondary metabolites with potent biological activities.
    [Show full text]
  • Marine Microbial Diversity
    Marine microbial diversity 27 K. S. Sobhana Marine Biodiversity Division, Central Marine Fisheries Research Institute, Kochi-682 018 Microbes were the only form of life for the first 2-3 billion and also based on iii) concentration of nutrients and required years of planetary and biological evolution. Life most likely growth substances (Oligotrophic, Mesotrophic, Eutrophic). began in the oceans and marine microorganisms are the However, interfaces tend to be hotspots of diversity and closest living descendants of the original forms of life. Early biological activity. Marine microbial habitats at interfaces marine microorganisms also helped create the conditions include the air-water, water-sediment, water-ice, and under which subsequent life developed. More than two billion host macroorganism-water interfaces. The sub-millimeter years ago, the generation of oxygen by photosynthetic marine scale of physical and chemical variability in these habitats microorganisms helped shape the chemical environment in poses a serious challenge to studying interface habitats in which plants, animals, and all other life forms have evolved. detail. The fact that variations can even occur within a few Macroscopic life and planetary habitability completely millimetres, suggests that microbial diversity encompasses depend upon the transformations mediated by complex more than the documented evidence available. Hence, microbial communities. These microscopic factories both biogeography is gaining importance as a field of study from aerobic and anaerobic are the essential catalysts for all of the microbial diversity point of interest. Due to the innately chemical reactions within the biogeochemical cycles. Their small size of the microorganisms, environmental complexity unique metabolisms allow marine microbes to carry out many plays a major role in determining diversity.
    [Show full text]
  • Monitoring of Biofouling Communities in a Portuguese Port Using a Combined Morphological and Metabarcoding Approach Joana Azevedo 1,2,3, Jorge T
    www.nature.com/scientificreports OPEN Monitoring of biofouling communities in a Portuguese port using a combined morphological and metabarcoding approach Joana Azevedo 1,2,3, Jorge T. Antunes1,2,3, André M. Machado 1, Vitor Vasconcelos1,2, Pedro N. Leão 1* & Elsa Froufe 1* Marine biofouling remains an unsolved problem with a serious economic impact on several marine associated industries and constitutes a major vector for the spread of non-indigenous species (NIS). The implementation of biofouling monitoring programs allows for better fouling management and also for the early identifcation of NIS. However, few monitoring studies have used recent methods, such as metabarcoding, that can signifcantly enhance the detection of those species. Here, we employed monthly monitoring of biofouling growth on stainless steel plates in the Atlantic Port of Leixões (Northern Portugal), over one year to test the efect of commercial anti-corrosion paint in the communities. Fouling organisms were identifed by combining morpho-taxonomy identifcation with community DNA metabarcoding using multiple markers (16S rRNA, 18S rRNA, 23S rRNA, and COI genes). The dominant colonizers found at this location were hard foulers, namely barnacles and mussels, while other groups of organisms such as cnidarians, bryozoans, and ascidians were also abundant. Regarding the temporal dynamics of the fouling communities, there was a progressive increase in the colonization of cyanobacteria, green algae, and red algae during the sampled period with the replacement of less abundant groups. The tested anticorrosion paint demonstrated to have a signifcant prevention efect against the biofouling community resulting in a biomass reduction. Our study also reports, for the frst time, 29 NIS in this port, substantiating the need for the implementation of recurring biofouling monitoring programs in ports and harbours.
    [Show full text]
  • Harmful Fouling Communities on Fish Farms in the SW Mediterranean Sea: Composition, Growth and Reproductive Periods
    Journal of Marine Science and Engineering Article Harmful Fouling Communities on Fish Farms in the SW Mediterranean Sea: Composition, Growth and Reproductive Periods 1, 2 3 2, Mar Bosch-Belmar * , Agnés Escurriola , Giacomo Milisenda , Verónica L. Fuentes y and 1,4, , Stefano Piraino * y 1 Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Roma, Italy 2 Institut de Ciències del Mar, ICM-CSIC, E-08003 Barcelona, Spain 3 Stazione Zoologica Anton Dohrn, 90142 Palermo, Italy 4 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy * Correspondence: [email protected] (M.B.-B.); [email protected] (S.P.) S.P. and V.L.F. are joint senior authors. y Received: 31 July 2019; Accepted: 22 August 2019; Published: 24 August 2019 Abstract: Biological fouling organisms on fish cages represent a major issue and costly factor in marine finfish aquaculture. Cnidarians have been identified as one of the most problematical groups, contributing significantly to the occlusion and structural stress of the cage nets, but also dramatically affecting farmed species health in aquaculture facilities worldwide. Recently, significant relationships were established in different Spanish aquaculture facilities between hydrozoans and juvenile fish affected by gill injuries and mortality episodes. Community composition, growth rate and reproductive potential of biofouling were monitored on fish cages over two seasonal periods of fry cages farming, located in southern Spain (SW Alboran Sea), with a special focus on cnidarians. Biomass and community composition of biofouling changed with time and between studied periods, with a marked seasonality in colonization periods and taxonomic composition, particularly for the colonial hydrozoans.
    [Show full text]
  • Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems
    fmars-08-698853 August 11, 2021 Time: 11:16 # 1 REVIEW published: 16 August 2021 doi: 10.3389/fmars.2021.698853 Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems Chloé Stévenne*†, Maud Micha*†, Jean-Christophe Plumier and Stéphane Roberty InBioS – Animal Physiology and Ecophysiology, Department of Biology, Ecology & Evolution, University of Liège, Liège, Belgium In the past 20 years, a new concept has slowly emerged and expanded to various domains of marine biology research: the holobiont. A holobiont describes the consortium formed by a eukaryotic host and its associated microorganisms including Edited by: bacteria, archaea, protists, microalgae, fungi, and viruses. From coral reefs to the Viola Liebich, deep-sea, symbiotic relationships and host–microbiome interactions are omnipresent Bremen Society for Natural Sciences, and central to the health of marine ecosystems. Studying marine organisms under Germany the light of the holobiont is a new paradigm that impacts many aspects of marine Reviewed by: Carlotta Nonnis Marzano, sciences. This approach is an innovative way of understanding the complex functioning University of Bari Aldo Moro, Italy of marine organisms, their evolution, their ecological roles within their ecosystems, and Maria Pia Miglietta, Texas A&M University at Galveston, their adaptation to face environmental changes. This review offers a broad insight into United States key concepts of holobiont studies and into the current knowledge of marine model *Correspondence: holobionts. Firstly, the history of the holobiont concept and the expansion of its use Chloé Stévenne from evolutionary sciences to other fields of marine biology will be discussed.
    [Show full text]
  • Antibiotic Activity of Marine Microorganisms
    Antibiotic activity of marine microorganisms ROSMAN B. BAAM, NARrN M. GANrmI and YvoNNr M. FRZIVAS Department of Microbiology, St. Xavier' s College, Bombay, India KURZFASSUNG: Antibiotische Aktivit~t mariner Mikroorganismen. Aus 41 Seewasserpro- ben verschiedener Herkunl~ wurden 60 St~imme mariner Bakterien mit antagonistischen Eigen- schai%n gegeniiber Staphylococcus aureus und Salmonella typhosa isoIiert. Die Wirkung ver- schiedener N~ihrstoffe auf die Produktion der antimikrobiellen Substanzen wurde untersucht. INTRODUCTION The antagonistic interrelationships among microorganisms have attracted atten- tion since the dawn of bacteriology. The antagonists which are abte to combat and destroy disease producing microbes are found to inhabit, in addition to the soil, various other natural substrates. Although, however, the soil organisms have been greatly exploited for their antibiotics, the skein of complicating factors which influence the destruction of terrestrial organisms in marine environments has yet to be fully unravelled. There are innumerable reports on the bactericidal effects of sea water on the terrigenous microflora (BoYcr & HAI~DMAN 1896, KLEIN 1905, KOI~tNrK 1927, TRAWlNSKI 1929, ZoBELL & ANDERS~N 1936, CARVENT~R, SZTTER & WErNBEI~G 1938, RICHOV, N~ANT & RICHOU 1955, P~AMER, CARLVCC~ & SCARVINO 1963) but ZoBrLL & FrLTI~AM (1936) were among the first to make specific mention of the possible presence of toxic substances in sea water. In 1952 DE BALSAC, BEI~TOZZ~ & GA~DIN observed that the bactericidal principle in sea water was independent of salinity, was thermolabile and persisted after passage through a Chamberland filter. Dr GIAXA (I889) was probably the first to report the existence in the sea, of bacteria antagonistic to anthrax bacilli and Vibrio comma.
    [Show full text]
  • Removing Biofilm from Membranes – a Practical Approach
    Removing biofilm from membranes – a practical approach. M. W.Armstrong, S.Gallego, S. P. Chesters Genesys International Limited,3A Aston Way, Middlewich, Cheshire, CW10 0HS, UK [email protected] [email protected] [email protected] Abstract Within the lifetime of most reverse osmosis (RO) systems some fouling will adversely affect membrane performance.One of the major foulants identified on lead membranes during a decade of membrane autopsy at the Genesys Membrane laboratory is biological fouling (biofouling). All raw water sources contain microorganisms such as algae, bacteria and fungi. They also contain compounds which provide nutrients and energy sources which promote biological growth. In addition current methods of control such as chlorination will increase the availability of nutrient compounds. The effects of biofouling on membrane operation include a reduction in flux, increase in pressure drop and salt passage and potentially membrane degradation and failure. Current technology favours the use of biocides to control biofouling; however bacteria in biofilm are more resistant to biocides than planktonic organisms. In addition using biocides produces an accumulated biomass which encourages active re-growth of the population. Therefore the successful approach must kill the biological population and successfully remove it from the membrane surface to prevent rapid re-growth. This paper explores the processes for developing and testing a cleaning product Genesol 703 which removes biofouling from RO/NF/UF systems. The results of removing biofilm from membranes are presented. Product efficacy was determined by comparison of membrane flux rates before and after cleaning and visual inspection by scanning electron microscopy (SEM). The results demonstrate that Genesol 703 is a technically and economically viable cleaning chemical product for the removal of biofouling from membranes.
    [Show full text]