Studies in Organic Geochemistry"

Total Page:16

File Type:pdf, Size:1020Kb

Studies in Organic Geochemistry A Thesis entitled "STUDIES IN ORGANIC GEOCHEMISTRY" submitted to the UNIVERSITY OF GLASGOW in part fulfilment of the requirements for admittance to the degree of DOCTOR OF PHILOSOPHY in the Faculty of Science by JAMES RANKIN MAXWELL, B.Sc. Chemistry Department April, 1967 ProQuest Number: 11011805 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11011805 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To t:vv rorontn , v/if^ and dna^ktor, I wish to express my gratitude to Drs. G.Eglinton and J.D, Loudon for their close interest and guidance throughout the work of this thesis. My appreciation is also due to Dr. A.G, Douglas, whose assistance at all times proved to he invaluable. I would also like to thank Miss F. Greene and Miss T.Devit for technical assistance, my colleagues of the Organic Geochemistry Unit and Dr. A, McCormick for their advice and help, Mr, J.M.L. Cameron and his staff for the micro-analyses, Mrs. F. Lawrie and Miss A. Roberts for the infra-red spectra, Mr. J. Gall for the nuclear magnetic resonance spectra, Drs. McCormick and J. Martin and their staffs for the mass spectra and Mrs. M Benzie for her typing. The work was supported by a maintenance grant from the Science Research Council. _A_ 3_ S T R A C T_. Organic geocherr.istry is the study of organic matter in geological situations, including contemn ora.ry environments. One facet of the subject is the isolation and identification of * organic compounds from fossils and sediments. Correlations are then sought between such compounds and the biological compounds present in contemporary organisms, bearing in nind the chemical changes which could have taken place. in this thesis an attempt has been made to relate chemically a living alga, Botryococcus braunii , a derived rubbery deposit called Cocrengite and Torbanite which is a sediment 500 million years in age. The thesis can be divided into six pnrts, five of which are concerned with organic geochemistry. The Introduction reviews the more significant contributions to organic geochemistry and describes the types of compounds found in sediments, with special reference to alkanes. Some of the various facets of the subject and the possible derivations of geological isoprenoid alkanes ere also discussed. Section I is concerned with the alkanes present in two samples of a young sediment (ca. 30 x 10^ yrs. ) from IT.'A. Bohemia, Czechoslovakia. The distributions of the normal alkanes are reminiscent of those of the normal alkanes of the surface waxes of most contemporary plants. Furthermore the predominance of triterpene hydrocarbons in the branchea-cyclic a Inarm fraction is \n i accordance with the fact that the plant species identified in the sediment are mainly angiosperms. The diterpeue hydrocarbon fichtelite was identified in one of the samples. Section II deals with the alkr.nos of a number of samples g from the Scottish Carboniferous Formation (ca, 30C x 10 yrs.). The normal alka.nes of these samples have smooth distributions in contrast to those found for the young sediment examined (Section i). A number of acyclic isoprenoid hydrocarbons were identified, indicating that the samples hove a biological origin. Triterpene hydrocarbons were isol.ated from one of the samples, viz. the ’festvood Shale and their occurrence reflects the difference in source material between this and a closely related sediment called Torbanite. The hestvood Shale is the oldest geological sample from which triterpanes have been isolated in a pure state. Section III describes the hydrocarbons of a rubbery deposit called Coorongite (ca, 40 yrs.) which is the presumed precursor of Torbanite. The unusual hydrocarbon distributions found in Coorongite are thought by the author to be the result of bacterial activity. Three acyclic isoprenoid hydrocarbons were identified in the sample examined. Section IV deals with the hydrocarbons of a living alga, Botryococcus braunii, which gives rise to Coorongite, No saturated hydrocarbons were detected in the alga and the hydrocarbon fraction was found to consist almost entirely of two n o v e l hydrocarbons. Approaches to the structural elucidation of these hydrocarbons are described. The Appendix is concerned with the interactions which can take place between a nitro-group and a side chain in ortho­ substituted nitrobenzenes, The types of interaction which have been observed are reviewed and two new examples are descri ed. A mass spectral moth.od for the identification of the N-oxide function in aromatic N-oxides is discussed. CONTENTS Page INTRODUCTIONS Organic Geochemistry • • • 1 . Formulae ........ 000 19 GENERAL EXPERIMENTAL » • • • • • » I • • • 23 EXPERIMENTAL: Figures • • • • • • • • • ♦ • 31 SECTION I: The Hydrocarbons of a Lower Miocene Lignite. Introduction...... ....................... 33 Discussion............................... 37 Experimental ...................... 45 Figures and Formulae ............. 48 SECTION lit The Hydrocarbons of Certain Samples from the Scottish Carboniferous Formation, Introduction ... ... 56 Discussion ... ... 6o Experimental ... ... 72 Figures ... ... 82 SECTION III: The Hydrocarbons of Coorongite Introduction ... ... • • • 102 Discussion ......... 0 0 0 104 Experimental ... ... 110 Figures ......... 114 SECTION IV; The Botryococcenes - Hydrocarbons of Novel Structure from the Alga Botryococcus Braunii, Kutzing. Introduction ... ... ......... 118 Discussion . •. ... ... ... 123 Experimental ... ... ... ... 144 Figures and Formulae ............... 158 CONCLUDING REMARKS 173 REFERENCES 177 APPENDIX: Substituent Interactions in Ortho-Substituted Nitrobenzenes. Introduction ... ... ... ... 187 Discussion ... ... ... ... 1^2 Experiment al ... ... ... ... 202 Figures and Formulae ... ... ... 210 References ... ... ... ... 216 INTRODUCTION Organic Geochemistry„ Organic geochemistry may he broadly defined as the study of the organic matter occurring in geological situations. The greatest activity in this field has been directed towards the isolation and identification of organic compounds from sediments, fossils and crude oils with a view to elucidating the geological and biochemical implications of the occurrence of these compounds. The most-studied classes of compounds have been the amino acids, fatty acids, alkanes, alkenes, aromatic hydrocarbons, porphyrins and carbohydrates. In recent years organic geochemistry has been investigated as a possible tool for the detection of remnants of former life- processes, both on Earth and certain other planets of the solar system and their satellites, notably the Moon. At present this involves the isolation and identification of biologically-derived compounds from ancient sediments for which no adequate fossil record exists. Such experiments, when applied to samples from other planets, could only detect life-processes if the life were based on the carbon atom and a terrestrial biochemistry. This might not necessarily be the case. The two main prerequisites for these investigations are that these compounds must be stable over geological time and cannot be synthesised in significant concentrations by simple abiogenic means such as the treatment of mixtures of methane, water vapour and ammonia (the presumed primitive atmosphere of the Earth ) with ionising radiation or an electric discharge. The latter restriction excludes, for example, the biologically-important amino acids, certain of which may 3 4 5 6 he synthesised by the action of an electric discharge or ionising 7 radiation on mixtures of the gases presumed to be the major constituents Q of the Earth’s prebiotic atmosphere. In fact,Harada and Pox have synthesised all the amino acids common to protein, except cystine (l) and methionine (2), simply by heating a mixture of methane, water vapour and ammonia to 1000°C in the presence of silica. In other experiments simulating prebiological conditions a wide array of biologically- 7 significant molecules have been prepared, notably sugars , nucleic-acid bases (adenine (3)^’^ and guanine (4 )^), adenosine (5)^\ mono- 12 nucleotides , adenosine diphosphate (ADP)(6) and adenosine triphosphate (ATP)(7)^, a l k a n e s ^ , and carboxylic acids^. However certain alkanes and fatty acids are still valid as evidence of life-processes in the past since they exhibit great specificity of structure and have not been synthesised in primitive atmosphere experiments. Thus the acyclic isoprenoid hydrocarbons, steroid and triterpene hydrocarbons (see below), and the isoprenoid fatty acids are suitable as "biological markers". Isoprenoid fatty acids have been isolated from the Green River Shale of Wyoming and 6 17 18 1Q Colorado (Eocene, 60 x 10 yrs.) ’ , and from a California petroleum , Porphyrins are also valid as "biological markers" because of their stability and specificity of structure and have been isolated from a large number of sediments and crude oils, the oldest source at present being the Nonesuch Shale of Michigan2^ (Precambrian, 1 x 10^ yrs,). The p.orphyrins are thought to
Recommended publications
  • Investigating the Effects of Growth Medium and Light Sources on the Growth of Botryococcus Braunii
    Investigating the Effects of Growth Medium and Light Sources on the Growth of Botryococcus Braunii Ayse Busra Sengul, [email protected] Muhammad Mustafizur Rahman, [email protected] Eylem Asmatulu, [email protected] Department of Mechanical Engineering Wichita State University 1845 Fairmount St., Wichita, KS 67260, USA ABSTRACT emission can be reduced by developing renewable and sustainable energy sources which will also protect the In the present study, the effect of medium and light natural resources, such as water, soil and air. Liquid source on the growth of B. braunii was investigated for transportation fuels reason the one third of the fossil-fuel large-scale and economical production of biomass and carbon emissions footprint [1]. Biofuel can be a key hydrocarbons. Three types of media and light sources solution for all these challenges. Biodiesel is an alternative were used with incubation temperature of 23±2°C under fuel which can be produced from domestic renewable different light source with a 12h-light/12h-dark cycle to energy resources. It can also be used in diesel engines with observe different growth rates. The growth rate of B. small or no modification. Biodiesel is nontoxic and free of braunii was measured via ultraviolet visible (UV-Vis) sulfur, and can be blended at any level with petroleum spectrophotometry and biomass dry weight. The results of diesel to produce a biodiesel mixture [3]. this study showed the maximum growth rate was Algae are photosynthetic and heterotrophic organisms reached after approximately three weeks of incubation and has huge potential as a biofuel source. They have the and then was followed by the stationary phase.
    [Show full text]
  • Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
    J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B.
    [Show full text]
  • Categorical Versus Geometric Morphometric Approaches To
    [Palaeontology, 2020, pp. 1–16] CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERIZING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM GNATHOSTOMATA) by HUMBERTO G. FERRON 1,2* , JENNY M. GREENWOOD1, BRADLEY DELINE3,CARLOSMARTINEZ-PEREZ 1,2,HECTOR BOTELLA2, ROBERT S. SANSOM4,MARCELLORUTA5 and PHILIP C. J. DONOGHUE1,* 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected], [email protected], [email protected] 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia, Spain; [email protected], [email protected] 3Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA; [email protected] 4School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK; [email protected] 5School of Life Sciences, University of Lincoln, Riseholme Hall, Lincoln, LN2 2LG, UK; [email protected] *Corresponding authors Typescript received 2 October 2019; accepted in revised form 27 February 2020 Abstract: Morphological variation (disparity) is almost aspects of morphology. Phylomorphospaces reveal conver- invariably characterized by two non-mutually exclusive gence towards a generalized ‘horseshoe’-shaped cranial mor- approaches: (1) quantitatively, through geometric morpho- phology and two strong trends involving major groups of metrics;
    [Show full text]
  • K Urik, Pycnosteus Tuberculatus (Rohon), Ganosteus Stellatus Rohon and Psammosteus Bergi (Obr.) Are Now Presented in a Somewhat Modified Form
    EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KOIDE I(EEMIA • GEOLOOGIA. 1968, Nr. 3 H3BECTH51 AKAJlEMHH HAYK 3CTOHCKOH CCP. TOM XVII XI1MH5! * T'EOJ10ri15L 1968. N'o 0 D . OBRUCHEV, E. MARK-KURIK ON THE EVOLUTION OF THE PSAMMOSTEIDS (HETEROSTRACI) After our joint paper ( 1965) has been published, new materials of psammosteids have been collected in the Baltic area, and a number of new restorations have been made, and some of the older ones modified. The purpose of the present paper is to give a concise account of the evolution and ontogenetic development of this interesting group of fossil Agnatha, together with some data on their morphology. This study is based solely on the material from the Main Devonian Field (Baltic states, Leningrad, Pskov and adjacent regions), which is the chief area of deve­ iopment of the psammosteids in the Soviet Union, as well as in the world in general. In the Givetian and Frasnian of the Main Devonian Field the psam­ mosteids are represented by seven genera, comprising numerous species. Their fossil remains consist as a rule of isolated plates and scales. Only in very few cases same of the plates have been preserved in natural tonnection. Most frequently the branchial plates are met with, so that many species have been founded only on these plates. Lateral and ridge scales are rather common. Dorsal and ventral plates are twice as ·rare as the branchials. Other plates: rostrals, pineals, orbitals, postorbitals, cor­ nuals and the anterior plates of the ventral carapace, have been discovered only in a few occasions. Although the material of many forms is rather insufficient, attempts have been made to make restorations of a number of psammosteids (Fig.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • A New Middle Devonian (Givetian) Psammosteid (Vertebrata: Heterostraci) from Poland
    Annales Societatis Geologorum Poloniae (2020), vol. 90: 75 – 93 doi: https://doi.org/10.14241/asgp.2020.04 A NEW MIDDLE DEVONIAN (GIVETIAN) PSAMMOSTEID (VERTEBRATA: HETEROSTRACI) FROM POLAND Marek DEC Institute of Palaeobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland; e-mail: [email protected] Dec, M., 2020. A new Middle Devonian (Givetian) psammosteid (Vertebrata: Heterostraci) from Poland. Annales Societatis Geologorum Poloniae, 90: 75 – 93. Abstract: A new genus and species of psammosteid heterostracan, Psarkosteus mediocris gen. et sp. nov., is de- scribed from the Middle Devonian (Givetian) of the Skały Formation, the Holy Cross Mountains, Poland. The dor- sal plate of Psarkosteus is constricted in its anterior part and the postorbital plate is long and narrow. Both features, along with the morphology and variety of tubercles, distinguish it from other representatives of the group. Most distinctive are big, teardrop-shaped tubercles, each with a flat or slightly concave surface and with its tip directed posteriorly, and a crenulated base, located along the branchial plates. The lateral line system in Psarkosteus is similar to that of Drepanaspis gemuendenensis and confirms earlier reconstructions. Key words: Pteraspidomorphi, Heterostraci, Psammosteidae, Middle Devonian, Holy Cross Mountains. Manuscript received 19 February, 2020 accepted 1 June 2020 INTRODUCTION The fossil record of the Heterostraci is poor in Poland, 2017; Glinskiy, 2018). The main problem is concerned although fossils are known from Upper Silurian, Lower with their relationships within the Pteraspidiformes. The and Middle Devonian deposits. From a core sample of the Psammosteidae were supposed to be (1) a sister group to the Upper Silurian (Přidoli) succession in Mielnik a represen- pteraspids s.l., that is Protopteraspididae + Pteraspididae s.l.
    [Show full text]
  • Effect of Salinity on Growth of Green Alga Botryococcus Braunii and Its
    Bioresource Technology 98 (2007) 560–564 EVect of salinity on growth of green alga Botryococcus braunii and its constituents A. Ranga Rao a, C. Dayananda a, R. Sarada a,¤, T.R. Shamala b, G.A. Ravishankar a a Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570 020, India b Food Microbiology Department, Central Food Technological Research Institute, Mysore 570 020, India Abstract Growth of Botryococcus braunii (race ‘A’) and production of its constituents viz, hydrocarbon, carbohydrate, fatty acid, and carote- noids were inXuenced by diVerent levels of salinity. Under salinity at 34 mM and 85 mM, 1.7–2.25-fold increase in the relative propor- tion of palmitic acid and two fold increase in oleic acid were observed. A twofold increase in carotenoid content was noticed at 85 mM salinity with lutein (75% of total carotenoid) as the major carotenoid followed by -carotene. The increase in biomass yields and changes in other constituents indicated the inXuence of salinity and the organism’s adaptability to the tested levels of salinity (17 mM to 85 mM). 2006 Published by Elsevier Ltd. Keywords: Botryococcus braunii; Microalgae; Hydrocarbon; Biomass; Salinity; Carotenoids; Carbohydrates; Fatty acids 1. Introduction cracking (Hillen et al., 1982). B. braunii (Races A and B) strains are also known to produce exopolysaccharides Botryococcus braunii is a green colonial fresh water up to 250 g m¡3, whereas L race produce up to 1 kg m¡3 microalga and is recognized as one of the renewable (Banerjee et al., 2002). However, the amount of exopoly- resource for the production of liquid hydrocarbons.
    [Show full text]
  • THE CLASSIFICATION and EVOLUTION of the HETEROSTRACI Since 1858, When Huxley Demonstrated That in the Histological Struc
    ACTA PALAEONT OLOGICA POLONICA Vol. VII 1 9 6 2 N os. 1-2 L. BEVERLY TARLO THE CLASSIFICATION AND EVOLUTION OF THE HETEROSTRACI Abstract. - An outline classification is given of the Hetero straci, with diagnoses . of th e following orders and suborders: Astraspidiformes, Eriptychiiformes, Cya­ thaspidiformes (Cyathaspidida, Poraspidida, Ctenaspidida), Psammosteiformes (Tes­ seraspidida, Psarnmosteida) , Traquairaspidiformes, Pteraspidiformes (Pte ras pidida, Doryaspidida), Cardipeltiformes and Amphiaspidiformes (Amphiaspidida, Hiber­ naspidida, Eglonaspidida). It is show n that the various orders fall into four m ain evolutionary lineages ~ cyathaspid, psammosteid, pteraspid and amphiaspid, and these are traced from primitive te ssellated forms. A tentative phylogeny is pro­ posed and alternatives are discussed. INTRODUCTION Since 1858, when Huxley demonstrated that in the histological struc­ ture of their dermal bone Cephalaspis and Pteraspis were quite different from one another, it has been recognized that there were two distinct groups of ostracoderms for which Lankester (1868-70) proposed the names Osteostraci and Heterostraci respectively. Although these groups are generally considered to be related to on e another, Lankester belie­ ved that "the Heterostraci are at present associated with the Osteostraci because they are found in the same beds, because they have, like Cepha­ laspis, a large head shield, and because there is nothing else with which to associate them". In 1889, Cop e united these two groups in the Ostracodermi which, together with the modern cyclostomes, he placed in the Class Agnatha, and although this proposal was at first opposed by Traquair (1899) and Woodward (1891b), subsequent work has shown that it was correct as both the Osteostraci and the Heterostraci were agnathous.
    [Show full text]
  • Continuous Culture of Botryococcus Braunii for Hydrocarbons Production
    Continuous Culture of Botryococcus braunii For Hydrocarbons Production Simone Zenobi Submitted to the University of Exeter as a Thesis for the Degree of Master by Research (M. Res.) in Biosciences January 2013 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. ACKNOWLEDGMENTS I would like to first thank Prof. John Love for the opportunity to study at Exeter University and also for his patience, guidance and advice throughout the period of this MRes degree. Many thanks also to Shell Global Solution UK for funding my research project. In particular many thanks to Dr David Parker and Prof. Robert Lee for giving me the opportunity to perform my experimental works at Shell Technology Centre Thornton - Chester. My deepest gratitude to my colleague and friend Steve Brown for giving me training, advice, support , encouragement and a lot of help during all my time at Shell. A special thanks also to Joao Diogo Gouveia for the supplying of the microalgal culture every time I needed. I would like also to thank you all my colleagues at Biodomain department at Shell and in particular Louise Coppack for the initial training and several advices on my research project. i ABSTRACT Botryococcus braunii is a green, colonial microalga that can produce up to 75% of its dry weight as liquid hydrocarbons that can be converted easily in fuel.
    [Show full text]
  • On the Fundamental Difference Between Coal Rank and Coal Type
    International Journal of Coal Geology 118 (2013) 58–87 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Review article On the fundamental difference between coal rank and coal type Jennifer M.K. O'Keefe a,⁎, Achim Bechtel b,KimonChristanisc, Shifeng Dai d, William A. DiMichele e, Cortland F. Eble f,JoanS.Esterleg, Maria Mastalerz h,AnneL.Raymondi, Bruno V. Valentim j,NicolaJ.Wagnerk, Colin R. Ward l, James C. Hower m a Department of Earth and Space Sciences, Morehead State University, Morehead, KY 40351, USA b Department of Applied Geosciences and Geophysics, Montan Universität, Leoben, Austria c Department of Geology, University of Patras, 265.04 Rio-Patras, Greece d State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China e Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, USA f Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA g School of Earth Sciences, The University of Queensland, QLD 4072, Australia h Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA i Department of Geology and Geophysics, College Station, TX 77843, USA j Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto and Geology Centre of the University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal k School Chemical & Metallurgical Engineering, University of Witwatersrand, 2050, WITS, South Africa l School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia m University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA article info abstract Article history: This article addresses the fundamental difference between coal rank and coal type.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Insights Into Triterpene Metabolism in Model Monocotyledonous and Oilseed Plants Genetically Engineered with Genes from Botryococcus Braunii
    University of Kentucky UKnowledge Theses and Dissertations--Plant and Soil Sciences Plant and Soil Sciences 2016 Insights into Triterpene Metabolism in Model Monocotyledonous and Oilseed Plants Genetically Engineered with Genes from Botryococcus Braunii Chase F. Kempinski University of Kentucky, [email protected] Author ORCID Identifier: http://orcid.org/0000-0002-5250-1291 Digital Object Identifier: https://doi.org/10.13023/ETD.2016.418 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kempinski, Chase F., "Insights into Triterpene Metabolism in Model Monocotyledonous and Oilseed Plants Genetically Engineered with Genes from Botryococcus Braunii" (2016). Theses and Dissertations--Plant and Soil Sciences. 80. https://uknowledge.uky.edu/pss_etds/80 This Doctoral Dissertation is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant and Soil Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]