Embryonic Origins of the Dermis Specializations of the Dermis O

Total Page:16

File Type:pdf, Size:1020Kb

Embryonic Origins of the Dermis Specializations of the Dermis O Lesson 7 ◊ Lesson Outline: ♦ Embryonic Origins of the Dermis ♦ Specializations of the Dermis o Scales in Fish o Dermal Armour in Tetrapods ♦ Epidermal/Dermal Interactions o Feathers o Hair o Teeth ◊ Objectives: At the end of this lesson you should be able to: ♦ Describe the basic structure and function of the dermis ♦ Describe the embryonic origin of the dermis ♦ Describe the phylogenetic trends seen in the development of the dermis. ♦ Describe the phylogenetic and ontogenetic origins of feathers, hair and teeth ◊ References: Chapter 6: 115-127 Chapter 12: 273-279 ◊ Reading for Next Lesson: Chapter 6: 127-132 Dermis The dermis arises from the dermatome (derived from the segmental epimeres) from mesenchyme, and from "other sources". (Remember it also contains elements from the neural crest (sensory cells such as chromatophores) and from other parts of the neural ectoderm and mesoderm (nerves and blood vessels, etc.)). It produces an outer layer called the reticular lamina. The basal lamina (of the epidermis) and the reticular lamina (of the dermis) together form the basement membrane. The dermatome primarily gives rise to connective tissue. This is usually diffuse and irregular but can be arranged into distinct ordered layers. The connective tissue of the dermis can also become ossified giving rise to dermal bone. Bone is a constituent of the dermis in some members of every vertebrate group except birds. Between the integument and deep body musculature is a transitional zone made up of very loose connective tissue and adipose tissue – the Hypodermis or superficial fascia. Below this is the musculature of the body Fishes The collagen in fishes within the dermis is regularly organized into plies that spiral around the body of the fish allowing the skin to bend without wrinkling. This is not the case in tetrapods. A classic example of this is found in the integument of the dogfish with plies of layers being oriented on a bias to give their skin stretch that accommodates lateral bending but resists distortion of the body shape. As such it allows the skin to stretch without wrinkling. This prevents turbulence during swimming as water flows over the body. This not only occurs in the dogfish but is common in aquatic reptiles and marine mammals such as the cetaceans. This is not seen in terrestrial vertebrates. In early (ancestral) fish, the dermis often gave rise to dermal bone. The generalized pattern of dermal bone consisted of lamellar bone, spongy bone, dentin and enamel or an enamel like substance. Lamellar bone is compact bone that has been deposited in successive layers or lamellae. Spongy bone is penetrated by large blood vessels giving it a spongy appearance. Dentin is another variety of bone. Enamel is an epidermal secretion. Dermal bone in turn gives rise to dermal scales. The surface of these scales is sometimes covered with a hard, acellular enamel of epidermal origin and a deeper dentin layer of dermal origin. In primitive (extinct) fishes, the dermal armour was prominent encasing their bodies in an exoskeleton. In the agnathans, dermal bone is lost and the integument is smooth and without scales. In the cartilaginous fishes, dermal bone is also absent. Surface denticles (made of dentin and enamel) in the form of placoid scales are present and appear to reduce friction and drag during swimming. They develop in the dermis but project through the epidermis. In bony fishes, dermal scales do not actually penetrate the epidermis. There is an epidermal layer, with mucus secreting cells on the outside. There are a number of types of scales, the (cosmoid, now extinct), ganoid (gar and polypterus), cycloid and ctenoid scales (teleosts). You will see the various types of scales in lab. The trend is towards scales that are lacking in enamel, dentin and the vascular bone layer leaving only lamellar bone which is acellular and mostly non-calcified. Tetrapods Dermal Bone Within the tetrapods the occurrence of dermal bone is greatly reduced. Dermal bone contributes to osteoderms (minute bony scales) in caecilians, toads, crocodilians, some lizards gastralia in reptiles. (gastralia form in the abdominal area of many reptiles). turtle shell scales of the armadillo in most mammals it only contributes to the skull and pectoral girdle. It does not form scales. Chromatophores are cells containing pigment granules. They are occasionally found in the epidermis but are usually found in the dermis. They are responsible for skin colouration. In some cells they can be aggregated into the vicinity of the nucleus or dispersed throughout the cell by hormones or neurotransmitters. Thus, some pigmented cells are a constant colour and some can undergo physiological colour change. In birds and mammals, chromatophores that arise from neural crest cells may be found anywhere in the body but their pigments are very prevalent in the epidermis. The chromatophores secrete their pigments (primarily melanin) to the epithelial cells which move up to become part of the stratum corneum (dead outer layer) of feathers and hair. Teeth, Feathers, Hair and Dermal Papillae There are three important characteristics that form as a result of an interaction between the dermis and the epidermis, rather than as a feature of either the epidermis or the dermis alone. These are teeth, feathers and hair. It is an embryonic interaction between the two layers that induces their formation. Teeth If we return to the placoid scales of elasmobranchs, note that the scale is formed primarily of dermal origin but does have an epidermal component - the enamel. Also note how these scales originate as dermal denticles. They are composed of both dermal and epidermal cells and have blood vessels and nerves It is an interaction between the epidermal cells and the dermal cells that induces their formation. In the earliest fishes, these dermal scales extended into the mouth and oral cavity. Find differences in - location. In some animals they are found throughout the oral cavity in some only along the ridges of the jaws in some they are confined to only parts of the jaw - how they attach to the jaw. They may be attached to the medial side of the bone, they may sit in shallow sockets on the crest of the bone or they may be sunken deeply into sockets within the bone. - whether/how they are replaced. In some they are replaced continuously, in some they are only replaced once. In some this is a slow process so that they erupt continuously throughout life. In some mammals they continue to grow throughout life and are worn down at the tips. - shape. They may have abrasive surfaces, they may be flat for crushing, sharp for catching holding and penetration, serrated for shearing. In some animals there is only one type of tooth (isodont/homodont = although they may vary in size but not shape) while in others there are several types of teeth in the same animal (heterodont) - some teeth can become highly specialized. Examples are the hollow fang of the snake, the tusk of the narwahl (left incisor), elephant tusks (both incisors), walrus tusk (canines) canines of carnivores Feathers There are several types of feathers. Contour feathers – aerodynamic shape Down feathers – insulation Filoplumes – for display Flight feathers – for locomotion Feather development is initiated by the formation of a dermal papilla, a mound of mesodermal cells from the dermis that indent out into the epidermis and induce the epidermis to produce the feather. The dermal contribution is to provide the blood supply for nutrients and waste removal while the feather follicle develops from the epidermis. When the feather is fully grown, the dermal papilla in the shaft of the feather dies and becomes the pulp. The base of the dermal papilla usually begins to induce the production of another feather which ultimately passively pushes out the previous feather during moulting. Most biologists believe that feathers have evolved from epidermal scales. Like the epidermis of reptiles, feathers are also sloughed and replaced by moulting. New feathers begin to develop in the same follicles and erupt upwards pushing out the old feather. They contain no nerves or blood vessels. There are arguments that feathers first evolved from epidermal scales to 1) insulate to keep heat out in hot environments, 2) insulate to keep heat in, in endothermic reptiles, 3) for aerodynamic streamlining in gliding reptiles. Hair There are several types of hair Guard hair - course outer hair Underfur - fine short hair Both serve for insulation. In marine mammals, the underfur is lost and the guard hair layer is also reduced. Vibrissae - whiskers are specialized hair for mechanoreception Quills in porcupine are specialized hairs for defense. Hair is largely composed of epidermal cells. The epidermis invaginates and where it makes contact with the dermis a small dermal papilla forms. (similar but slightly different from what we saw in feathers). The papilla appears to be involved in stimulating the epidermis to differentiate to produce hairs. There are several theories for the evolution of hair. The two main one are that it evolved first for 1) insulation and 2) as a mechanosensory structure in the folds of epidermal scales which secondarily took on an insulative role. .
Recommended publications
  • A Unified Anatomy Ontology of the Vertebrate Skeletal System
    A Unified Anatomy Ontology of the Vertebrate Skeletal System Wasila M. Dahdul1,2*, James P. Balhoff2,3, David C. Blackburn4, Alexander D. Diehl5, Melissa A. Haendel6, Brian K. Hall7, Hilmar Lapp2, John G. Lundberg8, Christopher J. Mungall9, Martin Ringwald10, Erik Segerdell6, Ceri E. Van Slyke11, Matthew K. Vickaryous12, Monte Westerfield11,13, Paula M. Mabee1 1 Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America, 2 National Evolutionary Synthesis Center, Durham, North Carolina, United States of America, 3 Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America, 4 Department of Vertebrate Zoology and Anthropology, California Academy of Sciences, San Francisco, California, United States of America, 5 The Jacobs Neurological Institute, University at Buffalo, Buffalo, New York, United States of America, 6 Oregon Health and Science University, Portland, Oregon, United States of America, 7 Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada, 8 Department of Ichthyology, The Academy of Natural Sciences, Philadelphia, Pennsylvania, United States of America, 9 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 10 The Jackson Laboratory, Bar Harbor, Maine, United States of America, 11 Zebrafish Information Network, University of Oregon, Eugene, Oregon, United States of America, 12 Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph,
    [Show full text]
  • Comparative Bone Histology of the Turtle Shell (Carapace and Plastron)
    Comparative bone histology of the turtle shell (carapace and plastron): implications for turtle systematics, functional morphology and turtle origins Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn Vorgelegt von Dipl. Geol. Torsten Michael Scheyer aus Mannheim-Neckarau Bonn, 2007 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1 Referent: PD Dr. P. Martin Sander 2 Referent: Prof. Dr. Thomas Martin Tag der Promotion: 14. August 2007 Diese Dissertation ist 2007 auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. Rheinische Friedrich-Wilhelms-Universität Bonn, Januar 2007 Institut für Paläontologie Nussallee 8 53115 Bonn Dipl.-Geol. Torsten M. Scheyer Erklärung Hiermit erkläre ich an Eides statt, dass ich für meine Promotion keine anderen als die angegebenen Hilfsmittel benutzt habe, und dass die inhaltlich und wörtlich aus anderen Werken entnommenen Stellen und Zitate als solche gekennzeichnet sind. Torsten Scheyer Zusammenfassung—Die Knochenhistologie von Schildkrötenpanzern liefert wertvolle Ergebnisse zur Osteoderm- und Panzergenese, zur Rekonstruktion von fossilen Weichgeweben, zu phylogenetischen Hypothesen und zu funktionellen Aspekten des Schildkrötenpanzers, wobei Carapax und das Plastron generell ähnliche Ergebnisse zeigen. Neben intrinsischen, physiologischen Faktoren wird die
    [Show full text]
  • The Integumentary Skeleton of Tetrapods: Origin, Evolution, and Development Matthew K
    J. Anat. (2009) 214, pp441–464 doi: 10.1111/j.1469-7580.2008.01043.x REVIEWBlackwell Publishing Ltd The integumentary skeleton of tetrapods: origin, evolution, and development Matthew K. Vickaryous1 and Jean-Yves Sire2 1Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Canada 2Université Pierre et Marie Curie-Paris 6, UMR 7138-Systématique, Adaptation, Evolution, Paris, France Abstract Although often overlooked, the integument of many tetrapods is reinforced by a morphologically and structurally diverse assemblage of skeletal elements. These elements are widely understood to be derivatives of the once all-encompassing dermal skeleton of stem-gnathostomes but most details of their evolution and development remain confused and uncertain. Herein we re-evaluate the tetrapod integumentary skeleton by integrating comparative developmental and tissue structure data. Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans. As presently understood, all are derivatives of the ancestral cosmoid scale and all originate from scleroblastic neural crest cells. Osteoderms are plesiomorphic for tetrapods but demonstrate considerable lineage-specific variability in size, shape, and tissue structure and composition. While metaplastic ossification often plays a role in osteoderm development, it is not the exclusive mode of skeletogenesis. All osteoderms share a common origin within the dermis (at or adjacent to the stratum superficiale) and are composed primarily (but not exclusively) of osseous tissue. These data support the notion that all osteoderms are derivatives of a neural crest-derived osteogenic cell population (with possible matrix contributions from the overlying epidermis) and share a deep homology associated with the skeletogenic competence of the dermis.
    [Show full text]
  • Development of the Turtle Plastron, the Order-Defining Skeletal Structure
    Development of the turtle plastron, the order-defining skeletal structure Ritva Ricea,1, Aki Kallonenb, Judith Cebra-Thomasc,d, and Scott F. Gilberta,c,1 aDevelopmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland; bDepartment of Physics, University of Helsinki, Helsinki 00014, Finland; cDepartment of Biology, Swarthmore College, Swarthmore, PA 19081; and dDepartment of Biology, Millersville University, Millersville, PA 17551 Edited by Clifford J. Tabin, Harvard Medical School, Boston, MA, and approved March 30, 2016 (received for review January 19, 2016) The dorsal and ventral aspects of the turtle shell, the carapace and the fontanel at the midline of the plastron. Moreover, processes extend plastron, are developmentally different entities. The carapace con- dorsally from the hyoplastron and hypoplastron to form a bridge that tains axial endochondral skeletal elements and exoskeletal dermal connects the plastron with the ribs and the carapace. In some turtles bones. The exoskeletal plastron is found in all extant and extinct (especially ancient lineages), a further set of paired plastron bones, species of crown turtles found to date and is synaptomorphic of the the mesoplastra, lie between the hyoplastra and hypoplastra (7). order Testudines. However, paleontological reconstructed transition Although the anatomy of plastron bones has been known for forms lack a fully developed carapace and show a progression of centuries, and the homology of these bones to the skeletal structures bony elements ancestral to the plastron. To understand the evolu- of other reptilian clades has been debated almost as long (3, 4, 6, 8), tionary development of the plastron, it is essential to know how it has we still know very little about how these intramembranous bones formed.
    [Show full text]
  • The Developmental Relationship Between Teeth and Dermal
    RESEARCH ARTICLE The developmental relationship between teeth and dermal odontodes in the most primitive bony fish Lophosteus Donglei Chen1*, Henning Blom1, Sophie Sanchez1,2,3, Paul Tafforeau3, Tiiu Ma¨ rss4, Per E Ahlberg1* 1Department of Organismal Biology, Uppsala University, Uppsala, Sweden; 2SciLifeLab, Uppsala University, Uppsala, Sweden; 3European Synchrotron Radiation Facility, Grenoble, France; 4Estonian Marine Institute, University of Tartu, Tallinn, Estonia Abstract The ontogenetic trajectory of a marginal jawbone of Lophosteus superbus (Late Silurian, 422 Million years old), the phylogenetically most basal stem osteichthyan, visualized by synchrotron microtomography, reveals a developmental relationship between teeth and dermal odontodes that is not evident from the adult morphology. The earliest odontodes are two longitudinal founder ridges formed at the ossification center. Subsequent odontodes that are added lingually to the ridges turn into conical teeth and undergo cyclic replacement, while those added labially achieve a stellate appearance. Stellate odontodes deposited directly on the bony plate are aligned with the alternate files of teeth, whereas new tooth positions are inserted into the files of sequential addition when a gap appears. Successive teeth and overgrowing odontodes show hybrid morphologies around the oral-dermal boundary, suggesting signal cross- communication. We propose that teeth and dermal odontodes are modifications of a single system, regulated and differentiated by the oral and dermal epithelia. *For correspondence: [email protected] (DC); [email protected] (PEA) Introduction A tooth is a particular type of ‘odontode’ (Figure 1A): an exoskeletal structure that forms at an inter- Competing interests: The face between an epithelial fold and the underlying mesenchyme, by dentine growing inwards from authors declare that no the epithelial contact surface.
    [Show full text]
  • Clavicles, Interclavicles, Gastralia, and Sternal Ribs in Sauropod Dinosaurs
    Journal of Anatomy J. Anat. (2013) 222, pp321--340 doi: 10.1111/joa.12012 Clavicles, interclavicles, gastralia, and sternal ribs in sauropod dinosaurs: new reports from Diplodocidae and their morphological, functional and evolutionary implications Emanuel Tschopp1,2 and Octavio Mateus1,2 1CICEGe, Faculdade de Ciencias^ e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 2Museu da Lourinha,~ Rua Joao~ Luis de Moura 95, Lourinha,~ Portugal Abstract Ossified gastralia, clavicles and sternal ribs are known in a variety of reptilians, including dinosaurs. In sauropods, however, the identity of these bones is controversial. The peculiar shapes of these bones complicate their identification, which led to various differing interpretations in the past. Here we describe different elements from the chest region of diplodocids, found near Shell, Wyoming, USA. Five morphotypes are easily distinguishable: (A) elongated, relatively stout, curved elements with a spatulate and a bifurcate end resemble much the previously reported sauropod clavicles, but might actually represent interclavicles; (B) short, L-shaped elements, mostly preserved as a symmetrical pair, probably are the real clavicles, as indicated by new findings in diplodocids; (C) slender, rod-like bones with rugose ends are highly similar to elements identified as sauropod sternal ribs; (D) curved bones with wide, probably medial ends constitute the fourth morphotype, herein interpreted as gastralia; and (E) irregularly shaped elements, often with extended rugosities, are included into the fifth morphotype, tentatively identified as sternal ribs and/or intercostal elements. To our knowledge, the bones previously interpreted as sauropod clavicles were always found as single bones, which sheds doubt on the validity of their identification.
    [Show full text]
  • Skeletal System of Fishes Dr
    Skeletal system of fishes Dr. Amrutha Gopan Assistant Professor School of Fisheries Centurion University of Technology and Management Odisha Introduction There are two different skeletal types: the exoskeleton, which is the stable outer shell of an organism, and the endoskeleton, which forms the support structure inside the body. The skeleton of the fish is made of either cartilage (cartilaginous fishes) or bone (bony fishes). Bone tissue is found only in the Subphylum Vertebrata. As such, bone is often thought of as being typical of vertebrates. In vertebrates, bone functions as a supporting tissue, a calcium reserve and as a hemopoietic (blood forming) tissue. The skeleton is the basis of form and support of the vertebrate body. Muscles attach to the skeleton and vital organs are surrounded and protected by skeletal elements. • The main features of the fish, the fins, are bony fin rays and, except for the caudal fin, have no direct connection with the spine. • They are supported only by the muscles. • The ribs attach to the spine. • Bones are rigid organs that form part of the endoskeleton of vertebrates. • They function to move, support, and protect the various organs of the body, produce red and white blood cells and store minerals. • Bone tissue is a type of dense connective tissue. • Bones come in a variety of shapes and have a complex internal and external structure. • They are lightweight, yet strong and hard, in addition to fulfilling their many other functions. The skeleton of vertebrates is broadly divided into two parts: the axial skeleton consisting of the skull, vertebrae and ribs; and the appendicular skeleton consisting of the pectoral and pelvic girdles and the bones of the appendages.
    [Show full text]
  • Carapace Bone Histology in the Giant Pleurodiran Turtle Stupendemys Geographicus: Phylogeny and Function
    Carapace bone histology in the giant pleurodiran turtle Stupendemys geographicus: Phylogeny and function TORSTEN M. SCHEYER and MARCELO R. SÁNCHEZ−VILLAGRA Scheyer, T.M. and Sánchez−Villagra, M.R. 2007. Carapace bone histology in the giant pleurodiran turtle Stupendemys geographicus: Phylogeny and function. Acta Palaeontologica Polonica 52 (1): 137–154. Stupendemys geographicus (Pleurodira: Pelomedusoides: Podocnemidae) is a giant turtle from the Miocene of Vene− zuela and Brazil. The bone histology of the carapace of two adult specimens from the Urumaco Formation is described herein, one of which is the largest of this species ever found. In order to determine phylogenetic versus scaling factors influencing bone histology, S. geographicus is compared with related podocnemid Podocnemis erythrocephala,and with fossil and Recent pelomedusoides taxa Bothremys barberi, Taphrosphys sulcatus,“Foxemys cf. F. mechinorum”, and Pelomedusa subrufa. Potential scaling effects on bone histology were further investigated by comparison to the Pleistocene giant tortoise Hesperotestudo (Caudochelys) crassiscutata and the Late Cretaceous marine protostegid turtle Archelon ischyros. A diploe structure of the shell with well developed external and internal cortices framing inte− rior cancellous bone is plesiomorphic for all sampled taxa. Similarly, the occurrence of growth marks in the shell ele− ments is interpreted as plesiomorphic, with the sampled neural elements providing the most extensive record of growth marks. The assignment of S. geographicus to the Podocnemidae was neither strengthened nor refuted by the bone his− tology. A reduced thickness of the internal cortex of the shell elements constitutes a potential synapomorphy of the Bothremydidae. S. geographicus and H. crassiscutata both express extensive weight−reduction through lightweight− construction while retaining form stability of the shell.
    [Show full text]
  • Skeletal System
    AccessScience from McGraw-Hill Education Page 1 of 22 www.accessscience.com Skeletal system Contributed by: Mike Bennett Publication year: 2014 The supporting tissues of animals which often serve to protect the body, or parts of it, and play an important role in the animal’s physiology. Skeletons can be divided into two main types based on the relative position of the skeletal tissues. When these tissues are located external to the soft parts, the animal is said to have an exoskeleton. If they occur deep within the body, they form an endoskeleton. All vertebrate animals possess an endoskeleton, but most also have components that are exoskeletal in origin. Invertebrate skeletons, however, show far more variation in position, morphology, and materials used to construct them. Exoskeletons Many of the invertebrate phyla contain species that have a hard exoskeleton, for example, corals (Cnidaria); limpets, snails, and Nautilus (Mollusca); and scorpions, crabs, insects, and millipedes (Arthropoda). However, these exoskeletons have different physical properties and morphologies. The form that each skeletal system takes presumably represents the optimal configuration for survival. See See also: ARTHROPODA ; MOLLUSCA ; ZOOPLANKTON . Calcium carbonate is the commonly found inorganic material in invertebrate hard exoskeletons. The stony corals have exoskeletons made entirely of calcium carbonate, which protect the polyps from the effects of the physical environment and the attention of most predators. Calcium carbonate also provides a substrate for attachment, allowing the coral colony to grow. However, it is unusual to find calcium carbonate as the sole component of the skeleton. It normally occurs in conjunction with organic material, in the form of tanned proteins, as in the hard shell material characteristic of many mollusks.
    [Show full text]
  • Bony Lesions in Early Tetrapods and the Evolution of Mineralized Tissue Repair
    Paleobiology, 45(4), 2019, pp. 676–697 DOI: 10.1017/pab.2019.31 Article Bony lesions in early tetrapods and the evolution of mineralized tissue repair Eva C. Herbst , Michael Doube , Timothy R. Smithson, Jennifer A. Clack, and John R. Hutchinson Abstract.—Bone healing is an important survival mechanism, allowing vertebrates to recover from injury and disease. Here we describe newly recognized paleopathologies in the hindlimbs of the early tetrapods Crassi- gyrinus scoticus and Eoherpeton watsoni from the early Carboniferous of Cowdenbeath, Scotland. These path- ologies are among the oldest known instances of bone healing in tetrapod limb bones in the fossil record (about 325 Ma). X-ray microtomographic imaging of the internal bone structure of these lesions shows that they are characterized by a mass of trabecular bone separated from the shaft’s trabeculae by a layer of cortical bone. We frame these paleopathologies in an evolutionary context, including additional data on bone healing and its pathways across extinct and extant sarcopterygians. These data allowed us to synthesize information on cell-mediated repair of bone and other mineralized tissues in all vertebrates, to reconstruct the evolutionary history of skeletal tissue repair mechanisms. We conclude that bone healing is ancestral for sar- copterygians. Furthermore, other mineralized tissues (aspidin and dentine) were also capable of healing and remodeling early in vertebrate evolution, suggesting that these repair mechanisms are synapomorphies of vertebrate mineralized tissues. The evidence for remodeling and healing in all of these tissues appears con- currently, so in addition to healing, these early vertebrates had the capacity to restore structure and strength by remodeling their skeletons.
    [Show full text]
  • A Characterisation of the Integumentary Skeleton of Lizards (Reptilia: Squamata)
    A characterisation of the integumentary skeleton of lizards (Reptilia: Squamata) Alexander Charles Kirby DEPARTMENT OF MEDICAL PHYSICS UNIVERSITY COLLEGE LONDON (U.C.L.) A thesis submitted in accordance with the requirements for the partial fulfilment of the Doctor of Philosophy degree 21/06/2020 London, United Kingdom 1 Signed Declaration of Originality “I, Alexander Charles Kirby confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.” 2 Abstract Osteoderms (ODs) are present within the dermis of 14 families of squamates although snakes and Sphenodontidae lack ODs. The expression of ODs within squamates has been described as highly variable and diverse since they were first reported. Some examples of squamate OD expression are as compound structures, fused together into overlapping, imbricating plates (as in Scincidae); as distorted, bent cylinders, partially overlapping one another (as in Varanidae), or as discrete, regularly tessellated, non-overlapping, polygonal beads (as in Helodermatidae), but this is not an exhaustive list. Currently, our understanding of OD structure-to-function relationships, general anatomy and internal composition remains limited. In this study, using histological staining, computed tomography, polarised light microscopy and electron microscopy, the microstructure of materials comprising ODs from multiple families of lizards is revealed. The results show that ODs are comprised of different proportions of numerous biomaterials including osteodermine, a highly mineralised, dense capping tissue on the apical surface of the osteoderm; lamellar bone rich in secondary osteons (haversian bone tissue), Sharpey-fibred bone, woven bone and parallel-fibred bone.
    [Show full text]
  • An Illustrated Guide to Latest Cretaceous Vertebrate Microfossils of the Hell Creek Formation of Northeastern Montana
    An Illustrated Guide to latest Cretaceous Vertebrate Microfossils of the Hell Creek Formation of northeastern Montana By David G. DeMar, Jr. Edited by Gregory P. Wilson and Blakely K. Tsurusaki Version 1.0 1 2 Introduction Vertebrate microfossil sites, or microsites, are concentrations of fossilized vertebrate bones and teeth of multiple individuals that are usually in the millimeter to centimeter size range. Microsites often contain many species of animals including fish, amphibians, reptiles, birds, and mammals. A view of the Hell Creek Formation near Fort Peck Reservoir in Garfield County, northeastern Montana. Photo by David G. DeMar, Jr. (2011). There have been several hundred microsites found in the Hell Creek Formation of Garfield County, northeastern Montana. The Hell Creek Formation is a geologic unit made up of rock strata that were deposited during the last chapter of the Dinosaur Era. More specifically, these rocks and the fossils found within them are from the latest Cretaceous, approximately 67 to 65 million years ago, when Montana and other western states were situated along the coast of a vast seaway. Hell Creek microsites have yielded thousands of fossils. This guide will help you to identify vertebrate microfossils from one such microsite. Part 1 of the guide contains images of different body parts represented by the fossils found at microsites in the Hell Creek Formation, including vertebrae, teeth, jaws, and scales. Part 2 is a primer on the comparative anatomy of vertebrate animals that will be useful in assigning the fossils to particular vertebrate groups (e.g., fish, amphibian, mammal, etc.). Words in bold font are defined in the glossary at the end of Part 2.
    [Show full text]