Bony Lesions in Early Tetrapods and the Evolution of Mineralized Tissue Repair

Total Page:16

File Type:pdf, Size:1020Kb

Bony Lesions in Early Tetrapods and the Evolution of Mineralized Tissue Repair Paleobiology, 45(4), 2019, pp. 676–697 DOI: 10.1017/pab.2019.31 Article Bony lesions in early tetrapods and the evolution of mineralized tissue repair Eva C. Herbst , Michael Doube , Timothy R. Smithson, Jennifer A. Clack, and John R. Hutchinson Abstract.—Bone healing is an important survival mechanism, allowing vertebrates to recover from injury and disease. Here we describe newly recognized paleopathologies in the hindlimbs of the early tetrapods Crassi- gyrinus scoticus and Eoherpeton watsoni from the early Carboniferous of Cowdenbeath, Scotland. These path- ologies are among the oldest known instances of bone healing in tetrapod limb bones in the fossil record (about 325 Ma). X-ray microtomographic imaging of the internal bone structure of these lesions shows that they are characterized by a mass of trabecular bone separated from the shaft’s trabeculae by a layer of cortical bone. We frame these paleopathologies in an evolutionary context, including additional data on bone healing and its pathways across extinct and extant sarcopterygians. These data allowed us to synthesize information on cell-mediated repair of bone and other mineralized tissues in all vertebrates, to reconstruct the evolutionary history of skeletal tissue repair mechanisms. We conclude that bone healing is ancestral for sar- copterygians. Furthermore, other mineralized tissues (aspidin and dentine) were also capable of healing and remodeling early in vertebrate evolution, suggesting that these repair mechanisms are synapomorphies of vertebrate mineralized tissues. The evidence for remodeling and healing in all of these tissues appears con- currently, so in addition to healing, these early vertebrates had the capacity to restore structure and strength by remodeling their skeletons. Healing appears to be an inherent property of these mineralized tissues, and its linkage to their remodeling capacity has previously been underappreciated. Eva C. Herbst* and John R. Hutchinson. Structure and Motion Laboratory, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, United Kingdom. E-mail: [email protected], [email protected] Michael Doube. Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong. E-mail: [email protected] Timothy R. Smithson and Jennifer A Clack. University Museum of Zoology, Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom. E-mail: [email protected], [email protected] Accepted: 13 August 2019 First published online: 27 September 2019 *Correspondence to: Eva C. Herbst, [email protected]. Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.30kp1qg; and Figshare Digital Repository: https://doi.org/10.6084/m9.figshare.9211643 Introduction are to regain competitive function. Despite its Bones have a remarkable ability to heal after broad distribution in extant taxa and clear traumatic injury and in the face of infectious, role in enhancing evolutionary fitness within neoplastic, and other insults. Up to half of and across species, an evolutionary context juvenile humans experience and survive bone for bone healing has not yet been elucidated. fracture (Jenkins et al. 2018). Wild animals The broad category of bone repair may be such as hawks, bottle-nosed dolphins, urban subdivided into several different categories: foxes, and serrasalmid fish (the group includ- regeneration, nonregenerative large-scale heal- ing piranhas) have high rates of fracture inci- ing, remodeling, and biophysical annealing dence and survival (de Smet 1977; Harris (Fig. 1). In regeneration (Fig. 1A), whole limb, 1978; Roth et al. 2002; Kolmann et al. 2018). In tail, and fin segments regrow via the formation human and veterinary medicine, fracture repair of a blastema, which comprises dedifferen- may be enhanced by supporting bones with tiated cells (Egawa et al. 2014; see Akimenko splints, casts, slings, surgical implants, and et al. [2003] and Akimenko and Smith [2007] medication; wild animals are not afforded for fin regeneration). We divide nonregenera- such care and must heal by themselves if they tive large-scale healing into three subcategories: © 2019 The Paleontological Society. All rights reserved. This is an Open Access article, distributed under the terms of the DownloadedCreative from Commons https://www.cambridge.org/core Attribution licence. IP address: (http://creativecommons.org/licenses/by/4.0/), 170.106.202.126, on 01 Oct 2021 at 01:09:29, subject to whichthe Cambridge permits Coreunrestricted terms of use, available at https://www.cambridge.org/core/termsre-use, distribution, and reproduction. https://doi.org/10.1017/pab.2019.31 in any medium, provided the original work is properly cited. 0094-8373/19 EVOLUTION OF SKELETAL REPAIR 677 FIGURE 1. Generalized schematic of bone repair mechanisms: A, regeneration; B, bone healing; C, remodeling; and D, biophysical annealing. *For healing of dermal bone in various taxa (via cartilaginous or fibrous callus formation), see Moss (1962), Irwin and Ferguson (1986), and Geurtzen et al. (2014). For endochondral healing mechanisms with surgical fixation, see Shapiro (2008). fracture repair, bony collar formation (sub- collar of subperiosteal woven bone (Uthgen- periosteal reactive bone and exostoses), and nant et al. 2007; Shapiro 2008; Marsell and modeling and remodeling around space-filled Einhorn 2011). We do not include healing lesions (such as cysts, abscesses, and neo- of stress fractures or microfractures in the plasms), which for brevity we refer to collect- category of fracture repair, because the healing ively as bone healing (Fig. 1B). Bony collar process of stress and microfractures omits fibro- formation is modeling “outside” the bone cartilaginous callus formation. organ, by the formation of subperiosteal react- Bone healing usually incorporates remodel- ive bone and exostoses. An example of bony ing. During fracture repair, woven bone in the collar formation is in equine “bucked shins,” callus is removed and replaced by mature where bone forms in response to high-strain lamellar bone, restoring the strength of the cyclic injury (Nunamaker 2002). Modeling bone organ (Shapiro 2008). In our terminology and remodeling around space-filling lesions (following Frost 1991), remodeling refers to the help heal bone in response to disease and infec- process of bone resorption by osteoclasts and tion. Here we use the term fracture repair only to deposition by osteoblasts without an overall refer to the healing processes that occur after change in organ shape (i.e., formation follows gross organ breakage into separate fragments. resorption on the same surface), and modeling This “secondary” or “indirect” fracture repair refers to unbalanced formation and resorption, process is characterized by rapid fibrous/cartil- leading to a net change in organ shape (e.g., cal- aginous callus formation that closes the fracture lus formation) or size (e.g., during growth) gap and stabilizes interfragmentary movement (Fig. 1B,C). Modeling and remodeling function (Shapiro 2008; Marsell and Einhorn 2011). In during normal bone growth; modeling contrast, incomplete and fatigue (“stress”)frac- increases bone size during development, and tures that are stable and lack a fracture gap heal modeling and remodeling enable growth to by secondary osteonal remodeling that fixes the occur while keeping dynamic strains consistent intracortical cracks and/or by deposition of a (Biewener et al. 1986;Frost1991). Furthermore, Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.126, on 01 Oct 2021 at 01:09:29, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pab.2019.31 678 EVA C. HERBST ET AL. bone remodeling can function in mineral 2018). Paleopathologies can provide insight homeostasis (Doherty et al. 2015). Remodeling into the evolution of bone repair, because repairs microfractures in cortical bone (Burr paleopathologies are direct evidence of bone’s 1993; Mori and Burr 1993; Bentolila et al. response to insult. 1998). Bone’s healing response can consist of Although it is often difficult to determine the tissue formation only (i.e., modeling), for exact etiology of a paleopathology (Moodie example, subperiosteal bone deposition form- 1917), bone healing, regeneration, and remod- ing a bony collar. Remodeling is not always eling can be distinguished from one another necessary to reconnect two fractured segments in the fossil record. For example, the presence or to infill a lesion, but is advantageous in the of a fracture callus in a fossil indicates that the healing pathway, because it re-establishes full animal survived the fracture and started the strength in the healed structure (Shapiro fracture repair process. Bone healing may also 2008). Due to its tissue maintenance function manifest as an unusual bone formation in and ability to repair microfracture and stress response to nonfracture insult or disease; some- fracture independently, we place remodeling in times it is not possible to specify the type of its own category within bone repair, while rec- bone healing (response to fracture vs. other dis- ognizing its contribution to the later stages of ease). Remodeling can be identified by the pres- fracture repair. Modeling around space-filling ence of secondary osteons. Microcracks (and lesions, and bony collar formation, can also be hence, their repair) are difficult to identify in followed by remodeling. However, the subcat- the fossil record;
Recommended publications
  • FISHING for DUNKLEOSTEUS You’Re Definitely Gonna Need a Bigger Boat by Mark Peter
    OOhhiioo GGeeoollooggyy EEXXTTRRAA July 31, 2019 FISHING FOR DUNKLEOSTEUS You’re definitely gonna need a bigger boat by Mark Peter At an estimated maximum length of 6 to 8.8 meters (20–29 sediments that eroded from the Acadian Mountains, combined feet), Dunkleosteus terrelli (Fig. 1) would have been a match for with abundant organic matter from newly evolved land plants even the Hollywood-sized great white shark from the and marine plankton, settled in the basin as dark organic movie Jaws. Surfers, scuba divers, and swimmers can relax, muds. Over millions of years, accumulation of additional however, because Dunkleosteus has been extinct for nearly 360 overlying sediments compacted the muds into black shale rock. million years. Dunkleosteus was a placoderm, a type of armored The rocks that formed from the Late Devonian seafloor fish, that lived during the Late Devonian Period from about sediments (along with fossils of Dunkleosteus) arrived at their 375–359 million years ago. Fossil remains of the large present location of 41 degrees north latitude after several species Dunkleosteus terrelli are present in the Cleveland hundred million years of slow plate tectonic movement as the Member of the Ohio Shale, which contains rocks that are North American Plate moved northward. approximately 360–359 million years old. Figure 1. A reconstruction of a fully-grown Dunkleosteus terrelli, assuming a length of 29 feet, with angler for scale. Modified from illustration by Hugo Salais of Metazoa Studio. Dunkleosteus cruised Late Devonian seas and oceans as an Figure 2. Paleogeographic reconstruction of eastern North America during apex predator, much like the great white shark of today.
    [Show full text]
  • Your Inner Fish
    CHAPTER THREE HANDY GENES While my colleagues and I were digging up the first Tiktaalik in the Arctic in July 2004, Randy Dahn, a researcher in my laboratory, was sweating it out on the South Side of Chicago doing genetic experiments on the embryos of sharks and skates, cousins of stingrays. You’ve probably seen small black egg cases, known as mermaid’s purses, on the beach. Inside the purse once lay an egg with yolk, which developed into an embryonic skate or ray. Over the years, Randy has spent hundreds of hours experimenting with the embryos inside these egg cases, often working well past midnight. During the fateful summer of 2004, Randy was taking these cases and injecting a molecular version of vitamin A into the eggs. After that he would let the eggs develop for several months until they hatched. His experiments may seem to be a bizarre way to spend the better part of a year, let alone for a young scientist to launch a promising scientific career. Why sharks? Why a form of vitamin A? 61 To make sense of these experiments, we need to step back and look at what we hope they might explain. What we are really getting at in this chapter is the recipe, written in our DNA, that builds our bodies from a single egg. When sperm fertilizes an egg, that fertilized egg does not contain a tiny hand, for instance. The hand is built from the information contained in that single cell. This takes us to a very profound problem.
    [Show full text]
  • Median Fin Patterning in Bony Fish: Caspase-3 Role in Fin Fold Reabsorption
    Eastern Illinois University The Keep Undergraduate Honors Theses Honors College 2017 Median Fin Patterning in Bony Fish: Caspase-3 Role in Fin Fold Reabsorption Kaitlyn Ann Hammock Follow this and additional works at: https://thekeep.eiu.edu/honors_theses Part of the Animal Sciences Commons Median fin patterning in bony fish: caspase-3 role in fin fold reabsorption BY Kaitlyn Ann Hammock UNDERGRADUATE THESIS Submitted in partial fulfillment of the requirement for obtaining UNDERGRADUATE DEPARTMENTAL HONORS Department of Biological Sciences along with the HonorsCollege at EASTERN ILLINOIS UNIVERSITY Charleston, Illinois 2017 I hereby recommend this thesis to be accepted as fulfilling the thesis requirement for obtaining Undergraduate Departmental Honors Date '.fHESIS ADVI 1 Date HONORSCOORDmATOR f C I//' ' / ·12 1' J Date, , DEPARTME TCHAIR Abstract Fish larvae develop a fin fold that will later be replaced by the median fins. I hypothesize that finfold reabsorption is part of the initial patterning of the median fins,and that caspase-3, an apoptosis marker, will be expressed in the fin fold during reabsorption. I analyzed time series of larvae in the first20-days post hatch (dph) to determine timing of median findevelopment in a basal bony fish- sturgeon- and in zebrafish, a derived bony fish. I am expecting the general activation pathway to be conserved in both fishesbut, the timing and location of cell death to differ.The dorsal fin foldis the firstto be reabsorbed in the sturgeon starting at 2 dph and rays formed at 6dph. This was closely followed by the anal finat 3 dph, rays at 9 dph and only later, at 6dph, does the caudal fin start forming and rays at 14 dph.
    [Show full text]
  • Caudal Fin Branding Fish for Individual Recognition in Behavior Studies
    Behavior Research Methods & Instrumentation 1979, Vol. 11 (1), 95-97 NOTES are on small (3-5 em), more fragile fish, and these punches tear the subjects' fins. Conventional techniques Caudal fin branding fish for individual for small fish (e.g., Heugel, Joswiak, & Moore, 1977; recognition in behavior studies Leary & Murphy, 1975) are simply not applicable for behavioral observations. RICHARD E. McNICOL and DAVID L. NOAKES This simple and inexpensive form of heat branding Department ofZoology, University of Guelph works well. The method has been tested on several Guelph, Ontario N1G 2W1, Canada species (Table 1), with similar results. Caudal fin branding is an inexpensive technique for marking and identifying small, fragile fish. A modified APPARATUS tip on a hand-held soldering pencil is used to cauterize small holes in the caudal fin membrane. The technique is simple to use, appears to cause little trauma to the The apparatus (Figure 1) is a modified soldering fish, and lasts for at least several weeks. pencil, with the brass tip filed down by hand to a small (.s-mm) square end. The iron is heated by an internal Identifying fish in behavioral studies often presents electrical resistance using an ac power source outlet a special problem. The collars, leg bands, or colored (the model we use, "Craftrite," Eldon Industries, dyes that can be used so readily on terrestrial vertebrates Canada, Inc., costs about $5). The ac power supply is are virtually useless on fish. A variety of external tags not critical; a battery-powered iron can be used if the are commercially available, and are widely used for situation requires it.
    [Show full text]
  • Identifying Heterogeneity in Rates of Morphological Evolution: Discrete Character Change in the Evolution of Lungfish (Sarcopterygii; Dipnoi)
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01460.x IDENTIFYING HETEROGENEITY IN RATES OF MORPHOLOGICAL EVOLUTION: DISCRETE CHARACTER CHANGE IN THE EVOLUTION OF LUNGFISH (SARCOPTERYGII; DIPNOI) Graeme T. Lloyd,1,2 Steve C. Wang,3 and Stephen L. Brusatte4,5 1Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 2E-mail: [email protected] 3Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081 4Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 5Department of Earth and Environmental Sciences, Columbia University, New York, New York 10025 Received February 9, 2010 Accepted August 15, 2011 Data Archived: Dryad: doi:10.5061/dryad.pg46f Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as “living fossils” due to an apparent slowdown in rates since the Devonian.
    [Show full text]
  • Bone Metabolism and Evolutionary Origin Of
    Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography Yara Haridy, Markus Osenberg, André Hilger, Ingo Manke, Donald Davesne, Florian Witzmann To cite this version: Yara Haridy, Markus Osenberg, André Hilger, Ingo Manke, Donald Davesne, et al.. Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography. Science Ad- vances , American Association for the Advancement of Science (AAAS), 2021, 7 (14), pp.eabb9113. 10.1126/sciadv.abb9113. hal-03188775 HAL Id: hal-03188775 https://hal.sorbonne-universite.fr/hal-03188775 Submitted on 2 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2021 The Authors, some rights reserved; Bone metabolism and evolutionary origin of osteocytes: exclusive licensee American Association Novel application of FIB-SEM tomography for the Advancement Yara Haridy1*†, Markus Osenberg2*, André Hilger2, Ingo Manke2, of Science. No claim to 3,4 1 original U.S. Government Donald Davesne , Florian Witzmann Works. Distributed under a Creative Lacunae and canaliculi spaces of osteocytes are remarkably well preserved in fossilized bone and serve as an Commons Attribution established proxy for bone cells.
    [Show full text]
  • Categorical Versus Geometric Morphometric Approaches To
    [Palaeontology, 2020, pp. 1–16] CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERIZING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM GNATHOSTOMATA) by HUMBERTO G. FERRON 1,2* , JENNY M. GREENWOOD1, BRADLEY DELINE3,CARLOSMARTINEZ-PEREZ 1,2,HECTOR BOTELLA2, ROBERT S. SANSOM4,MARCELLORUTA5 and PHILIP C. J. DONOGHUE1,* 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected], [email protected], [email protected] 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia, Spain; [email protected], [email protected] 3Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA; [email protected] 4School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK; [email protected] 5School of Life Sciences, University of Lincoln, Riseholme Hall, Lincoln, LN2 2LG, UK; [email protected] *Corresponding authors Typescript received 2 October 2019; accepted in revised form 27 February 2020 Abstract: Morphological variation (disparity) is almost aspects of morphology. Phylomorphospaces reveal conver- invariably characterized by two non-mutually exclusive gence towards a generalized ‘horseshoe’-shaped cranial mor- approaches: (1) quantitatively, through geometric morpho- phology and two strong trends involving major groups of metrics;
    [Show full text]
  • Studies in Organic Geochemistry"
    A Thesis entitled "STUDIES IN ORGANIC GEOCHEMISTRY" submitted to the UNIVERSITY OF GLASGOW in part fulfilment of the requirements for admittance to the degree of DOCTOR OF PHILOSOPHY in the Faculty of Science by JAMES RANKIN MAXWELL, B.Sc. Chemistry Department April, 1967 ProQuest Number: 11011805 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11011805 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To t:vv rorontn , v/if^ and dna^ktor, I wish to express my gratitude to Drs. G.Eglinton and J.D, Loudon for their close interest and guidance throughout the work of this thesis. My appreciation is also due to Dr. A.G, Douglas, whose assistance at all times proved to he invaluable. I would also like to thank Miss F. Greene and Miss T.Devit for technical assistance, my colleagues of the Organic Geochemistry Unit and Dr. A, McCormick for their advice and help, Mr, J.M.L. Cameron and his staff for the micro-analyses, Mrs. F. Lawrie and Miss A.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • Amphibious Fish Jump Better on Land After Acclimation to a Terrestrial Environment Emily M
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 3204-3207 doi:10.1242/jeb.140970 SHORT COMMUNICATION Amphibious fish jump better on land after acclimation to a terrestrial environment Emily M. Brunt1, Andy J. Turko1, Graham R. Scott2 and Patricia A. Wright1,* ABSTRACT We tested the hypothesis that plastic changes in the skeletal Air and water differ dramatically in density and viscosity, posing muscle of adult amphibious fishes during terrestrial acclimation different biomechanical challenges for animal locomotion. We asked improve locomotory performance. This hypothesis predicts that fish – how terrestrial acclimation influences locomotion in amphibious fish, acclimated to a terrestrial environment and that experience – specifically testing the hypothesis that terrestrial tail flip performance increased effective gravity should have improved movement is improved by plastic changes in the skeletal muscle. Mangrove capacity and associated plastic changes to the skeletal muscle rivulus Kryptolebias marmoratus, which remain largely inactive out of compared with individuals maintained solely in water, where they water, were exposed to water or air for 14 days and a subgroup of are buoyant and effectively weightless. We studied K. marmoratus, air-exposed fish was also recovered in water. Tail flip jumping an amphibious fish that moves on land by tail flip jumping (Taylor, performance on land improved dramatically in air-acclimated fish, 2012; Pronko et al., 2013), tolerates emersion for up to 66 days in they had lower lactate levels compared with control fish, and these the laboratory and has been found packed into rotting logs in the dry effects were mostly reversible. Muscle plasticity significantly season (Taylor, 2012).
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]