<<

THE STJBT1DAL BENTHIC MACROFAUNA OF CAPE COD BAY

by

Allan D. Michael Margaret A. Mills Joel S. O'Connor

R800656

Marine Biological^Xaboratory Woods Hole Massachusetts 02543

PUBLICATION: flfc,772-257-10-3-87-CR Second Printing Approved by the State Purchasing Agent FOREWORD

The large-scale marine benthic survey, comprising intensive quantitative sampling over an extended period of time, is rapidly passing into obscurity. As we move into an era of applied, rather

than basic research, studies which consume large amounts of manpower and material without producing data which are immediately applicable

to a particular problem are the first to fail to receive continued

funding. This is unfortunate, as often these are the programs which historically have provided the basic information against which present

environmental conditions may be compared. In many cases the limited

programs which are now being instituted to provide baseline environmental

data for potentially damaging projects are providing no baselines at

all, since the area may have already been degraded far beyond its orig- t inal condition. _ ,-__ .

Since we have every reason tolbelieve that the present fiscal.con-,

straints on basic research will continue indefinitely, it may well be

that the Biotic Census of Cape Cod Bay represents one of the last projects

of its kind to be completed. The present project was initiated in June

of 1964 under a contract from the Office of Naval Research, which contin-

ued to provide funding for nearly seven years, during which time the bulk

of the work was completed. The remainder of the study, including primarily

the completion of sample processing, data analysis and report preparation

was funded by the Massachusetts Division of Water Pollution Control and

the Environmental Protection Agency. Cape Cod Bay was chosen as the site of these studies since it provides a discrete, yet continuous working unit of the Gulf of Maine, an area of increasing economic importance both then and now. In addi- tion, the Bay provides a readily accessible source of fauna represen- tative of the boreal biogeographic province rather than the much more extensively studied Virginian province, which is generally considered to reach its northern limit at Cape Cod. At the inception of the study,

Cape Cod Bay was unique in representing a truly pristine marine environ^ ment in close proximity to a major metropolitan area.

In spite of the wealth of talent and resources in the nearby Woods

Hole area, only two previous general surveys have been conducted in the

Cape Cod Region. In 1871 Verrill and Smith undertook a now classic study of benthic populations in Vineyard Sound and adjoining waters, which es- tablished the basic faunal inventory for those areas. Some 35 years later t Sumner et al, conducted a similar but more intensive study of both plant - and populations in Vineyard Sound and Buzzards -Bay, which supplements the previous investigation. • The present study, due to both the lack of previous work north of the Cape and the unprecedented cooperation of numerous excellent systematists unquestionably represents the definitive faunal study of Cape Cod Bay.

Richard A. McGrath 14 August, 1978 ABSTRACT

The benthic infauna at Cape Cod Bay was sampled over a period of three years (1966-1969). One hundred stations were identified on a grid system, and each was sampled once. Four different types of sampling gear were employed: a Smith-Mclntyre grab, an epibenthic sled,_ a naturalist dredge and a clam dredge. The benthos retained after sieving through a 1 mm mesh was sorted and sent to 45 systematists.

More than 800 taxonomic groups were identified. Polychaetes, amphi- pods and bivalves were the dominant faunal components. The average grab sample contained 650 individuals of 37 species.

Significant variation in several community parameters was found in spatial, seasonal and annual analyses. The highest number of species and individuals were found in winter samples. Shallow areas (< 10 m depth) were characterized by sands of medium to coarse grades. These areas had the fewest species. "Annual temperature range may be as much o :^=i as 23 C. Depths of greater than^-30 m, which had the greatest numbers of species, are subjected to a limited temperature range and sediments are primarily silts and clays.

A substantial portion of the bay falls within the 15-30 m depth range.

Sediments are mixtures of silts-and sands. This environment showed the most seasonal variation with significantly more species and individuals in winter thanin summer. A well developed tHermocline exists during the summer months and intercepts the sea floor at depths of 15-25-jn.

111 The study was originally intended as an inventory, and the design serves that purpose best. Only a limited amount of quantitative analysis could be executed because of the considerable variation that occurs in time and space. The study provides a comprehensive list of the benthic infauna and some insight to the range of variation found in such environ- ments .

IV ACKNOWLEDGEMENTS

The authors would like to acknowledge the efforts of those that conducted the earlier work on this study. This includes Dr. David C.

Grant who was in charge of the study through August 1968 and Dr. David

K. Young who headed the program from then through December 1969. ~~A special vote of thanks is due to Mr. James P. Ostergard, the captain of the research vessel A.E. VEKRILL. His skill and hard work enabled the scientific party to accomplish the field" tasks in an effective manner.

There were many whose patient efforts in sorting the sample material were a necessary part in the completion of the laboratory analysis.

The list is too long to be included here but their efforts are sincerely appreciated. Two people whose efforts were~~~critical" to the project are

Dr. Melbourne Carriker and the late Mrs. Katharine D. Hobson. Dr. Carriker was the organizational and driving force in getting the project off the

ground and seeing it through tcTjthe completion of the laboratory analysis.

Mrs. Katharine Hobson in addition to the systematic work on polychaetes was an industrious worker and a key factor in the completion of the

laboratory phase.

We would also like to thank the participating systematists whose

cooperation enabled the taxonomic work to be completed with a high level

of quality.

v TABLE OF CONTENTS

Section Page

FOREWARD i

ABSTRACT iii

1. INTRODUCTION 1

2. METHODS 3

3. RESULTS 11

4. SUMMARY 101

REFERENCES 103

APPENDIX 106 LIST OF TABLES

Table Page

1. Selected sediment parameters for sediment samples from El stations 21

2. Numbers of species and individuals in various - station groups 45

3. Faunal parameters reported in two Cape Cod Bay Benthic Studies 47

4. Variation for three parameters in quadrate replicates. . 48

5. Comparison of dominant species in Cape Cod Bay in two studies 49

6. Species collected at Station 0620 El 52

7. Species collected at Station 1628 El 53

8. Species collected at Station 1930 El 54

9. Species collected at Station 2012 E5 55 t

10. Species collected at Station 2212 E2_± 56

11. Species collected at Station 2224 KS" 57

12. Species occurrence in four'types of":sampling gear. ... 59

13. Diversity values for El stations 69

14. Diversity values for station group categories 72

15. Diversity values obtained at the same sites in Cape Cod Bay 75.

16. Parameters for station groups 86

17. T tests for comparison of station group parameters ... 87

Vll LIST OF TABLES (continued)

Table Page

18. Summary of numbers of species and taxa found in four types of sampling gear 96

19. Species most frequently occurring in epibenthic sled. ... 98

20. Species oust frequently occurring in clam dredge 99

21. Species most frequently occurring in naturalist dredge. . . 100

Vlll LIST OF FIGURES

Figure Page

1. Cape Cod Bay sampling quadrats ...... 4

2. Temperature profiles in spring ...... 12

3. Temperature profiles in summer ...... 13

4. Temperature profiles in fall ...... 14

5. Temperature profiles in winter ...... 15

6. Predicted minimum bottom temperatures ...... 16

7. Predicted maximum bottom temperatures ...... 17

8. Sediment map prepared by Hough (1942) ...... 27

9. Sediment distribution based on median particle size. ... 28

10. Sediment distribution based on the mode of particle sizes. 31

11. Sediment map based on standard sediment classes (Shepard, 1954) ...... -; ...... 32

12. Major current patterns (re-drawn from Da^L, -1958) ...... 33

12a. Outline of Cape Cod and Kantucket ...... 39

13 through 32. Distribution of species ...... 63

33. Station groups from classification including all taxa. . . 79

34. Station groups from classification including polychaetes only ...... 80

35. Station groups from classification including amphipods and molluscs ...... 81

IX LIST OF FIGURES (continued)

Figure Page

36. Station groups from classification including molluscs only 82

37. Station groups from classification including amphipods (log 1Q transformation) 83

38. Dendrogram from cluster analysis 85

39. Separation of station groups I - V 89

40. Dominant factor map 92

41. Dominant factors - summer 93

42. Dominant factors - winter 94 SECTION I. INTRODUCTION

Study area

Cape Cod Bay is an open embayment approximately 41 km in dia- meter. The surface area covers 580 km (300 square miles) and depths average 30 m (Hough, 1942). Neap tidal amplitude is 4 m at Plymouth,

Massachusetts and 3 m at the entrace to Barnstable Harbour. The av- erage annual precipitation of-the area is about 40 inches and land drainage area is approximately 36% that of the bay. the soils are generally sandy permitting infiltration so that the resulting run off has an insignificant effect on the salinity of the bay as a whole.

The circulation of the bay has never been described accurately, but on the basis of Bigelow's study of the Gulf of Maine in 1928 and recent drift bottle experiments, some generalizations can be made. Cur- rents are on the average very weak, the strongest occurring around the tip of_the Cap_e nejir_~ProvincetowiK Major circulation is counterclockwise, and this is most clearly defined in the deeper part of the bay. In the shallower areas tidal currents dominate. The bay probably acts as a trap for any sediment load in the current coming from Massachusetts Bay.

The shape of the bay was determined by glacial deposition on an ero- sional surface of low relief. The Laurentide Ice Sheet which covered all of New England during the Wisconsin stage of the Pleistocene had three lobes in the area of what is now Cape Cod. Deposition along the margins of these lobes formed the original outline of Cape Cod (Strahler, 1966).

As the ice began to recede some 12,000 years ago, the Atlantic Ocean invaded Cape Cod Bay and Nantucket Sound, and the reworking of these deposits began.

The bottom configuration has been made more smooth through slight erosion of higher parts and deposition of material derived from erosion of shores and above water portions of the area. The shoal areas are pro- tected by coarser sediments and are more resistant to erosion. Greatest changes in bottom topography have taken place in the deeper central portion of the bay where accumulation of fine grained sediment has produced a gently

sloping floor (Trowbridge and Shephard, 1932; Hough, 1942).

Cape Cod Bay has not suffered heavy stress from the effects of man's activities. One of the reasons is that there are no major rivers dischar-

ging into the bay. Nevertheless, the rapidly increasing population of the t region will exert more influence on the quality of the marine biota. The benthic macrofaunaJaas^not been previously surveyed, and with the exception

of some sediment data by Hough (I94T3) , and a transect study of Young and

Rhoads (1971), little is known about physical variables on the biota. SECTION 2

METHODS

For purposes of sampling, Cape Cod Bay was divided into one square

mile quadrats (Fig. 1). By selecting every other quadrat in every other

column and shifting the row in successive columns, there were 100 quadrats

which contain stations deeper than 3 m. Intersections made by connecting

stations at the corners of all quadrats produced over 300 mile-square

grids formed by transects running longitudinally and latitudinally across

the Bay. The center of each quadrat was established by a combination of

compass bearings, Loran fixes, visual sights with sextant or telescopic

alidade and radar fixes on known landmarks. The greatest accuracy in

fixing sampling sites was possible by visual sightings but occasionally

overcast weather conditions permitted fixes to be made only by electronic

sensing aids. Corner stations of each quadrat were determined by marking

the center stations with a radar buoy and travelling a known course and

distance set by ship's radar. Data from log sheets indicate that a few

stations~were not taken exactly as"Indicated in" Figure 1. The

correct latitude and longitude is listed for each station in the appendix

(TABLE A-l). The depth was recorded at each station with a recording

fathometer. The center (Station El) and four corners (Stations E2, E3,

E4 and E5) of each complete quadrat were sampled quantitatively by a

Smith-Mclntyre grab.

Processing of the quantitative benthic samples took place immediately

on board the research vessel. The samples were washed by elutriation with > sea water and separated into two fractions on 1.0 and 0.5 mm mesh nylon ;i A Summer Samples \ • Spring Samples \ • Winter Samples Figure 1. Cape Cod Bay Sampling Quadrats !•+ Fall Samples screens. Each of the nylon screens was fastened to a stainless steel frame by removable clamps, thereby facilitating easy removal of the screen for processing the contained sample. The washed residue and entrapped organisms contained in each screen were placed for 5 to 10 minutes in a

0.15% solution of propylene phenoxytol in sea water (McKay and Hartzband,

1970). After the organisms were completely relaxed, they were picked from the screen and passed successively through three steps involving (1) a preservation with a 10% solution of formalin in sea water for 48 to 72 hours; (2) a rinse with tap water for several minutes; and (3) a transfer to 85% ethyl alcohol for final storage. The preserved samples were sorted under microscopes in the laboratory and the were identified at least to family level prior to their being sent to the participating sys- tematists. Although it was extremely time consuming, hand-sorting was found to be the only method for quantifiable removal of all organisms in good condition for identification.

Qualitative hauls were taken with three different benthic samplers from three of the corners toward the center of each quadrat, a distance

~of 0.7 miles. An epibenthic sled sampled the epifauna of sbft~~substrata at one corner, at another corner a modified commercial clam dredge took large infauna to a depth of about 18 cm. A naturalist dredge sampled

Surface, and slightly subsurface fauna at a third corner. The fraction of the samples retained on a 1.0 mm mesh screen was relaxed, preserved, and sorted in the manner described for the quantitative samples.

At the center of each quadrat, surface temperature and a profile of temperature versus depth were taken with a bathythermograph, and a meter net of 1 mm mesh was hauled vertically to sample macroplankton. Salinity samples were taken with a van Dorn bottle from the surface, thermocline, and just above the bottom. Sediment cores for analysis of organic carbon and particle size were taken from each Smith-Mclntyre sample and frozen until analyzed.

Only those stations were sampled where the R/V A. E. VERRILL could navigate safely and where the standard sampling gear could be used. Samples were taken at every station deeper than 3 m which was not in a restricted area nor prohibited by navigational hazards. The Biotic Census was thereby defined as a strictly subtidal-study of biota inhabiting depths of no less than 3 m in Cape Cod Bay. Because the same sampling gear was used within each quadrat, the data between and within quadrats are directly comparable.

Specimens which had been sorted into families were sent to 46

systematists for identification. In most cases a representative collection was placed in the Gray Museum at the Marine Biological Laboratory (MBL) or some

other institution such as the U.S. National Museum. A few groups were not worked up. These included Protozoa, Foraminifera, Nematoda, Cladocera,

Euphausiacea, .Copepoda, Brachiopoda, Hemichordata,. and the polychaete

families Chaetopteridae and Hesionidae. With Jzheexception of the first

three groups which are not typically identified in macrofaunal surveys

these taxa represent only a minor portion of the total benthic fauna.

It is probably safe to say that more than 95 per cent of the macrofaunal

material collected was identified.

Data, _Analysis

Results for species identification were entered on coding sheets and sent to Brookhaven National Laboratory where they were punched and

entered on tape. A printout list was checked against original data sheets

at Woods Hole. A master data file (a magnetic tape) containing the biological data from 707 different stations in Cape Cod Bay was

created. The tape contained about 23,000 logical records, with the

following format:

Character Item

1-4 Station code

5 Corner

6 Gear code

7-17 Taxon code

18 - 23 Frequency (the "frequencies" of species from "qualitative" gear are denoted by a blank character (=species is present) or a 1 (=species is abundant).

The four types of benthic sampling gear used were coded as follows:

1 = Smith-Mclntyre grab 3 = Epibenthic sled

2 = Clam dredge 4 = Naturalist dredge / Eleven-digit codes "Taxon codes'"11 were assigned to each species identified

_hy SEP. Each^ species had a unique code. The "Frequency" is simply the

number of the species found in the sample which was uniquely identified

by Station code, Corner, and Gear code. The SEPDATA tape was sorted first

by Taxon code, then by Gear code, then by Corner, and last (high order)

sorted by Station code.

The SEPCHEM file comprised all the physical/chemical data, location

coordinates and date for each station sampled. SEPCHEM is also on tape,

and has logical records of the following form:

Physical/Chemical Data (SEPCHEM)

1-4 station number (14) 5 corner (1-9) 6-10 latitude, to tenths of minutes (12, F3.1) 11-15 longitude, to tenths of minutes (12, F3.1) 16-21 date (yr., mo., day) (16) 22-24 blank 23 gear code (1-4) (II) 25-28 . mean grain size (F4.2) 29-32 skewness of grain size (F4.2) 33-36 kurtosis of grain size (F4.2) 37-39 standard deviation of grain size (F3.2) 40-43 mode of grain size (F4.2) 44-47 median grain size (F4.2) 48-50 depth, to nearest tenth meter (F3.1) 51-54 temperature, to tenths of °C (F4.1) 55-59 salinity, to thousands of ppt (F5.3) 60-61 blank 62 sediment class (1 - sand, 2 - clayey sand, 3 - silty sand, 4 - sand-silt-clay, 5 - sandy clay, 6 - sandy silt, 7 - clayey silt, 8 - over 10% gravel, 9 - silt) (ID 63 blank 64-67 percent silt (F4.1) 68-71 percent clay (F4.1) 72-74 percent sand (F3.1) 75-77 -percent gravel (F3.1) 78-80 percent silt & clay (F3.1) 81-84 annual temperature range ( C) (F4.1) 85-88 minimum annual temperature ( C) (F4.1) 89-92 maximum annual temperature ( C) (F4.1)

The pivotal-program, upon"which all others depend for input, was

SEPEDIT; a program which edited the input data stream and maintained the master data file (SEPDATA). SEPEDIT "read" all biological data from cards, conducted a" number of proofing functions (e.g., detects invalid taxon codes, station codes and some incorrect frequencies) and updated an old input SEPDATA tape by writing a new SEPDATA file. Updating included the addition of new entries, modification of old entries, and deletions. A sub-routine of SEPEDIT was used to detect duplicate records which were written on the SEPDATA tape; these records were then reviewed manually to verify their validity. In addition to the updated SEPDATA

tape, SEPEDIT output included a list of all input, editing errors, and a list of the updated master file. A SEPSTAT program provided a conveniently formatted list of all species and their sample frequencies at each station. This list is useful as a reference to visually determine or verify almost any information about data taken during the project. A copy is available for reference at the Grey Museum of the MBL.

It has been useful for several purposes to have lists of species ordered by frequency of average abundance in samples with each type of gear. A program called GEARS provided these list's, examples of which are seen in the text. This program also lists summary statistics, for each gear used, of the number of species found, average number of species per station, the average number of individuals per station within any specified higher taxonomic categories specified, etc.

Diversity is a measure of community structure comparing the species numbers and species density. Two different indices were calculated on the results for El samples. The first, Bri'llouin's formula, considers the quantitajtiye sample as an entire population. The diversity value derived is a true diversity value (H), for those species and their densities

Brillouin's formula:

log N ! N ! N ! . . . N !

where

N = total individuals s = number of species N_ = total individuals for the i species

and

I N. =N The second was the Shannon-Weiner method. This method assumes that the population being studied is too large to completely quantify. From this population random samples must be taken and analyzed. The sample taken is considered random. This formula estimates an average diversity (H1) from the sample.

Shannon-Weiner formula: H' =

where

p - proportion of i species in the population

The evenness value is calculated using the formula

J1 = H1 log

w^here

s = number of species.

Hma xi s the highesor t possible theoretical diversitjy value for the given data. It is calculated using the formula

Hu = - ^log - = log max s s s

H . is the lowest possible diversity value. This is a mm J theoretical value, when all the species but one is expressed by one

individual, and all the other individuals in the sample are expressed

as the other species. It is calculated from the following formula:

1_i_ .- Nii !« H - log N (fNa -s = T1)\ !t 10 SECTION 3

RESULTS

ENVIRONMENTAL

Temperature

Water temperature within the bay varies considerably with depth and time of year. Maximum and minimum recorded bottom water

temperatures were 23.5 C (from 4 m depth) and -l.OC (30.5 m).

Bottom temperatures at different depths varied through the

following ranges:

Depth No. of samples Maximum Minimum Range

0 - 10m 21 23.5 1.0 22.5

10 - 20m 16 15.0 0.4 14.6

20 - 30m 21 13.1 0.7 12.4

30 - 40m 15 9.5 -1.0 9.5

40 - 50m 12 6,2 0.4 5.8

— In each year of the study a warming trend in the surface wate

and first indications of a thermocline were noted in the latter part

of April (Fig 2a). By mid-May there is a well developed thermocline

situated in the water column between 15 and 30 m (Fig 2b). The thermo-

cline rises with time and the temperature increases. By late summer

the thermocline is situated between 5 and 15 m and includes a 10 C

temperature range (Figs 3a, 3b).

By the latter half of October the thermocline represents only

a 5 C temperature drop (Fig 4a) and by November has disappeared (Fig 4b)

11 1028 APRIL 2|, 1969

TEMPERATURE (C°) O 2 4 6 8 10 2a. 0 I _! J I __!.__ I I I L 1

10-1

20

30 CL UJ Q 40

50

1126 MAY 12, 1969

0 Z 4 6 8 10 2b. t I » I i I I r

Figure 2. Temperature profiles in Spring 12 0816 JULY 25, 1967

TEMPERATURE (C°) 0 6 8 10 12 14 16 18 20 22 3a. 0 i i

10

.§ 20 i- Q_ 30 LlJ Q 40

50-

1016 AUGUST 19, 1968

8 10 12 14 16 18 20 22

Figure 3. Temperature profiles in Summer 13 0714 OCTOBER 16, 1969

TEMPERATURE (C°) 0 24 6 8 10 12 14 0 ) l' J I I ._! __! _L __1 J J I J J I

10

20

H 30 tL UJ Q 40

50-

1424 NOVEMBER 19, 1968

0 24 6 8 10 12 14 4b. 0

10-

20-

30-

40-

50 -j

Figure A. Temperature profiles in Fall 14 0918 JANUARY 23, 1968

TEMPERATURE (C°) -292 5a. 0

IO-I

20

X 30 I- o. UJ o 40

50

0718 JANUARY 6fl 1969

0246 5b. A t I 0

IO -

20-

30-

40-

50-

Figure 5. Temperature profiles in Winter 15 '—' '—II—' '—' I

Nautical Miles

Figure 6. Predicted minimum bottom temperatures \ Predicted maximum bottom temperatures Positive gradients are often found at 15 - 25 m depths in mid- winter when bottom water may be 1 to 2.5 C warmer than surface water (Figures 5a, 5b).

A computer program was used to predict maximum and minimum temperatures and temperature ranges at each station using the results of this survey and depth contours. A table listing all these results is included in the Appendix. Figures 6 and 7 indicate the predicted distribution of isotherms.

Other data at these stations indicate that the positive temperature gradients are maintained by salinity gradients. A similar phenomenon was recorded for the Gulf of Maine as a whole by Bigelow (1928), (Woods

Hole Oceanographic Institution; unpublished records) and Young and

Rhoads (1971) indicate that there are small but significant differences in salinity botfh seasonally and with depth.

While 'small changes in salinity can have an effect on the biology of a species, it is unlikely that the differences encountereil~in this

survey can be correlated with the species distribution information.

We have therefore assumed for the purposes of subsequent analysis that

salinity was not a significant factor.

Sediments

A survey of the sediments of Cape Cod Bay was reported by J.L. Hough

(1942). One hundred and fifty-six samples were collected in a series

of transects across Cape Cod Bay during 1935-36.

It might seem redundant to conduct a second survey over such a

large area but the purposes of this study include an examination of 18 animal-sediment relationships and it was therefore necessary to analyze samples collected with the fauna. The present section reports the results of the analyses and compares these with those of Hough. Animal-sediment relationships are discussed later.

The laboratory methods for particle size analysis were essentially the same for the two surveys, both based on Krumbein and Pettijohn

(1938) sieving and pipetting procedures.

Statistical summation of size curves has in the past been performed by moment measures (Krumbein and Pettijohn, 1938, pp. 239-253) and more commonly with graphic measures which approximate moment measures.

Before the advent of the electronic computer, graphic measures as in

Hough's study were used because of the tediousness of the calculation for moment measures. For most curves, the values obtained by these measures are similar to those computed by moment measures. However, t they analyze only the central 90% of the frequency distribution at most and ignore the extreme ends of the distribution - the parts most important in an accurate estimate of skewness and kurtosis.

In the present study a program developed by Schlee and Webster

(1965) for use on the Sigma - 7 computer at the Woods Hole Oceanographic

Institution was used.

For each sediment sample, the frequency percent with its corresponding phi size is read into the computer from punched cards.

Data points were interpolated at 0.1 phi intervals.

The sediment class for the given sample is computed, according to Sheppard (1954) and printed out by the computer.

19 The modes of the sample are found by examining the first

differences of the frequency per cent. When the first difference,

A. = F, - F changes sign the center of the phi class

corresponding to F. , is taken as a mode, provided the frequency

per cent for that class, F. , is greater than 5 times the class i—J. interval, Aro, This latter provision sets an arbitrary limit to

eliminate minor modes within the distribution.

The median of the sample is found by calculating cumulative

frequency per cent, and then interpolating linearly to find the (p

value corresponding to a cumulative frequency per cent of 50.

A list of selected parameters computed for sediment samples is

included in Table 1.

The Bay is characterized by a major central area of fine

sediments (Fig 8, median diameter > 4 0. In the shallower areas (20 m) ,

sediments are coarser and reflect tidal current effects. Two samples

taken near Provincetown (stations 0616-E1 and 0714-E4) have high - .=

percentages of gravel (13.5 and 40.3 respectively) indicative of

relatively strong local currents around the tip of the Cape. The

eastern and southeastern regions are almost entirely sands of medium

and coarse grades. To the west and southwest mixing of the basic

sediment types occurs and the sediments here are transitional and

poorly sorted.

In summarizing interrelations between sediment and environmental

factors Hough (1942) reported no correlation between the median diameter

of a sample and the depth of water from which it was collected. In

this study a linear regression was run on the results with the median 20 Table 1. Selected parameters computed for sediment samples: Mode, median,

mean and standard deviation are expressed in 0 units.

Sediment class according to Shephard (1954) - no class indicated

where there is more than 10% gravel in the sample.

Figure bracketed next to mode indicates the percent of the sample

occurring at that mode.

Additional parameters for these samples listed in Table A2 of s . , appendix.

21 Table 1.

SAMPLE Sediment Class Sand -Clay Mode Med. Mean S.D.

0518E1 Silty sand 50 .30 11 .50 3.6(40.1) 4.02 ;4.78 2.33

0612E1 Sand 96 .20 1.20 0.4(59.1) 0.20 ;0.32 1.40

0616E1 86 .50 0 0.5(62.2) 0.27 ;0.01 1.17

0620E1 Sand silt clay 26 .40 20 .30 4.30(33 .0) 4.72 ;5.80 2.67

0718E1 Silty sand 52 .94 13 .20 3.5(35.1) 3.95 ;4.88 2.49

0722E1 Silt 9.96 11 .59 4.6(43.4) 4.95;5.74 2.45

0812E1 Clayey silt 10 .50 25 .14 5.7(22.2) 6.15 ;7.13 3.38

0816E1 Silty sand 54 .77 14 .10 3.3(30.0) 3.83 ;4.78 2.52

0820E1 Clayey silt 5.63 24 .95 4.6(28.4) . 5.97 ;6.70 2.57

0824E1 Sandy silt 30 .22 15 .18 4.2(31.8) 4.63 ;5.44 2.38

0910E1 Sand 99 .99 0 1.5(70.5) 1.41 ;1.39 0.61

0914E1 Clayey silt 10 .15 28 .90 4.5(29.7) 5.95 ;6.69 2.27

0918E1 Clayey silt 7.28 26 .22 4.5(34.3) 5.65 ;6.54 2.54

0922E1 Clayey silt "^ 4.83 26 .47 4.5(34.4) 5.95 ;6.69 2.98

0926E1 Silty sand "" ^46 .18 15 .58 3.6(37.9)' "4.17;"5 . 24 2.76

1012E1 Silty sand 67 .80 11 .04 0.8(27.5) 1.93 ;3.23 3.08

1016E1 Clayey silt 6.62 24 .99 4.6(24.8) 6.20 ;6.25 2.68

1020E1 Clayey silt 3.01 21 .98 4.9(23.1) 6.15 ;6.10 2.28

1024E1 Sandy silt 29 .49 19 .14 3.8(28.9) 4.81 ;5.76 2.54

1028E1 Sand 75 .83 8.81 1.4(36.4) 1.66 ;2.70 2.86

1110E1 Sand 99 .94 0.00 0.6(65.2) 0.73 ;0.84 0.70

1114E1 Clayey silt 9.32 21 .91 4.6(31.9) 5.41 ;6.43 2.73

1118E1 Clayey silt 6.54 26 .95 4.7(20.8) 6.33 ;6.90 2.58

1122E1 Clayey silt 10 .88 23 .98 4.5(27.6] 5.79 ;6.42 2.42

1126E1 Silty sand 43 .50 19 .53 3.5(30.0) 4.42 ;5.44 2.77 22 Table 1 cont'd.

SAMPLE Sediment Class % Sand % Clay Mode Med. Mean S.D.

1130E1 Sand 88.07 4.86 3.3(50.7) 3.17;3.53 1.70

1212E1 Sand 92.76 1.71 0.3(44.5) 0.25;0.54 1.76

1216E1 Clayey silt 6.21 22.17 4.5(36.5) 5.46;6.49 2.61

1220E1 Sand 78.94 3.77 1.5(39.6) 1.41;1.65 2.54

1224E1 Sandy silt 27.65 18.10 4.2(34.3) 4.63;5.63 2.53

1228E1 Silty sand 61.24 14.98 2.6(29.8) '3.38;4.47 2.95

1310E1 Sand 99.81 0 1.3(54:6) 1.11;1.10 0.70

1314E1 Clayey silt 12.34 23.73 4.5(26.3) 5.81;6.50 2.66

1318E1 Clayey silt 7.55 18,69 4.6(29.5) 5.72;6.31 2.32

1322E1 Clayey silt 12.04 19.55 4.5(32.8) 5.31;6.22 2.58

1326E1 Silty sand 74.80 8.17 3.5(73.0) 3.63;4.27 1.89

1412E1 71.51 0 0.5(50.6) 0.57;0.55 0.91

1416E1 Sand silt clay 25.13 22.77 3.7(23.7) 5.50;6.18 2.66

1420E1 Clayey silt 17.66_ 23.41 4.4(23.5) 5.61;6.32 2.57

1424E1 Sandy silt"" 26~.~5~6^ 13.94 4.3(31.8) 4.73;5.47 2.23

1428E1 Silty sand 64.05 11.80 3.5(42.1) 3.65;4.50 2.46

1510E1 Sand 99.62 0 1.5(73.9) 1.37;1.32 0.59

1514E1 87.53 1.16 0.5(59.8) 0.34; 0.14 1.45

1518E1 Sand 78.31 9.59 2.8(43.4) 3.16;3.99 2.39

1522E1 Sand silt clay 21.11 20.11 4.3(22.9) 5.42;6.11 2.56

1526E1 Silty sand 57.14 14.41 3.5(54.9) 3.88;5.03 2.56

1608E1 Sand 94.97 1.38 1.3(41.0) 1.05;1.13 1.52

1612E1 Sand 99.92 0 0.5(76.6) 0.48;0,50 0.61

1616E1 Silty sand 49.33 15.20 3.5(44.4) 4.09;5.21 2.62

1620E1 Silty sand 43.16 17.50 3.5[28.6) 4.40;5.35 2.75 23 Table 1 cont'd.

SAMPLE Sediment Class % Sand % Clay Mode Med. Mean S.D.

1624E1 Silty sand 60.37 14.03 2.6(34.0) 3.51;4.52 2.64

1628E1 Sand 76.92 7.68 3.5(66.9) 3.59;4.03 2.05

1710E1 Sand 97.53 0 0.8(50.0) 0.92;0.93 0.81

1714E1 86.33 0 0.4(49,7) 0.25;0.23 0.81

1718E1 Silty sand 50.72 16.36 3.5(34.6) 4.04;5.07 2.59

1722E1 . Silty sand 60.74 10.16 3.5(55.2) 3.82;4.63 2.04

1726E1 Sandy silt 30.38 17.48 3.8(23.0) 4.96;5.59 2.56

1808E1 Sand 98.06 0 1.6(47.4) 1.72;1.71 0.88

1812E1 Sand 98.99 0 0.7(57.5) 0.87;0.96 0.72

1816E1 Sand 95.14 1.16 0.3(46.1) 0.26;0.49 1.53

1820E1 Silty sand 65.26 10.94 3.4(35.9) 3.55;4.36 2.48

1824E1 Silty sand 51.19 15.30 3.5(31.2) 4.00;4.97 2.58

18,28E1 Silty sand 46.19 6.24 3.5(35.1) 4.22;5.20 2.54

1910E1 78.84 0 0.4(36.9) -0.03;0.19 1.33 — ac 1914E1 Sand _ 9¥S9 0 0.5(79.2) --.0:43;0.37 ". 0.93

1918E1 Sand ~8d7i6 8.85 2.7(45.6) 3.09;3.81 2.17

1922E1 Silty sand 61.26 11.50 3.5(43.9) 3.75;4.67 2.42

1926E1 Sandy silt 38.08 14.68 3.7(36.6) 4.41;5.30 2.35

1930E1 Sand 98.27 0 0.8(51.1) 0.97;1.05 0.81

2008E1 Sand 98.72 0 0.6(46.8) 0.92;1.12 1.04

2012E1 Sand 98.47 0 1.6(61.8) 1.78;1.87 0.69

2016E1 Sand 95.94 2.33 2.5(79.0) 2. 53; 2. 74 1.31

2020E1 Sandy silt 23.70 19.61 4.2(27.7) 4.99;5.94 2.56

2024E1 Silty sand 69.65 12.18 3.4(29.2) 3.29;4.01 2.80

2028E1 Silty sand 60.51 11.10 3.5(54.8) 3.83;4.83 2.33 24 Table 1 cont'd.

SAMPLE Sediment Class % Sand % Clay Mode Med. Mean S.D.

2110E1 Sand 95.76 0 1.2(34.4) 0.61;0.61 1.04

2114E1 Sand 94.02 0 1.8(44.3) 1/88;1.94' - i.oo

2118E1 Sand 78.95 8.90 3.0(29.8) 2.93;3.35 2.63

2122E1 Silty sand 71.43 10.04 3.4(43.8) 3.49;4.26 2.35

2126E1 Sand 81.75 4.76 0.6(35.9) 1.01;1.86 2.63

2212E1 Sand 98.40 0 1.9(50.6) 1.98;1.99 0.77

2216E1 Sand 94.33 0 3.4(46.5) * 2.99;2.76 1.04

2220E1 Sand 93.80 3.07 2.5(56.4) -2.44;2.66" -1.63

2224E1 Sand 78.97 7.94 2.1(29.4) 2.72;3.34 2.31

2314E1 Sand 99.30 0 2.5(76.7) 2.50;2.45 0.71

2318E1 Sand 93.39 0 0.5(59,4) 0.45;0.45 0.96

2322E1 Silty sand 62.91 11.48 3,4(36.6) 3.63;4.50 "~ 2.57

2326E1 Sand 97.77 1.51 2.5(8015) 2. 57; 2. 74 1.10

2416E1 Sand 99.96'TI! 0 1,5(86.0) 1.53;1.57 0.48

2420E1 Sand J^T 99.93|| 0 2.5(68.1) 2.3Q;2.2i;; 0.68

25 diameter as the dependent variable, depth the independent variable and the regression line was found to be significant at the 0.01 level. Sediments get progressively finer as depth increases.

Hough found no direct correlation between depth and the . constants of sorting and skewness in his set of samples as a whole although he indicated that a correlation did exist between these" factors in part of the samples. His analyses included beach samples which might have obscured the obvious association as demonstrated in these results. A linear regression calculated for these samples was significant at the 0.001 level when sorting was considered dependent on depth. Sediments are well sorted in shallow areas, more poorly sorted as depth increases. No significant relationship between depth and skewness was found in our data.

Hough prepared a map of sediment distribution in Cape Cod Bay in which he classified sediments into three types:

1. gravel and sand (median diameter 0.5 mm =<1 0

- -2^ sands of medium and fine grade (median diameter 0.500 to '—^ _ - --^ -0.061 mm = 1 - 4 0 - . . - - . .7. .

3. silts and clays (median diameter 0.061 mm =

For comparative purposes, a map was prepared on the basis of the present study using Hough's classification. The respective maps comprise Figs 8 and 9. It should be noted that Hough determined the median diameter visually after plotting the results of each analysis on graph paper.

While the overall distribution pattern for sediment types is similar in the maps, two features are notable. Our results indicate

26 ro

i-ujz£ Figure 8. Sediment map prepared by Hough (1962) Median diameter

= 1-40

Figure 9. Sediment distribution based on median particle size that a larger area of the bay as a whole consists of silt and clay sediments. It is highly unlikely that such a change could occur in an area this size in 30 years and most of the apparent difference is probably due to discrepancies in the analytical methods and locality of stations.

The most obvious and possibly real change is the extension of fine sediments extending down from the western side of the central area towards the mouth of the canal. The major circulation of the bay is counter-clockwise and the opening of the canal has had a marked affect on local tidal currents. The canal is 12 km long and the bottom width

is 148 m and depth at low water is 13 m. Current velocities reach a maximum of 5.3 knots and it appears that net flow is in a westerly direction (discussed later). The volume of water moving through this region due to the canal is much greater than that which previously occurred and certain sediment changes have taken place. High velocity currents near the canal mouth have resultedTjtn coarse well-sorted sediments but it is also likely that the change in circulation pattern

introducing a net flow through the canal to the west has brought some

of the fine sediments down from the central area towards the mouth

of the canal.

Hough's survey, conducted when the canal had been open for

18 years, shows a few patches of fine sediment down near the canal

mouth. A further 30 years elapsed before the recent samples were

collected and it is possible that such a change could have occurred.

Several samples were taken in this area in both surveys.

29 The greater area of fine sediments in the Bay is more convincingly explained by discrepancies in methods and locality of stations but the changes are in accord with those expected in geologic time. Cape

Cod Bay acts as a trap for sediment coming in the current from

Massachusetts Bay. The major current (see Fig 12) passes in an arc around the tip of the Cape and the circulation within the Cape Cod Bay is a residual offshoot of this major current, but with reduced velocity.

As this current loses velocity the fine particles transported by the stronger main currents to this area are sedimented out. This results

in a gradual increase in the silt content of the bay as a whole and because of the dominance of tidal currents in shallow regions the material is deposited only in the central area. Sediment maps based on

the mode and Sheppard's sediment classes are Figures 10 and 11.

Salinity i Salinities of the Bay are essentially marine at all depths and

locations in this^study. There is very little run-off from the

surrounding land and considerable exchange with open ocean water. Mean

bottom salinity for 95 samples of 31.816 /oo is slightly higher than

the mean for surface values (31.624%^ but the difference is not

statistically significant.

Maximum bottom salinity was 32.991%,taken at station 0722 in

winter. Minimum bottom salinity of 30.160 /was recorded from

station 1612 (5.8 m depth) in May.

The lowest surface reading, also from station 1612.was 30.326 °/oo

The maximum surface value of 32.528 ^occurred at station 0812.

30 • > 40 o 1-40 < 40

Nautical Miles

Figure 10. Sediment distribution based , on the mode of particle sizes • Sill-Clay a Sand-Silt • Sand i Gravel

Sediment map based on standard sediment classes (Sheppard, 1954) -

Figure 12. Major current patterns (redrawn from Day, 1958)

33 The mean values for stations taken between May and October

(summer) are slightly lower than those recorded between November and April (winter) but the difference is not significant.

Mean bottom salinity, May - October (53 stations) = 31.568 lot>

Mean bottom salinity, November - April (42 stations) = 32.129

Mean surface salinity, May - October (53 stations) = 31.317%e>

Mean surface salinity, November - April (42 stations) = 32.015

All combinations of summer, winter, deep and shallow stations were tested and no significant differences were found.

The 95 samples were collected at irregular intervals over a period of 3 years. The sampling was not intensive enough to monitor changes or describe the salinity structure at any one point in time.

The results do give an estimate of the range of values encountered within the survey area,

Organic Carbon ' ~

Some of the samples collected. in the early stages of the project had dried out. Others remained wet and those collected in the later period of sampling were kept frozen. There would be inconsistency in results from analyses of these samples due to bacterial action. Thirty of the dried samples selected at random were analyzed according to the

Walkley and Black method with modifications by Morgans (1956) . The re- sults are not reported since Young and Rhoads (1971) have reported anal- yses on frozen samples (gasometric analysis) in a transect study conducted in Cape Cod Bay. Their results show a direct correlation between total

34 carbon content and increasing depth, percent clay and decreasing par- ticle size. Values ranged from 0.22% at a shallow station (2318) to

2.55% at 0918 (42 m). The results of the Walkley and Black analyses showed the same relationships but the values were higher and more vari- able.

Summary

Cape Cod Bay is dominated by a central area of fine sediments.

Shallower areas to the east and southeast are almost exclusively sands and gravels. The southwestern and western regions consist of poorly sorted mixed sediments including sands, silts and clays. There are well defined relationships between the major sediment factors and depth. With increasing depth sediment particle size decreases, the organic content in- creases, and sediments are more poorly sorted. * Sediment distribution maps prepared by Hough (1942) and those of this work show the same major patterns. With the possible exception of an area towards the canal, discrepancies are accountable by the variance in analytical methods and locality of stations.

Environmental Influences

The Canal

Cape Cod Canal joins Cape Cod Bay with the waters of Buzzards Bay.

It has a length of 12 km, a width of 142 m on the bottom, and averages 14

_ 1 meter depth, according to the tide. This canal was suggested for com- mercial use some 300 years ago. The project, originally a colonial one,

35 became a national one and was finally carried out by private capital.

It has been in successful operation since the suinmer of 1914, and is now used by commercial and naval vessels.

The canal has been widened and deepened since 1918, and tidal movements (originally described by Parsons, 1918) were redescribed by

Wilson (1958). High tide in Buzzards Bay occurs approximately three hours earlier than it does in Cape Cod Bay, and the mean tidal ranges at the east and west canal entrances are 2.8 and 1.2 m, respectively.

The water at one end alternately rises above and falls below the level at the other end, thus creating a reversing current every six hours - the west-bound current being the strongest. Average maximum velocities of the flooding or east-bound tide range between 4.5 knots at the west entrance to 2.6 knots at the east end; average maximum velocities of the east-bound tide range between 4.0 knots at the west end and 2.4 knots at 1 the.east end (Tidal Current Tables, United States Geodetic Survey, 1966).

Slack water periods are very brief and do not coincide with high and low tide.

Anraku (1964) defined a mass of "canal" water which flowed as far as the easterly canal entrance on the east-bound tide, and for some dis- tance out into Buzzards Bay with the west-bound tide. His drift bottle investigations indicated a net movement of water through the canal in a westerly direction. Because of tidal mixing, no significant thermal strat- ification has been observed in the canal.

36 In summer months the temperature difference between the two entrances of the canal can reach 20 F, and Fairbanks, e_t al. (1968) used this to follow water mass movement. Approximately one hour after high slack tide, colder Cape Cod Bay water enters the canal from the east and temperature drops abruptly. About 2 1/2 hours later, cold water reaches the west end of the canal and continues to flow into

Buzzards Bay for another 2.1/2_hours, at which time low slack water occurs.

Low temperatures persist at the west entrance for abput one hour following

low tide and then gradually increase at the rate of 4-5 F per hour for

three hours and 1-2 F for two hours. Three hours after the onset of in-

creasing temperatures at the west end, warmer water reaches the east end

and temperatures increase at the rate of 4-5 F per hour for three hours,

or until high slack tide.

On the basis of salinity and temperature records, Fairbanks, et al. t concluded that water entering the canal from Buzzards Bay initially is

composed of Cape Cod Bay water, Buzzards Bay water and estuarine water

that have mixed in the upper reaches of Buzzards Bay.

Conversely, Cape Cod Bay water enters the eastern entrance of the

canal in "pure" form. The Buzzards Bay water that flows out the east

end of the canal during the last three hours of the east-bound tide does

not return.

The significance of the water movement in the canal is that although

there is a net movement of water in the direction of Buzzards Bay, any

species found in either bay near the canal could easily be transported

through and become established on the other side.

37 Seasonal changes in the fauna have been recorded by Anraku (1964) and Fairbanks, et al. (1968). Anraku found that Pseudocalanus minutus, which is present in Cape Cod Bay year round, decreased in numbers as summer approached in Buzzards Bay. When the temperature rose above 20 C in Buzzards Bay, it vanished almost completely, not to reappear until the water cooled to below 20 C. In contrast, Acartia tonsa, which has warm- water affinities, was restricted to Buzzards Bay when the temperature was 15-16°C, but less than 13 C in Cape Cod Bay. A few individuals were

found in Cape Cod Bay when the temperature in the upper layer rose to

16-18°C.

Circulation patterns

Coastal surface water circulation was first studied by Bigelow

(1927) and further information has since been contributed by Day (1958)

and Bumpus and Lauzier (1965). Figure 12a shows the basic circulation pat-

terns determined from drift bottle studies by Day and Bumpus and Lauzier.

The Gulf of Maine eddy develops in spring each year and at its maximum

is a single large cyclonic gyre encompassing the whole of the Gulf. There

is an indraught from the Scotian Shelf and Brown's Bank. By autumn and

winter the southern side of the eddy breaks down into a drift across

Georges Bank.

Day noted that the prevailing circulation in any season may be strongly

modified by winds. Offshore winds from the northwest have a pronounced

effect on the Georges Bank region, tending to destroy the eddy. Northeast

winds speed up the north segment of the Gulf eddy and increase the flow

38 Nantucket' Sound •<&•

Figure 12a. Outline of Cape Cod and the Nantucket Shoals region showing the locality of the cold water mass.

The thin solid line over the shoals in- dicates the outline of the cold water area in this region (57.2-60.8°F.) accor- ding to Bigelow (1927).

The thin broken line represents another possible outline according to Parr (1933),

Redrawn from Parr (1933).

39 out South Channel. Winds from southwest give a strong onshore component to the waters south of Cape Cod, and accentuate the northward flow from

Brown's Bank into the Bay of Fundy. These wind effects are sufficient to account for the slight differences reported for similar seasons by Bigelow,

Day and Bumpus and Lauzier. The summer circulation is the most conserva- tive, with small input and output to the system. Winter circulation is the same basic pattern but with greater input and output. Both the Gulf of Maine and Georges Bank eddies are not so clearly defined, although

still stable enough to maintain characteristic plankton populations. Cur- rents are, in general, slow, with speeds of three miles a day and less being typical, but strong winds may induce temporary high speeds of five miles per day or more.

The circulation within Cape Cod Bay has not been studied thoroughly, but drift bottle records from the above mentioned workers and those of

Anraku provide some insight. The major central area of the Bay consists

of a counterclockwise gyre—an offshoot of the current moving in an arc

from Massachusetts Bay across the tipe of the Cape at Provincetown. Cur-

rent velocities are reduced in this deeper area but in regions shallower

than 20 m, tidal currents dominate and may be quite strong in localized

areas such as the canal mouth and around Race Point near Provincetown.

The description of surface circulation between Nantucket and Cape

Hatteras shows an overall southerly drift in the middle Atlantic States.

The drift is reversed sometimes, particularly during summer months^and

40 near the coast, providing suitable transport for southern species rang- ing north. Indraughts from western Georges Bank and south of Nantucket

Shoals are most marked during spring and summer.

Parr (1933) discussed the possible route of species migrating north around the Cape Cod region. He noted, as had Bigelow previously, the oc- currence of an area of cold water upwelling in the Nantucket Shoals region.

This, he contended, would be an effective barrier against southern species migrating north, since temperature differences of 6-8 F occur. Two mi- grating paths are possible — the first around Nantucket Shoals, and the other through Pollock Rip (Fig. 13). Parr considered the inside passage through Pollock Rip more likely, since cold water between Nantucket light- ship and Pollock Rip' would still act as a barrier for species migrating around the shoals.

Parr emphasized the seasonal nature of the barrier at Cape Cod.

In April, closely grouped isotherms in the Cape Hatteras region begin to disperse northward. The apparent winter temperature barrier at Cape Hat- teras breaks down completely, and by June, when stable conditions have been developed, a .temperature barrier is formed in the region of Cape Cod.

During October there is a rapid return of isotherms from about 60-70 F towards Cape Hatteras. The temperature barriers in the two areas occur at opposite times of the year, but center around the same isotherms, i.e.,

60 F. Parr emphasized the seasonality of the temperature barriers at the two capes, and notes that migratory forms moving south in the winter to

Cape Hatteras or north to Cape Cod in the summer would encounter only slow and gradual temperature changes up to these points. Cape Cod— A Zoogeographic Barrier

Evidence that Cape God is an effective zoogeographic barrier has

appeared in the literature in numerous reports over the last 100 years.

Gould (1840) was the first to suggest this after studying marine molluscs.

Of 203 species, he noted that 81 did not pass south and 30 had not then

been found north of the Cape. Dana (1842), working with Crustacea, pro-

duced further evidence and postulated the existence of four zoogeograpbic

provinces: the Arctic, the Nova Scotian (later called Acadian), the

Virginian and Carolinian; the separation of the Nova Scotian and Virgin-

ian occurring at Cape Cod.

Verrill (1866) recognized three distinct faunas on the coast of New

England — Virginia, Acadian and Syrtesian of Packard. The Syrtesian was

considered as a separate province between the Acadian and Arctic. Verrill*s

extensive dredging studies led him to recognize that although southern forms

' dominated the shallows on the south side of the Cape, the deeper channels

as far as Long Island Sound were inhabited almost exclusively by northern

forms or an extension of the Acadian fauna.

Smith (1879), working with certain groups of Crustacea, concluded that

the fauna from Cape Cod to Labrador was a continuous one, or at least not

nearly so discontinuous as that north and south of Cape Cod Bay.

Botanists such as Harvey (1852) and Farlow (1882) attributed similar

importance to Cape Cod as a division between marine floral regions.

After the turn of the century, a major survey of the Woods Hole area

by Sumner, Osborne and Cole (1913) produced further evidence. Sixty-four

percent of 202 species recorded were known to have a range north of Cape

42 Cod. Thirty-six percent did not transcent this barrier. Studies in the littoral fauna by Allee (1922) showed a similar pattern. Of 241 littoral animals, 40% were not known north of Cape Cod, whereas only

11% were not known south.

Plankton studies such as those of Fish (1925) and Parker (1925) have resulted in similar findings, although the discontinuity is not

so clearly defined in offshore waters. The most recent contribution

is the results of Bousfield's extensive work on the amphipods of New

England (Bousfield, 1973). Of 85 southern species he records, 46

do not extend north of Cape Cod Bay. Fifteen of the 34 northern species

do not extend south, and there is a further cut off in Long Island Sound. BIOLOGICAL

Fauna

A total of 840 taxonomic units were identified from the 707 samples

(446 grab samples, 82 clam dredge, 88 epibenthic sled and 91 naturalist dredge trawls) . A list of all species encountered is included in the appendix. The Smith-Mdntyre grab samples included the largest number of species (563). Polychaetes were the dominant component both in numbers of species (310) and numbers of individuals. The next major groups were amphipods, bivalves, isopods and gastropods, in that order. The average number of individuals per sample was approximately 650, or 6500 animals 2 per m .

In Table 2 the numbers of species and individuals were separated into categories to determine whether any significant variation occurred in these two parameters. / Three groups were formed on the basis of mean particle size in the sediments. These were sands and gravels with particle size greater than

0.5 mm (<1 0)4fine sands 1-4 0,and silt clays where particle size is great- ler than 0.062 (>4 0). The number of species was significantly higher in the fine sediments than in the coarse sands. The number of individuals suggested an opposite trend with lower mean for fine sediments, but the difference was not statistically significant.

Significant variation was found in the average number of species or individuals collected in each year. This ranged from a low of 35.5 species and 4420 individuals in 1967 to a high of 39.1 species and 8722 Table 2 Numbers of Species and Individuals in Various Station Groups

Sediment n Species S.D. Individuals S.D.

< 1.0 0 (67) 33.37 (12.1) 7062 (6538) 1-4 0 (173) 39.30 (13.5) 6467 (5731) > 4 0 (166) 39.14 (8.7) 5773 (4377)

Years

1966 (30) 37.5 (13) 8546 (7296) 1967 (83) 35.71 (9.9) 4476 (2904) 1968 (189) 36.81 (12.1) 6009 (5509) 1969 (113) 39.1 (11.2) 8722 (12870)

Seasons

Winter (125) 39.9 (11.9) 7622 (5942) Fall (77) 38.6 (9.9) 5159 (3857) Spring (105) 38.3 (12.4) 5951 (5490) Summer (93) 36.3 (11-3) 6276 (7451)

Sediments 1-40

Winter (57) 43.05 (12.6) 9150 (6394) Summer (35) 32.49 (13.4) 4833 (4277)

45 individuals. Young and Rhoads (1971) conducted a transect study in

1969 and the number., of species and individuals collected varied greatly

from those collected at the same stations in this survey (Table 3 ).

Samples were collected from the same vessel with the same gear. Certain personnel were involved in the field and laboratory analyses at both

studies; thus, the differences are more probably due to natural variation

rather than error or bias.

An example of the range of variation is seen in Table 4. The

results for three parameters were averaged over the five samples collected within a quadrat. One must remember, however, that the quadrats were,

in fact, one mile square, and that the samples can not be considered rep-

licates even though sediment analyses in some cases were very similar.

For the number of species the standard deviation was from 12 to 32 percent

at -the mean value. In the case of the total number of individuals the stan- s dard deviation was typically 50 to almost 100 percent of the mean. In

another sampling program in Cape Cod Bay, Michael (1978) found that for

-three replicate benthic samples' taken by Hiver from th"e same station (10 m

depth) showed coefficients of variation of from 2 to 30% for number of species

and 18 to 60% for number of individuals.

A very obvious feature is the greater number of individuals present in

the Young and Rhoads data from 1969. This was also found to be the case in

other results from this study and is due to greater numbers of small poly-

chaetes such as Euchone incolor, Mediomastus ambiseta and Spio limicola.

46 TABLE 3 Faunal Parameters Reported in Two Cape Cod Bay Benthic Studies

No. of species No. of Individuals b .... Station Pa .... Y+R . P ... Y+.R . .".". .".' , Datec

2318 21 40 2,400 16,000 10/66 2118 56 44 6,140 11,190 10/68 1918 20 56 1 3,790 30,150 8/66 1718 52 43 7,560 15,820 10/68 1518 42 43 9,230 14,230 1/68 1118 43 43 3,870 12,540 9/68 0918 46 34 8,640 7;870 1/68 , . . . , . 1,'1 . — . ' ' ...... " • .

-C- ^Present study. -J by+R = young and Rhoads . GDate refers to present study; all Young and Rhoads samples were collected in July 1969. TABLE 4 VARIATION FOR THREE PARAMETERS IN QUADRAT REPLICATES

Date Station Mean No . Mean No. of Mean Sediment of Species Individuals Size

5/68 0518 43.6 (14.2) 4952 (4775) 4.41 (.49)

1/69 0718 49.4 ( 7.6) 10764 (6944) 5.01 (.68)

1/68 0918 36.6 ( 6.1) 5308 (3708) 6.63 (.40)

9/68 1118 38.6 3014 (1074) 6.46 (-42) (1^8) 6/67 1518 43.8 (10.1) 9572 (4843) 5.73 (.99)

10/68 1718 48,8 ( 7.0) 10294 (5596) 6.46 (.42)

8/66 1918 25,4 ,2508 (1052) j1 3.84 (.61) jlftftWll i OD 10/66 2318 26,8 ( 9.9) 2768 (2331) 1 0.44 (.83) TABLE 5

A Comparison of Dominant Species in Cape Cod Bay in Two Studies

% of Total % of Total Station P"1- individuals Y + R' individuals

October 1966 July 1969

2318 Praxillella sp. 30 Protodrilus sp. 40 Crenella glandula 17 Polydora sp. 15 Unciola irrorata 9 Unciola irrorata 14 Goniadella gracilis 14 Glycera capitata 6 Polygordius triestinus 7 Clymenella sp. 6 Euchone elegans 7 Aricidea jeffreysii 6 Asabellides oculata 5

October 1968

2118 Asabellides oculata 23 Capitella capitata 40 Mediomastus ambiseta 12 Asabellides oculata 9 Terebellides stroemi 8 Nucula proxima 6 Syrrhoe crenulata 7 Euchorie incolor 5 Prionospio streenstrupi 6

Augusfr=L966

1918 Leptocheirus pinguis 20 Capitella capitata 35 Orchomene minuta 16 Euchone incolor 13 Phoxocephalus holbolii 15 Spio limicola 10 Eudorella emarginata 12 Asabellides oculata 8 Ninoe nigripes 9 Ninoe nigripes 5 Mediomastus ambiseta 9 Anonyx lillj eborgi 6

October 1968

1718 Euchone incolor 16 Euchone incolor 35 Mediomastus ambiseta 13 Capitella capitata 28 Spio limicola 11 Apistobranchus tulbergi 5 Asabellides oculata 9 Ninoe nigripes 8 49 Apistobranchus tulbergi 5 % of Total °L of Total Station Px individuals Y 4- R' individuals

January 1968

1518 Euchone incolor 30 Euchone incolor 49 Spio limicola 14 Capitella capitata 18 Mediomastus ambiseta 9 Asabellides oculata 9 Tharyx acutus 6

September 1968

1118 Euchone incolor 17 Euchone incolor 58 Ninoe nigripes 11 Spio limicola 9 Spio limicola 11 Tharyx acutus " 7 Scoloplos acutus 7 Paraonis gracilis 5

January 1968

0918 Spio limicola 49 Euchone incolor 40 Limnodriloides medioporus 8 Capitella capitata 18 Paraonis gracilis 6 Ninoe nigripes 8 Euchone incolor 6 Spio limicola 6

1 P = present study 50 2 Y + R = Young and Rhoads (1971) One of the most dramatic features of the data set is the seasonal variation found in samples from stations where mean sediment size ranges from 1-40. Winter samples have significantly more species and indi- viduals than summer samples. The fauna of Cape Cod Bay is predominantly a cold water arctic-boreal one. It is possible that cold water species penetrate into shallower depths during winter but are unable to withstand the high temperatures found in shallow (15 - 30 m) water during the summer.

Winter samples from intermediate depths would then include cold water spe- cies from deep water and those shallow water species which can withstand the winter in Cape Cod Bay. A second possibility, as previously suggested by Michael (1975) is that the intermediate depths represent a more stress- ful environment to deep water species in summer because of the thermocline.

Significant variation can be found in species composition. Table 5 shows the "dominant species found at the same station in this survey and > that of Rhoads and Young. The greater proportion of small polychaetes is the most obvious fact. Numerical dominance by a few species was much more pronounced in:3£69. Station 1918 at 20:m depth was .dominated by amphipods in August of 1966, whereas the 1969 survey sample was 70% polychaetes.

Tables 6 to 11 are representative selections of faunal results from

stations of various depths.

51 TABLE 6

Species Collected at Station 0620 El '/ Erythrops Erythropthalma ; ^ 10 Diastylis Abbreviata 10 Eudorella Hispida 30 Aeginia Longicornis 160 Argissa Hamatipes 10 Photis Macrocoxa 10 Anonyx Lilljeborgi 20 Bathymedon Spp. 30 Monoculodes Tesselatus 40 Pleusymtes Glaber 10 Metopella An Usta 20 Lunatia Immaculata 30 Lora Incisula - - 10 Retusa Obtusa 20 Nucula Delphinodonta _ " " 170 Sapotilla " ~" 130 Yoldia Thraciaeformis - •-'-' -" -10 Thyasira Gouldii 230 Mya Arenaria 10 Periploma Papyratium - " 50 Euphysa Aurata 10 Pholoe Minuta 20 Nephyts Incisa 30 Nephtys Ciliata 10 Lumbrineris Fragilis ._ 80 Ninoe Nigripes : " 250 Scoloplos jAcutus 30 Aricidea Quadrilobata 60 Paraonis Gracilis T__ ------'- --40 Prionospio Steenstrupi .__jEI . ~ " " 90 Spio Limicola . ^jli , - - ~; *• igio"" Chaetozone Sp. 1 -^^ =•-•--• - .•-----^-- gp Tharyx A ' " 160 Tharyx E 10 Diplocirrus Longisetosus 30 Sternapsis Scutata 10 Heteromastus Filiformis 40 Mediomastus Ambiseta 10 Praxillella Sp. 40 Myriochele Heeriw/Eyes 20 Ampharete Arctica 20 Terebellides Stroemi 10 Laena Spp. 20 Euchone Incolor 1810 Apistobranchus Tulbergi 20 Peloscolex Intermedius 10 Ophiura Sarsi

52 TABLE 7

Species Collected at Station 1628 El

Sarsiella Zostericola 30 Diastylis Abbreviata 60 Leptostylis Longimana 10 Eudorella Emarginata 180 Edotea Triloba 50 Aeginia Longicornis 10 Mayerella Limicola 10 Ampelisca Macrocephala 30 Leptocheirus Pinguis 340 Casco Bigelowi 10 Anonyx Lilljeborgi 20 Orchomene Minuta 90 Bathymedon Spp. 10 Monoculodes Tesselatus 50 Phoxocephalus Holbolii 50 Stenopleustes Inermis 10 Dulichia Monocantha 20 Nucula Annulata 20 Cerastoderma Pinnulatum 10 Cerianthus Borealis 20 Ceriantheopsis Americanus 20 Eteone Lactea 10 Eteone Trilineata 10 Nephtys Incisa 80 Lumbrineris Fragilis 20 Ninoe Nigripes 1340 Scoloplos Acutus 800 Aricidea Jeffreysii 740 Paraonis Gracilis _ 1340 Prionospio Steenstrupi 1460 Spio Limicola 360 Tharyx A 260 Tharyx D 690 Brada Villosa 40 Heteromastus Filiformis 70 Mediomastus Ambiseta 5250 Praxillella Sp. 10 Asabellides Oculata 100 Terebellides Stroemi 10 Euchone Incolor 960 Apistobranchus Tulbergi 30

53 TABLE 8

Species Collected at Station 1930 El

Diastylis Polita 140 Lamprops Quadruplicate 20 Chiridotea Tuftsi 130 Edotea Triloba 770 Unciola Obliquua 130 Acanthohaustorius Millsi 2690 Hippomedon Serratus 20 Paraphoxus Epistomus 150 Modiolus Modiolus 10 Tellina Agilis 30 Sagitta Elegans • 40 Polygordius Triestinus 10 Nephtys Caeca 10 Scoloplos Armiger - 20 Scoloplos Sp. - - - 2.0 Paraonis Fulgens 230 Spiophanes Bombyx 20 Psammodrilus Balanoglossoides " 20 Echinarachnius Parma 60 TABLE 9

Species Collected at Station 2012 E5

Diastylis Polita 10 Idotea Phosphorea 10 Chiridotea Tuftsi 10 Edotea Triloba 140 Ampelisca Verrilli 90 Ampithoe Rubricata 10 Unciola Irrorata 10 Anonyx Sarsi 10 Hippomedon Serratus 80 Tmetonyx Nobilis 10 Paraphoxus Epistomus 110 Phoxocephalus Holbolii 60 Pagurus Longicarpus 10 Mitrella Lunata . - .. .90. Spisula Solidissima "" 40 Tellina Agilis _ 60 Crisia Eburnea 380 Callopora Craticulata 20 Bugula Turrita 50 Cribrilina Punctata 180 Hippothoa Hyalina 10 Schizoporella Errata _ 20 Schizoporella Sp. .,= 20 Hippoporina Porosa 10 Cryptosula Pallasiana 20 'Polygordius Triestinus 10 Phyllodoce Arenae ~^= 10 Nephtys Caeca . —--_^ 50 Scoloplos Acutus " -^- - ' "10 Aricidea Jeffreysii ~" " 30 Prionospio Steenstrupi 20 Spiophanes Bombyx 500 Tharyx A 20 Clymenella Sp. 20 Praxillella Sp. 10 Nicolea Venustula 10 Echinarachnius Parma 10

55 TABLE 10

Species Collected at Station 2212 E2

Edotea Triloba 50 Ampelisca Verrilli 40 Unciola Irrorata 60 Unciola Obliquua 170 Hippomedon Serratus 200 Paraphoxus Epistomus 1320 Phoxocephalus Holbolii 10 Crangon Septemspinosus 10 Alvania Carinata 10 Gemma Gemma _ 10 Spisula Solidissima 10 Tellina Agilis 60 Crisea Sp. . 10 Haplota Clavata - " - 10 Cribrilina Punctata 20 Hippothoa Hyalina 10 Polygordius Triestinus 90 Phyllodoce Mucosa 10 Nephtys Bucera 10 Nephtys Caeca 10 Notocirrus Spiniferus . 10 Aricidea Jeffreysii- . _ - - _ . 300 Aricidea Wassi 20 Paraonis Fulgens 90 Spiophanes Wigleyi 40 Apoprionospio Sp. —" •-•___ _- _~. r; . - _ 10 Clymenella Sp. — - __ " 720 Echinarachnius Parms^ - • 20

56 TABLE 11

Species Collected at Station 2224 El

No/m-'"

Eudorella Pusilla 40 Ampelisca Macrocephala 410 Leptocheirus Pinguis 10 Unciola Irrorata 10 Anonyx Lilljeborgi 10 Orchomene Minuta 10 Harpinia Propinqua 30 Phoxocephalus Holbolii 20 Nucula Annulata 30 Yoldia Limatula • 10 Yoldia Sapotilla 10 Arctica Islandica " 10 Cerastoderma Pinnulatum 30 Periploma Papyratium 10 Pholoe Minuta 60 Nephtys Incisa 90 Sphaerodorium Minutum 30 Glycera Robusta 10 Goniada Maculata 10 Ninoe Nigripes 1310 Stauronereis Caecus IX) Aricidea Jeffreysii 40 Aricidea Belgicae 280 Paraonis Gracilis * 210 Prionospio Steenstrupi — -=^ -50 Spio Limicola - '— 20 Tharyx A --— 240 Tharyx D 350 Pherusa Affinis 20 Heteromastus Filiformis 70 Mediomastus Ambiseta 270 Owenia Fusiformis 10 Euchone Elegans 10 Euchone Incolor 70 Limnodriloides Medioporus - 60

57 Species distributions

Table 12 lists species in order of their densities in Smith-Mclntyre \7 grap samples. The number of samples in which each species occurred is listed for all four types of sampling gear. Nine of the first ten spe- cies are polychaetes. Small polychaetes such as _Eu_c_hone_ incolor, Medio- mastus, Spio limicola Ninoe nigripes and Aricidea Jeffreys! are abun- dant and widespread.

The number of individuals per station is in fact an average for all grab samples (446) and so underestimates the actual density per sample where the species was present. This can be obtained by multiplying .the number in the first column by 446 and then dividing by the number of sta-

tions where the species occurred. The density per sample for Euchonts

incolor would therefore _ (75.1 x 446) -J- 283 = 118.3. The change is more1.-noticeable for species such as Unciola irrorata and Corophium crassicorne^which were_g£esent in fewer samples. Average-densities for

these species_ in samplesl^jiere they were present were 39*7 a*id 67.8, res-

pectively.

Polychaete species which occurred at many stations other than those

listed in the first twenty species were Fholoe minuta, Heteromastus

filiformis, Lumbrineris fragilis, Eteone longa, and Ampharete arctica,

The most commonly occuring bivalves were Thyasira gouldii and Nucula

delphinodonta.. The caprellid Aeginia longicornis was widely distributed

(173 stations) as was the isopod Edotea triloba.

58 Table 12 No. No. of Stations Indiv./ Taxon Species Station S.Mc Cl Epi Nat 6^4-8 Euchone incolor 75-1 283 31 51 ky 6^8 Mediomastus ambiseta 55-1 311 3^ ^5 k5 64-8 Spio limicola 1*8.3 266 kk 50 k6 6^-8 Ninoe nigripes 37.9 311 53 52 k9 6^8 Aricidea Jeffreys!! 37.7 296 20 ki 35 6^4-8 Asabellides oculata 26.1 216 39 39 51 Paraonis gracilis 2k. k 267 32 23 30 Tharyx A 16.5 327 19 ^5 kl. 64-7 Polygordius^-triestinus 13.1 . 103 6 27 2k 22k Unciola irrorata 12.1 136 12 31 29 22k Corophium crassicorne 11.7 77 7 12 8 6*4-8 Scoloplos acutus 11.5 2k7 16 k5 3^ 6^8 Praxillella sp. 11.1 251 ^3 30 ko Prionospio steenstrupi 9.9 ._ 217 k 27 25 82 Hippothoa hyalina .3'. 5 -- ~ 8 2k 27 Paraonis lyra 7-3 6k 8 3 5 315 Thyasira gouldii 6.9 ' 188 7 33 16 315 Nucula deJ-phinodonta . 6.7r___:r 2^2 Ik k9 20 *~ - ' 6*4-8 Clymenella^sp. 5->__- 11- 67. 9 2 8 650 Lurabricillus codensi ^.8 " "26 " 0 1 0 6*4-8 Pholoe minuta ^.8 312 2k 55 32 22k Orchomene minuta k.5 139 6 *n 10 223 Chiridotea arenicola ^.5 5k 3 12 16 6*4-8 Scalibregma inflatum k.k 150 22 10 10 6*4-8 Tharyx D ^•3 106 11 '5 6 6*4-8 Heteromastus filiformis ^•3 239 27 8 10 651 Peloscolex benedeni 3.9 35 2 1 3 22k Aeginia long!corn-is 3-8 173 23 76 63 315 Tellina agilis 3.8 86 2 11 10 6*4-8 Nephtys incisa 3.^ 257 36 51 kk

59 Table 12 (continued)

No. No. of Stations Indiv ./ Taxon Species Station S.Mc Cl Epi Nat 6*4-8 Chaetozone sp, 1 3-3 122 *4- 18 13 6*4-8 Goniadella gracilis 3-3 55 3 3 3 223 Edotea triloba 3-3 182 *4- 35 35 315 Nucula annulata 3-2 105 7 2*4- 10 6*4-8 Apisto~branchus tulbergi 3-0 157 7 19 15 22*4- Acanthohaustorius mills! 3-0 37 2 2 2 6*4-8 Spio setosa 2.9 ^3 *4- 7 2 22*4- Anonyx lilljeborgi 2.8 207 5 52 25 6*1-2 Electra pilosa- : 2.8 . 9 1 5 8 315 Gemma gemma 2.6 23 2 1 5 651 Limnodriloides medioporus 2.6 92 *4- 0 0 221 Eudorella emarginata . 2.5 1*J4 3 *0 i*^ 22*4- Phoxocephalus holbolii 2.*4- 139 6 22 1*4- 22*4- Leptocheirus pinguis 2.*J- 77 9 13 1*4- 6*4-8 Lumbrineris fragilis 2.*4- 288 63 ^5 ^5 Peloscolex apectinatus 2*4- l 0 1 651 / 2.3 648 Owenia fusiformis 2.2 ^7 *4- 11 1*1 651 Tubifex lorigrgenis 2.2 - .."- 35 2 0 2 22*4- Ampelisca macrocephala .. -2.1 ^;ii " 82 ._ . 1 13 1*4- 22*4- Paraphoxus epistomus 2.1 "' 75 3 6 5 6*4-8 Capitella capitata 2.0 12*4- 9 5 *4- 693 Echinarachnius parma 1.9 - 75 8 19 3*4- 6*4-8 Aricidea quadrilobata 1.8 1*4-2 3 35 12 305 Bittium alternatum 1.8 5 0 9 7 315 Spisula solidissima 1.7 76 7 21 17 6*4-8 Laena spp. 1.7 158 7 2*4- 30 6*4-8 Stauronereis caecus 1-7 103 8 2 2 6*4-2 Lichenopora verrucaria 1.6 M 8 18 18 22*4- Protohaustorius deichmannae 1.6 13 0 2 1 305 Alvania carinata 1.6 97 3 30 11 6*4-8 Lumbrineris tenuis 1.5 76 6 5 7

60 Table 12 (continued)

No. No. of Stations Indiv./ Taxon Species Station S.Mc Cl Epi Nat 650 Hemigrania postclitellochaeta 1.5 20 0 . 1 0 224 Harpinia propinq.ua 1.4 64 2 4 6 315 Crenella glandula 1.4 66 2 13 9 648 Aricidea belgicae 1.4 39 2 5 -4 6*4-8 Eteone longa 1-3 173- 11 31 26 221 Diastylis polita 1.3 36 2 11 6 648 Spiophanes "bombyx 1-3 46 1 1 3 305 Crepidula plana 1.3 32 13 15 33 224 Mayerella limicola 1-3 93 3 22. _ - 9 315 Modiolus modiolus 1.3 55 6 10 8 224 Unciola obliquua 1.2 25 1 3 0 648 Ampharete arctica - - 1-. 2 - 173' 13 -- 30 - 36 224 Stenopleustes inermis 1.2 136 2 ^5 3 648 Protodorvillea kefersteini 1.2 21 2 1 1 651 Phallodrilus coeloprostatus 1.2 26 1 0 0 224 Photis macrocoxa 1.2" " "" 53 ' ~r • 15 - 11 315 Family mytilidae 1.1 22 i 9 11 315 Yoldia sajDptilla 1.1 .., 151 4 44 26 642 punctata 1 .~1 " 744 7 -•••*9 13 642 "- 1.1 •"*• - -28- •• 4 13 15 651 Peloscolex intermedius 1.1 86 4 15 15 648 Terebellides stroemi 1.1 156 5 32 27 642 Crisia e"burnea 1.0 50 7 14 22 648 Spiophanes wigleyi 1.0 41 i 0 0 224 Hippomedon serratus 1.0 89 2 19 12 224 Corophium bonelli 1.0 36 7 12 15 221 Diastylis abbreviata 1.0 149 0 45 11 315 Cerastoderma pinnula 1.0 132 4 47 24 648 Novaquesta trifurcata 1.0 9 0 1 1

61 Species distributions can be grouped into several broad categories.

There are those species which have limited distribution associated with a particular sediment type; either fine, coarse or mixed sediment. Other

species have much broader distribution. Many of these might be defined

as "opportunists" according to Grassle and Grassle (1976). The distri-. butions of twenty of the dominant species are plotted in Figures 13 to

32. Species such as Thyasira gouldii are restricted to fine sediments..

At the other extreme, Unciola .irrorata, Polygordius triestinus, Clymenella

sp. and Faraqnis lyra are found only in the coarser sediments of the south-

east and the perimeter of the bay. The amphipod Co rophium cras s i cprne_ is

limited to sediments of intermediate composition. The polychaete Aricidea

jeffreysi, although very abundant and widespread, is not found in the very

fine sediments of the'Tiorth central portion of the bay. In contrast, spe-

cies such as Mediomastus ambiseta, Euchone incolor, Spio limicola.anf d Ninoe

nigripes, while abundant at a great many stations, they are virtually ex-

cluded from coarse segments. ;: ,---'" '":

The distribution maps are limited, in that they are prepared from

samples collected over three years. In an earlier section we reported

the higher abundance of species in some years compared with others. These

maps do indicate the distributional area, but the density data should not

be viewed in an absolute sense.

62 >..*...... 0--:' O^A * *ft6 *ft *fr**/**Ap/ * ** ft^ft *> • ft *"*•ft^ *£ ft ' **ft- ftft^ o ft */* *"*/*;* O if * *'.ft * * * NUMPER OF O * .* INDIVIDUALS/M

*.* ***,*** * *.* *** *.ft *^** * ! *.ft ft- * * 0 /

*V *O * * * * O

DISTRIBUTION OF Scohptoi acutus

O ft O O O ft *ft i * ft ft O O ft

•fr n°°o*n /••••••&* • Vr -ft- n *

-u* **'*.* O ft**ft O • o o•*** O/'QOO o *.* *f tft. O• / ft * ft ftj£ o o o. ft'V o * *ft*.0_j^*ft(ft 0 O o A * ft *°* o

•>* 6 fto fot *> * *o o * '*V * o * f*t /* o

s* Figures_i3 0 *.* O O it"* *4 if* *

* 00

> *,* 1*:*,***

O -ft•* * O * *

DISTRIBUTION Aricidta jtff

»%* ..' -N \ \ €&**£>—-N. \ >*> :a>— -^^ v x^ \ *d/Sim><--,. *•+ S

• °** -a-/ A-*^** Q/*,* • / o_** **.** *"o A*o"- o**o t* o -

DISTRIBUTION OF DISTRIBUTION OF Clymenella sb. Euehone incolor

-^igtrres—1-7—through- 29 NUM5EH OF SYMBOL INDIVIDUALS/M

** ** ** * * *

DiSTRieuTIDN OF Mediomastut ambiseta

O A o.* * O 40 *• * _ O A 0 * -ft* O x ** ** -tr

NUMBER OF NUMBER OF SfMBOL INDIVIDUALS /M SYMBOL INDIVIDUALS /M

* *V* * * * * * * *. * *.*** .*

V- * * * * * * * •*

DISTRIBUTION OF DISTRIBUTION OF Ninoe nigriftes Paraonij gracilii

Tigures 21—through ~2 DISTRIBUTION DISTRIBUTION OF Paraonii Polygordius tries tinus

NUMBER OF SYMBOL INDIVIDUALS /M o o o * * o • o o o

O O * * * 0Q* O p O ** 00* o • * • • o o o ! * o * o * o*

DISTRIBUTION OF Prionoipio strecnitrupt NUMBER OF SYMBOL IMDIVlDUiLS/M

NUMBER OF , SYMBOL INDIVIOUALS/M* 0•a — oj°-. & 00,£ ft0 *.* * o A.-h o o

DISTRIBUTION OF DISTRIBUTION OF Nitcula delphinodonta Hipbothoa kyalina

Eigures~29- t-hrough-32- Diversity

Diversity values were calculated for 90 El stations. Results are presented in Table 13 , which lists the Shannon-Weiner and Brillouin values as well as evenness, H and H . . max mm Values ranged from a low of 0.96 (Shannon-Weiner) at station 1812

El to a high of 5.35 at 1220 El. An earlier report based on a partical data set by Young, et al. (1970) had suggested that shallow areas had higher diversity than deep areas, but this was not found to be the case with the present data. There are two conflicting phenomena which influ- ence diversity values. The time-stability hypothesis (Sanders, 1969) would suggest that diversity increases with depth, whereas another consid- eration is that mixed sediments of sand and silt offer more niches and tend to have a wider variety of species than muds at the same depth.

The results were separated into a variety of station groups based on depth sediment type, and reasons (Table 14 ). Samples from depths greater than 30 m had significantly higher diversity (p.< 0.01) than those from 10-30 m in less" than 10 m depth. Fall samples had the highest "aver- age diversity and these were significantly higher than the winter samples

(lowest). No other significant differences due to season were found.

The number of samples and the variety of community types included in the grouping probably masks the real extent of seasonal variation in this factor for Cape Cod Bay.

Earlier results in this report showed a high correlation between depth and particle size. Sediments are finer (higher 0 values) at great- est depths. Samples from stations where mean particle size was less than

68 Table 13. Diversity Values for El Stations

Shannon-Weiner Brillioun Station No. • Diversity Eveness H' Max Hf Min Diversity

518 3.73 .65 5-70 1.64 3.41 • 612 2.66 .61 4-39 .60 2.52 616 3.95 .78 5.09 • 65 3-79 620 3.31 .60 5.55 .84 3.15 718 2i.95 .53 5-52 .62 2.83 722 4-21 .86 4.91 1.32 3.79 312 3-50 .69 5.09 - 1.04 3.29 816 2.93 .63 4.64 .56 2.80 320 4.49 .31 5-55 ~1.21 4.21 324 3-97 .76 5.21 1.52 3.64 910 3-75 .35 4.39 2.36 3.18 913 . 3.21 .53 5.52 .53 3.09 922 4.19 • 75 5.61 .99 3.93 926 3.40 .62 5.46 .91 3.21 1012 2.25 .46 4.91 • 53 2.15 1016 • 70 3.57 5.0s 9 • 74 3-40 1020 3-34 .76 5.09 1.16 3.53 1024 3.95 .78 5.04 :r -92 3.73 1023 4.43 .78 "•5.75 —"^1.71 4-13 1110 1.93 .36 5.46 '• .46 1.90 1114 3.46 .68 5.09 • 51 3-35 1113 4.34 .80 5-43 1.08 4.10 1122 4.25 .88 4.31 1.28 3.92 1126 4.67 .79 5.91 1.40 4.39 1130 3.90 .70 5-55 .83 3.74 1212 2.76 .52 5.29 -37 2.69 1216 3-56 .73 4.36 .99 3.34 1220 5.35 .84 6.32 2.43 4-35 1224 3.90 .74 5-29 1.01 3.68 1223 3.75 .67 5.58 .79 3-59 1310 3.32 .78 4.91 .88 3.61

69 Table 13 (continued)

:>nannon-weiner Brillioun Station No. Diversity Eveness H1 Max H1 Min Diversity 1314 3.13 • 54 5.75 .29 3.07 1318 2.50 .47 5.32 .68 2.37 1322 3.81 .72 5.29 .93 3.60 1326 - 3-28 .65 5.09 .42 3.19 1330 2.62 .56 4.70 .26 2.57 1412 3.78 .75 5.04 .86 3.59 1416 3.52 .68 5.17 .50 3.41 1420 3.82 .76 5.00 1.14 3-56 1424 4.08 .77 5.29 1.41 3.78 1428 2.90 .51 5.64 • 31 2.84 1510 3.80 .77 4.91 1.42 3.48 1514 2.20 .42 5.21 .41 2.12 1518 3-65 .69 5.32 .48 3-55 1522 4.04 .76 5.32 1.41 3.71 1526 3.38 .64 5.25 .43 3.28 1603 4.47 .82 5.46 1.36 4.17 1612 3.42 .68 5.04 .65 3.27 1616 2.96 .54 "™ 5.49 -•• .28 2.90 1620 4.04 .74 ~ 5.43 1.12 3.80 1624 3.96 .76 5.21 1.22 3.69 1628 3.37 .63 5.36 .33 3.30 1710 2.95 .63 4-70 • 56 2.82 1714 2.33 .52 4.52 .69 2.20 1718 4-24 .74 5.70 .74 4.08 1722 3.57 .65 5-49 .57 3.46 1726 3.22 .64 5.00 .93 3.02 1808 4.52 .82 5-52 1.94 4.11 1812 .96 .29 3-32 .54 .86 1816 4.04 .73 5.52 .82 3-87 1820 3-16 .61 5.17 .61 3.03 1824 4.06 .74 5.52 1.24 3.80

70 Table 13 (continued)

c5hannon-Weiner Brillioun Station 'No. Diversity Eveness H1 Max H1 Min Diversity 1828 2.76 • 52 5.29 .43 2.67 1910 4.03 .70 5-73 .75 3.88 1914 3.00 .65 4.64 .54 2.87 1918 3.2? .76 4.32 -50 3-14 1922 2.57 .43 5.67 .46 2.49 1926 3.34 • 75 5.13 .64 3.69 1930 2.16 -51 •4.25 .41 2.06 2008 2.94 .67 4.39 .79 2.76 2012 4.04 .87 4.64 2.06 3.55 2016 3.79 • 75 5.04 1.20 3-52 2020 3.73 .71 5.29 1.09 3.50 2024 3.^7 .72 5.39 .93 3.68 2028 3.13 .58 5.39 ' .18 3-10 2110 2.43 .49 4.95 .52 2.33 2114 3.71 .70 5.32 1.21 3-45 2118 4.25 .73 , 5.73 .94 4.05 2122 3.68 .63 _ 5.86 .52 3.58 2126 2.87 -- .^ P*- _--= 5.55 • 25 . 2.82 2212 3.21 .73 ~ 4.39 1.22 2.92 2216 2.78 .61 4.5S .86 2.60 2220 3.57 .68 5.29 1.16 3.32 2224 3.57 .70 5.13 .88 3-38 2314 2.27 .47 4.86 .42 2.18 2313 3-31 .75 4.39 .77 3.12 2322 2.28 .47 4.81 .54 2.17 2326 3.31 .70 4.70 .65 3-15 2416 1.33 .40 3.46 .19 1.35 2420 2.89 .72 4.00 .56 2.74

71 TABLE 14 DIVERSITY VALUES FOR STATION GROUP CATEGORIES

Depth

0 - 10m 3.12 (0.95) 10 - 30m 3.34 (0.64) 30m 3.78 (0.50)

Season

Summer 3.30 ( .91 ) Fall 3.70 ( .55 ) Winter 3.26 ( .72 ) Spring 3.48 ( .62 )

Sediment

a. Mean grain size

<10 ( >lmm) 2.87 ( . 83 ) 1-40 (1-0.062 ) 3.44 ( .73 ) >40 ( <0.062 ) 3.71 ( .51)

b. % silt/clay

< 10% silt/clay 3.12 (.86) 10-50% silt/clay 3.48 (.69) > 50% silt/clay 3.74 ( .48 )

c. % clay

1-5% clay 3.46 ( .91 ) 5-20% clay 3.50 ( .60 ) > 20% clay 3.75 ( .43 )

d. sediment season

1-40 Summer 3.18 ( .89 ) Winter 3.14 ( .71 )

72 I 0 (greater than 0.5 mm) had significantly lower diversity than sam-

ples from silt/clay sediments (0 greater than 4). Shallower areas

with sand greater than 0.5 m mean size were significantly lower in

diversity than the mixed sediments of mid depths, but the latter

were not significantly different from the fine sediments. Stations

with less than 10% silt/clay had lower diversity than those with

10-50% or greater than 50% silt/clay.

It is clear that diversity increases with depth and/or decreasing

particle size. The results included here do not provide enough infor-

mation to determine the relative contribution of the two factors, but

the greater physical stability of the deeper areas must be considered

to be of prime importance.

In an earlier report based on incompletely analyzed samples, Young,

et_al., (1971) found that diversity decreased with depth when samples

from the same depth were summed. Diversities on the small scale, i.e., 2 0,1 to 0.2 m were essentially the same at all depths. It was suggested

that the addition of samples from the same depth would result in higher

diversities in shallow areas, since there was a wider variety of habitats

than found in deep (> 30 m) areas.

Young and Rhoads (1971) in a transect study resampled seven El sta-

tions described in this study. In all but one case, diversity values were

lower than found in our results. One possible reason is the large numbers

of polychaetes found in samples collected by Young and Rhoads in July,

1969. There were many species of polychaetes, such as Mediomastus ambiseta,

73 Euchone incolor and Spio llmlcola present over a large area of Cape

"Cod Bay during the summer of 1969. (Table 15)

The calculations included only 90 of the 450 grab samples. Diver-

sity is known to vary seasonally as well as with depth and sediment

type (Boesch 1973,c Sanders 1969). The results are typical of the

range of values found by other workers for shallow water soft bottom

communities. Lie (1968) reported values from 1.9 to 4.8 in Puget Sound

and Boesch (1976) reported values up to 4.2 in Chesapeake Bay.

74 Table 15 Diversity values obtained at the same sites in Cape Cod Bay in separate surveys.

Station Y & R* Present

0918 3.06 3.21

1118 2.65 4.34

1518 2.82 . 3.65

1718 3.05 4.24

1918 3.53 3.27

2118 3.50 4.25

2318 2.99 3.31

* Young and Rhoads (1971)

75 Community Analysis

Classification Analysis

A series of normal and inverse classifications were run on the grab sample data at the State University of New York at Stony Brook.

The programs were entitled NT-SYS prepared by F.J. Rolhf, J. Kispaugh and D. Kirk. This series was developed for numerical and other statistical purposes. The application of multivariate classification techniques to benthic data started within the last decade and has under- gone rapid development. There are certain aspects of benthic data sets which make some methods more appropriate than others. A recent synthesis and summary has been prepared by Boesch (1977).

There are two basic approaches, normal and inverse analysis or

Q type and R type. In normal analyses entities (stations) are classified into groups on the basis of similarity (or dissimilarity) of their attributes. In inverse analyses species are considered as entities with their"'abundance at stations as attributes. The basic choices to be made in such analyses are whether the analyses should include all species, the type of data transformation'(if any) the choice of similarity coefficient and clustering strategy.

Choices available for these analyses were limited to those included in the NY-STS system since the scope of the project did not include the development or establishment of new classification programs. Nevertheless one set of analyses was conducted on a new program at the Woods Hole

Oceanographic Institution. We are now aware of more appropriate methods than some of those presented here which were conducted in 1973 - 1974.

76 It was originally expected that the data set would be a good basis for testing such methods but the authors do not now believe that

this is necessarily the case. The benthos of Cape Cod Bay shows considerable temporal and spatial variation. Although 446 samples were obtained they were collected over a period of 3 years. Each station was sampled once. Assuming there are four or five community types

(there are in fact more than this) according to depth and or sediment

type we also must consider seasonal and yearly factors as sources of variance. Thus we have five communities times four seasons times three years which totals 60 factors to be evaluated. With a total of 446

samples we have potentially 7.4 samples on average per factor and

considering the natural variance in benthic data sets it is apparent

that each factor may not be clearly defined with such sampling.

In all the NY-STS analyses the similarity coefficient was a distance

coefficient which is the square root of the average squared difference

between two variables. It is.equivalent to the "average taxonomic ^

difference" of Sokal (1961). Differences are computed only for those

observations where there is no missing data. A variety of analyses were

conducted using selected taxa both without and with transformations such

as log and NJ3. The clustering strategies included UPGMA (unweighted

pair group method using arithmetic averages) which is also called group

average, ancl centroid clustering. In all cases the data set was limited

to those species which occurred in 5% or more of the samples.

While classification is primarily objective there is a certain

amount of subjectivity in the selection of methods and in particular in

77 the interpretation of the resulting dendrograms. Rather than go through a complicated analysis of the 20 analyses that were run it is simpler to restrict comments to those analysis results which we can most easily interpret. Many of the analysis results were • - uninterpretable. Dendrograms showed excessive chaining with no distinction between groups and in the case of R type in species analyses there were some mlsclassifications, i.e., species grouped together which would not normally be in the same group-based on our understanding of their ecology. - - ~ ~~

Figures 33 to 37 are distributional maps of station groups resulting from classification analyses. Dendrograms are not presented since they were excessively large (446 stations) and complex. We have identified the five or six major station groups from each and plotted the distri- bution on the maps. ^In all but one case the transformation was ^3.

In all cases there is a fairly clear separation of a station group in the north_central portion o^the bay where silt/clays are present from .. that in the southeast where the sediments are coarse sands. " Stations around the perimeter are similar to those in the southeast. Station groups in the intermediate areas of silty sands are distributed over a broad area and show more variance between analyses. In one analysis they may - be more closely aligned with stations in fine sediments and in another with samples from sandy areas. The five samples from any one quadrat show slightly different association according to the groups on which the analysis was based.

78 L—[]—El—El—5^-43—E]—tl 42°00I]

Moutica) Miles

Figure 33. Station groups from classification including all taxa. (Maulica Mi es

Station groups from classification including polychaetes only. o

Nautical.Miles

Station groups from classification including amphipods and molluscs. Nautical Miles

!:::•:•: Figure 36. Station groups from classification including molluscs only. I—\ I—I I—I

Nautical Miles

Figure 37. Station groups from classification including amphipods (log,n trans- formation) . In view of the range of variation that has been found in this data, and the fact that each station was sampled only once, we feel that it is not appropriate to embark on a detailed analysis of differ- ences between results of each classification. The analyses based on all taxa and on polychaetes alone probably represent "community" dis- tribution most realistically, since these two include the dominant faunal components.

Ten inverse or "R" type analyses were run, and in each case the results were extremely difficult to interpret. This may be due to our own limits in understanding of the fauna, or to the approach used in

the analyses. The project scope did not provide for experimentation in

this regard.

In a separate study Michael (1973) analyzed the results for El sta-

tion using only amphipods. The species groups produced (Figure 38) were t consistent with what is known about the ecology of the species. Station

groups resulting from classification\were shown to be statistically sepa-

rable in terms of their environmental parameters.

For each of the groups the stations concerned were listed together with their corresponding temperature, depth and mean particle size deter-

minations. The average value for each of these factors was calculated

for each station group (Table 16), and t tests were then conducted between

station groups for each variable. Table 17 lists the t values and signif-

icance levels for each test. Groups I, II and III were the most clearly

delimited in the previous analyses and are discussed first.

84 SUM OF SQUARES O) o o o tn A Ampeliaca microcephata H. OQ IjGptocheirua pinguid C 34, Harpinia prapinqua 40. Syrrhoe cranulata UJ 13 CO.BCQ bigelowi CO Anonyx tiltjeborgi 36, phoxocephalus holbolli o 2. Ampelieca vadorum fl> 7, Corophiwn crasaicorne a 9, Una-iota irrorata o OQ 6. Corophiwn bonelli EU 28. Hippomedon serratna 3 11. Pontogenttia inermie i-h 32, Monoculodee edtiardei O Rricthonius brasilienaig e 35. Parahorua ep tetanus o 10. Uriciola obl-iquua c1 — * 18. A can thoha.ua torius millsi en rf 21. Protohaustorius deich. CO (B 30. Tmetonyx nobilia Ln H 3. Bybli.8 gainardi Cu 3 27. Rippomedon propinquus fo 12. Rhachotropig

CO H. Elasmopie H- 15. Maera loueni CO 16. Melita sp. 5. Argieea hamatipee sH- O 33. yonaculodee teaoelatitB 3* 26. Anonyx tsarei ro i — • 19. AcanthohauB toriua ehos- 22. ProtohauatoriuB wigleyi H 17. 20. Parahaustoriue langimer. ^J £ 23. Photie macpocoxa • 37. Stenopleusteg inermie 39. Metopella anguata 2K. Phatie rei.nha.rdi 29. Orahomene minuta 3J. Bathymedon sp. 38. Dulichia monocantha Table 16. Summary of mean values for sediment size, temperature and depth for five selected station groups. N is the number of stations, x is the mean and s is the standard deviation.

Sediment Size Temperature Depth

Group N x s X 9

I 22 3.1150 1.1818 6.0227 4.7226 19.7818 7.6838

II 30 4.9056 1.1431 4.9900 3.4548 33.2600 10.1111

III .10 1.3890 0.7130 16.8300 6.2962 4.2700 2 .3837

IV 17 0.6500 0.8929 9.7647 7.6366 12.9882 8.7485 cr00, V 6 3.6933 1.1820 4.9660 0.9972 41.6333 10.8675 Table 17. T values resulting from comparison of means of sediment size, temperature and depth for the five selected station groups with significance levels and degrees of freedom.

Parameters

Sediment Size Temperature Depth

Group t(d.f.) Signif t(d.f.) Signif t(d.f.) Signif Comparison I & II 17.37(50) .001 1.43(50) 5.46(50) .001 I & 'III 5.57(30) .001 4.82(30) .001 4.79(30) .001

I & IV 7,44(37) .001 1.73(37) 2.53(37) .01 00 --J I & V 1.06(26) 0.97(26) 4.62(26) .01

II & III 11.44(38) .001 5.67(38) .001 14.54(38) .001

II & IV 14.17(45) .001 2.45(45) .05 7.21(45) .001

II & V 2.30(34) .05 0.03(34) 1.74(34) _-_

III & IV 2.10(25) .05 2.60(25) .05 3.83(25) .001

III & V 4.33(14) .001 5.84(14) .001 8.31(14) '.001

IV & V 5,75(21) ,001 2.53(21) .05 5.87(21) .001 The differences between I and III were found to be very highly significant for each of the variable means. Differences between II and III were also very highly significant in all cases. Group II differed from I in the sediment factor and depth but not in tempera- ture. The relationship of these groups is presented visually in Figure

39 . Sediment size is plotted against depth, the mean values for each group are plotted, and the range of one standard deviation on either side of the mean value is figured.

Group I is the deep water group, the dominant species of which are Bathymedon sp., Metopella augusta and S t enopleus te s inermis. At the other end of the range is group III whose dominant species are

Acanthohaustorius mill si, Unciola obliquua and Farapho_xus_ epistomus.

Group IV is related to and overlaps with II and III. There are significant differences for each variable between group IV and II and t between IV and III. Group V is related to I and II but differs from'

I in depth only and differs from II in sediment only.

Temperature was the least effective of the three variables in distinguishing between groups. This is due to the wide range found at some individual stations over a period of a year — a factor not well reflected in the isolated measurements as collected in this survey.

The fact that station groups determined on the basis of the fauna are

separable int3>distinct environmental categories is good evidence that spe-

cies associations at this level are the result of responses to the major

physical factors of the environment. III

V

II <>

Particle size 0 units

IV

10 20 30 40

Figure 39. Separation of station groups I - V based 'on sediment and depth parameters. Mean value and one standard deviation either side is figured for each group.

89 The basic problem here is that the environmental factors as measured are so closely inter-related that one is limited to demon- strating correlations. The factors which show strong correlations with species distributions may infect be causal. This can only be proven by detailed work on individual species.

90 Factor Analysis

An R type or inverse factor analysis with oblimin rotation was performed on the complete Smith-Mclntyre grab data set, i.e., 446 sta-

tions, 563 species. Analysis of the results was limited to the first

ten factors, which accounted for 84.3% of the variance. There was no

clear discontinuity in the amount of variance accounted for by each

factor. The cumulative proportions for the first five factors were

28, 45, 55, 63 and 68%, respectively. These ten factors each represent

some hypothetical community or environmental factor, and the analysis

indicates those species most closely associated with each factor.

These factors are not necessarily exclusive in that several may

be represented at any one site. In many cases one factor will be domi-

nant at a site and the geographical distribution may be plotted as in

Figure . There are blanks in the map when compared with Figure 39 ,

and this is where no one factor (or community) is strongly represented.

Contours can be drawn about areas containing the same community, but

this is, of course, subjective. Nevertheless, it appears that shallow

areas near the perimeter are characterized by factors 2,3,7 and 8. The

central area contains factors 1, 4 and 6. Factors 5, 9 and 10, for the

most part, are intermediate. These maps could be further restricted in

plotting distributions for opposing seasons, as in Figures 40 and 41

The large gaps in these figures are primarily due to the fact that stations

were sampled only once and hence some areas are not represented by winter

samples.

91 E COO DOMINANT FACTOR MAP. BENTHIC INVERTEBRATES 446 STA/563 SPECIES

*•+ + ++ + *#-•-

Figure 40. Map of dominant factors in Cape Cod Bay. CAPE COD SUMMER MAP BENTHIC" INVERTEBRATES 446 STA/563 SPECIES

3 + + 8 +»* + + +t + +4.4.«.

+ + + + >*++ + ++*+ 6 6 " .6 1 4 4 7 1 8 ++•+++' ."J, + + + + + + ++ 6 1 6 + +

+ -*-+ + 6 1 + + + + + 66, 41 643+ + ++ + 1 ' ' 6 + + ' . ' \ + 1 4 - 46 1 1 3

1 " 10 + + + 7744S6 115111 3.8 + + + 2 11 1 7 + + +Z1496 16 11 15 10 . 3 3 + + + . 9 • 1 7 + +

^W + + + + • 6 7 + + + 1661 3 7 7 «• 10 6 . - 4 3 8 + + + 6994 41 7 7 7 + 78 + + + + 9 1 7 + ++ 9955 1411 67 7733 1 1 7 ' 7 '+ + + 14611469 10 7 88 + 3 1 4 8 ' + + + I 4 . 4 10 10 3 . 88 10 + + + . 10 10 10 7 10 8 -33 - + + + + 5 10 3 +++++79 10 10

+ + + + + + + + + 10 9. 4 4 10 10 + + + + 10 ' • 9 7 10 + + + + + +

> + + ++*•+ + +,+ + *• + + + + 7 8 «• + + + + + + + + +

Figure 41. Map of dominant factors, summer stations. CSPE COO WINTER MAP BENTHIC INVERTEBRATES 446 STA/563 SPECIES

3 + +

^. + tt*« +*-+ + +++++ + + 64 6 6 6 1 +- 4- + * + 10 9 44 + 44 + +

+ t + + + ^+ + + + + + + ' - ft & 6 6 3 10 + + + + + 3 + +

+ + » + 1 6 1 > > + » -K j 6 .66661966' 6 6 .+*** + 6 6 1 •*• + + 6614 641411' ' 1 1 + •+++ + 6 .6 1 *

1 9 10 + + + 11 166 1 10 3 . + + + • 1 + + + 66 99 1 5 , + «• + 9 5

4 + 44 9 1 7 + + + 2 1 9 4 . 1 1115117 3 + . 4 ' 5 1 • + ++899 66.40 157 3 '*."/ + + + + 1 10 + ++781 61 7 377 9 7 + + +10 8545. . 3 73'8 + . 89 3 + ++33994 10 10 6 10 2 822 83 599 7 3 + + +72 10 95144444 88 28 + + + + + + + + + 4 4 I 3 10 2 3 3 + + + + + + * + +*• + * + 9 10 7 3 +'* + 4-*- + + + ++ + 3 4 10 5 10 2 3 7 + + + + + + + •*• * + + + + + + + + + + + 4 + + + + + + + + + + + + ++*•+•»- *• + 4- *- + + * 4- + + + * + + ++++'

Figure 42. Map of dominant factors, winter stations. Distribution of each factor can be shown individually, as in fl- A Figures Al to -A10 . The dominant factor maps are essentially quali- tative, representing only the dominant factor or community. Individ- ual factor maps show the total geographical range of each factor and the degree to which each factor is represented by a score from zero to 100. A value of 100 indicates that a particular area is strongly represented by that one factor (species group or community).

Table A7 lists the species associated with each factor.

Next to the species name is an angle of similarity between the species and the "pure" factor. If the number is zero it is perfectly similar: whereas if the number were 90 , it is orthogonal; i.e., completely dif- ferent from the factor distribution. For simplicity we have listed only those species within 30% of each factor in decreasing order of sim- ilarity. An interesting example is the thirteen species which show com- t plete similarity with factor two.

95 TABLE 18 SUMMARY OF NUMBERS OF SPECIES AND TAXA FOUND IN FOUR TYPES 07 SAMPLING GEAR

Smith- Clam Epibenthic Naturalist Mclntyre Dredge Sled Dredge No. of species found 563 319 432 451 No. of stations 446 82 88 91

Average numbers of individuals per station for specified taxa

Ostracods .4 0.00 .20 .02 Cirripedia .0 .01 .02 .01 Mysids 1.2 .05 1.19 .27 Isopods 8.5 .18 1.14 1.00 Amphipods 67.8 2.09 11.83 6.03 Decapods .5 .06 1.28 .81 Gastropods 9.3 .73 4.18 3.16 Pelecypods 35.6 1.30 5.65 3.93 Ascidians .6 .07 .17 .24 Porifera .1 .17 .44 .57 .3 .11 .50 .82 Anthozoa 1.0 .32 .11 .12 Polychaetes 439.2 12.73 16.92 16.57 Oligochaetes 7.5 .02 .02 0.00 Asteroidea .2 .20 1.02 1.65 Echinoidea 2.0 .18 .41 .71 Holothuroidea .2 .41 .01 .01

ALL TAXA 632.2 20.96 55.16 43.53

96 Sampling Gear

Table 18 lists the numbers of species found in each of the four types of sampling devices. The greatest number of species was found in the Smith-Mclntyre grab samples, and this is primarily because many more samples were taken by this method. A total of 563 taxonomic groups were collected in the 446 grabs. The epibenthic sled and naturalist

dredge produced very similar numbers of species (432; 451) with just

88 and 91 samples, respectively. It must be remembered that these are

thes results of tows made over a distance of 0.7 miles. The clam dredge was the least effective in collecting a wide variety of species. It is

perhaps surprising that as many as 319 species were obtained by this

method.

Table 18 also indicates the relative proportions of major taxonomic

groups. In all types of gear, polychaetes were the dominant group. In / grab samples, the subsequent dominant groups were amphipods, pelecypods,

gastropods and isopods, in that order. The top four were the same in each

sampling device. Holothuroidea are listed in fifth place for the clam

dredge; this is due to Molpadia oolitica, which is a key species in bio-

turbation in the fine silts and muds of the bay (Rhoads and Young, 1971).

Mysids were the fifth most abundant group caught by the epibenthic sled,

and starfish in the case of the naturalist dredge.

Tables 19 to 21 list the species most frequently caught in the epi-

benthic sled, the clam dredge and the naturalist dredge, respectively.

97 TABLE 19 SPECIES MOST FREQUENTLY OCCURRING IN EPIBENTHIC SLED ( n = 88 )

No. of No. of times times Species Species species species present present Crangon septemspinosus 83 Metopella angusta 34 Aeginia longicornis 76 Aricidea jeffreysii 41 Enchone incolor 51 Alvania carinata 30 Nephtys incisa 51 Unciola irrorata 31 Anonyx lilljeborgi 52' Leptostylis longimana 32 Spio limicola 50 Nya arenaria 38 Diastylis abreviata 45 Endorella hispida 27 Nucula delphinodonta 49 Thyasira gouldii 33 Monolodes edwardsi 47 Prionospio steenstrupi 27 Stenopleustes inermis 45 Rhachotropis oculata 30 \ Pholoe minuta 55 Ophiura sarsi 32 Ninoe nigripes 52 Aricidea quadrilobata 35 Eudorella emarginata 43 Terebellides stroemi 32 Yoldia sapotilla 44 Sternapsis scutata 33 Asabellides oculata 39 Praxillella sp. 30 Tharyx a 45 Diplocirrus longisetosus 23 Orchomene minuta 41 Eteone longa 31 Mediotnastus ambiseta 45 Polygordius triestinus 27 Cerastoderma pinnula 47 Monoculodes tesselatus 24 Nassarius trivittatus 50 Retusa obtusa 29 Lora incisula 47 Diastylis sculpta 23 Campylaspis rubicunda 42 Neoinysis americana 20 Edotea triloba 35 Erythrops erythropthalma 18 Asterias vulgaris 39 Ampharete arctica 30 Lumbrineris fragilis 45 Hippothoa hyalina 24 Scoloplos.acutus 45 Syrrhoe crenulata 23

98 TABLE 20 SPECIES OCCURRING MOST FREQUENTLY IN THE CLAM DREDGE ( n = 82 )

No. of No. of times times Species Species species species present present Lumbrineris fragilis 63 Unciola irrorata 12 Spio limicola 44 Eteone longa 11 Ninoe nigripes 53 Ampharete arctica 13 Praxillella sp. 43 Crepidula fornicata 13 Asabellides oculata 39 Rhodine sp. 10 Mediomastus ambiseta 34 Driloneveis longa 12 Nephtys incisa 36 Hippothoa hylina 8 Paraonis gracilis 32 Polycirrus spp. 12 Molpadia oolitica 34 Tharyx d 11 Euchone incolor 31 Anobothrus gracilis 12 Heteromastus filifor 27 Leptocheirus pinguis 9 Pholoe minuta 24 Tharyx x 10 Scalibregma inflatum 22 Cerianthus borealis 9 Aeginia longicornis 23 Maldane sp. 9 Tharyx a 19 Clymenella sp. 9 Aricidea Jeffreys!! 20 Lichenopora verrucaria 8 Myriochele heeri 18 Phyllodoce maculata 10 Araiada maculata 19 Arctica islandica 9 Scoloplos acutus 16 Capitella capitata Bugula trivita 14 Lunitia heros Nucula delphinodonta 14 Paraonis lyra Ceriantheopsis americanus 14 Polydora socialis Pherusa affinis 13 Phyllodoce mucosa Crepidula plana 13 Stauronereis caecus Glycera dibranchiata 14 Cancer irroratus Echinarachnius parma

99 TABLE 21 SPECIES OCCURRING MOST FREQUENTLY IN NATURALIST DREDGE (n = 91)

No. of No. of times times Species Species species species present present Aeginia longicornis 63 Phyllodoce maculata 25 Asabellides oculata 51 Terebellides stroemi 27 Asterias vulgaris 55 Bugula trivita 32 Euchone incolor 49 Paraonis gracilis 30 Spio limicola 46 Eteone longa 26 Ninoe nigripes 49 Myriochele heeri 29 Nephtys incisa 44 Yoldia sapotilla 26 Crangon septemspinos 54 Ophiopholis aculeata 27 Mediomastus ambiseta 45 Phyllodoce mucosa 23 Lumbrineris fragilis 45 Ophiura sarsi 25 Tharyx a 41 Polygordius triestinus 24 Praxillella sp. 40 Anonyx lilljeborgi 25 Leptasterlas tenera 37 Cerastoderma pinnula 24 Edotea triloba 35 Strongylocentrotus * droehbachiensis 21 Ampharete arctica 36 My a arenaria 21 Crepidula plana 33 Crisia eburnea 22 Echinarachnius parma 34 Crepidula fornicata 20 Anobothrus gracilis 32 Mitrella lunata 18 Unciola irrorata 29 Ampithoe rubricata 16 Nassarius trivittata 34 Euchone elegans 16 Ancidea Jeffreys!! 35 Pagurus acadianus 22 Prionospio steenstrupi 25 Caprella unica 15 Laena spp. 30 Nucula delphinodonta 20 Scoloplos acutus 34 Lichenopora verrucaria 18 Pholoe minuta 32 Chiridotea arenicola 16 Hippothoa hyalina 27 Eteone trilineata 17

100 SUMMARY

During the period 1966 to 1969, a series of benthic samples was collected from Cape Cod Bay, Massachusetts. The bay was divided into

100 mile square quadrats, and each was sampled once. A Smith-Mclntyre grab sample was taken at the center and the four corners of each quad- rat. A clam dredge, an epibenthic sled and a naturalist dredge were towed from different corners of the quadrat into the center.

Sediment analysis showed that the bottom was of fine silts and clays in the deepest areas. Shallow areas consisted of coarse sands and, sometimes, gravel. A large portion of the bay at intermediate depths

(10 - 40 m) consisted of silty sands. Salinities were fairly constant and all values were over 30 o/oo. Temperature range varies with depth.

In shallow areas the fauna may be exposed to zero degrees (C) in winter

and more than 22 C in summer. At depths greater than 40 m, annual temp-

erature range is reduced to about 6 C.

More than 800 taxa were identified with polychaetes, amphipods and

bivalves being the dominant components. Polychaetes alone accounted for

310 of the species found. The average number of species per sample was 2 37, and the average density was 6500 animals/m . The number of species and

individuals showed significant variation with sediment type, season and the

year in which samples were collected. Comparisons of results from this

study and that of Young and Rhoads (1971) indicated considerable variation

in community parameters and community composition. Small opportunistic

polychaetes were much more abundant in 1969 than in previous years.

101 Seasonal variation was most pronounced at intermediate depths

where mean sediment particle size was in the 1-40 range. Winter

samples had significantly more species and individuals than were

found in summer.

Diversity increased with depth and decreasing sediment size.

Samples taken in the fall had the highest diversity values and those

fromthe winter, the lowest. The range of values was typical of shallow water soft bottom communities. Classification analysis identified

station groups in the center of Cape Cod Bay and in the shallow areas

of coarse sediments. The groups identified at intermediate depths and

sediment type varied according to the analysis used and the taxa in-

cluded. Factor analysis produced station and species groups which had

some similarity to those from classification.

Polychaetes were the dominant taxa collected in d_l types of sampling.

There were only minor differences between the faunal composition of the

samples from the Smith-Mclntyre grab, the epibenthic sled and the naturalist

dredge.

102 REFERENCES

Allee, W. C. The effect of temperature in limiting the geographical range of invertebrates of the Woods Hold littoral. Anat. Rec. 23:111, 1922.

Anraku, M. Influence of the Cape Cod Canal on the hydrography and on the copepods in Buzzards Bay and Cape Cod Bay, Massachusetts. 1. Hydrography and distribution of copepods. Limnol. Oceanogr. 9:46-60, 1964.

Bigelow, H. B. Physical oceanography of the Gulf of Maine. Fish. Bull. Fish. Wildl. Serv. U. S. Part 2, 40:511-1027, 1927.

Boesch, D. F. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Mar. Biol. 21:226-244, 1973.

Boesch, D. F., et al. Effects of tropical storm Agnes on soft-bottom macrobenthic communities of the James and York estuaries and the lower Chesapeake Bay. 1976.

Boesch, D. F. A new look at the distribution of benthos along the estu- arine gradient., B.C. Coull (ed.) Ecology of marine benthos, No. 6 Belle W. Baruch Library in Marine Science, Columbia, S.C., University of South Carolina Press, pp. 245-266.

Bousefield, E. L. Shallow-water Gammaridean amphipoda of New England. Cornell University Press, Ithaca, N.Y., 312 pp., 1973.

Bumpus, D. F. and L. M. Lauzier. Surface circulation on the continental shelf off eastern North American between Newfoundland and Florida. Amer. Geogr. Soc. Serial Atlas of the Marine Environment. Folio 7, 1965.

Dana, J. D. In United States Exploring Expedition 5(8):1451-1592, 1852.

Fairbanks, R. B. , W. S. Collings and W. R. Sides. Biological investigations in the Cape Cod Canal prior to the operation of a steam generating plant. Interim Report, U. S. Fish. Wildl. Serv. Unpublished manuscript, 1968.

Farlow, W. G. The marine algae of New England. Bull. U. S. Fish. Comm. 1-210, 1879.

Fish, C. J. Seasonal distribution of the plankton of the Woods Hole region. Fish. Bull. Fish. Wildl. Serv. U. S. 41:91-179 1925.

Gould, A. A. Results of an examination of the shells of Massachusetts and their geographical distribution. J. Bost. Soc. Nat. Hist. 3:483-494.

103 REFERENCES (continued)

Grassle, J. F. and J. P. Grassle. Opportunistic life histories and genetic systems in marine benthic polychaetes. J. Mar. Res. 32: 253-284. 1974.

Harvey, W. H. Nereis Boreali - Americana; or Contributions to a history of the marine algae of North America. Part I - Melanospermae. Smith- son. Contrib. to Knowl. 3(4):8-158. 1852.

Hough, J. L. The sediments of Buzzards Bay and Cape Cod Bay, Massachus- etts. Ph.D. thesis, University of Chicago. 83 pp., 1940.

Krumbein, W. C. and F. J. Pettijohn. Manual of sedimentary petrology. D. Appleton-Century-Crofts, Inc., N.Y. 549 pp., 1938.

Lie, U. A quantitative study of benthic infauna in Puget Sound. Depart- ment of Oceanography, University of Washington, Seattle. 1968.

Michael, A. D. Numerical analyses of marine survey data; a study applied to the amphipoda of Cape Cod Bay, Massachusetts. Ph.D. thesis, Dalhousie University. 183 pp., 1973.

Michael, A. D. Structure and stability in marine communities of southern New England. Brookhaven Symposium on the effects of energy related activities on the outer continental shelf. E. Manowitz ed., 1975. f Michael, A. D. Benthic Studies in the vicinity of Pilgrim Nuclear Power Station, 1969-1977. Report to Boston Edison, 1978.

Morgans, J.F.C. Notes onthe analysis of shallow-water soft substrata. J. Anim. Ecol. 25:367-387.

Parr, A. E. A geographical-ecological analysis of the seasonal changes in temperature conditions in shallow waters along the Atlantic coast of the United States. Bull. Bingh. Oceanogr. Coll. 4(3):1-90, 1933.

Parsons, W. B. The Cape Cod Canal. Trans. Amer. Soc. Civil Eng. 82:1-157, 1918.

Sanders, H. L. Benthic studies in Buzzards Bay. Animal-sediment relation- ships. Liranol. Oceanogr. 3:245-258, 1958.

Schlee, J. S. and J. Webster, A computer program for grain-size data. Woods Hole Oceanogr. lust. Ref. No. 65-42., 1965.

104 REFERENCES (continued)

Shepard, F. P. Nomenclature based on sand-silt-clay ratios: Jour. Sed. Petrology, v. 24, p. 151-158, 1954.

Smith, S. I. The stalk-eyed crustaceans of the Atlantic coast of North America, north of Cape Cod. Trans. Conn. Acad. Arts. Sci. 5:27-138, 1879.

Sokal, R. R. and F. J. Rohlf. Biometry, the principles and practice of statistics in biological research. W. H. Freeman and Co., San Francisco, 776 pp., 1969.

Strahler, A. N. A Geologist's view of Cape Cod. Nat. Hist. Press, N. Y. 115 pp., 1966.

Surnner, F. B., R. C. Osborn, L. J. Cole and B. M. Davis. A biological survey of the waters of Woods Hole and vicinity. Section 1. Physical and Zoological. Fish. Bull. Fish. Wildl. Serv. U. S. Part 1, 31:11-442, 1913.

Trowbridge, A. C. and F. P. Shepard. Sedimentation in Massachusetts Bay. J. Sed. Petrol. 2:2-37, 1932.

Verrill, A. E. on the polyps and echinoderms of New England with desig- nations of new species. Proc. Bost. Soc. Nat. Hist. 10:333-357, 1866.

Verrill, A. E., S. I. Smith and 0. Harger. Report on the invertebrate animals of Vineyard Sound and adjacent waters. Rept. U. S. Comm. Fish. 1871-1872. 245-852, 1874.

Young, D. K. and D. C. Rhoads. 1971. Animal-sediment relationships in Cape Cod Bay, Massachusetts. I. A transect study. Mar.Biol, 11(3): 242-254, 1971.

105 APPENDIX CAPE COP BAY QUADRATS

Quadrat # Latitude Longitude Quadrat # Latitude Longitude

0514P* 42°03.5' 70°10.7' 1420 41°54.5' 70°18.7' 0518 42°03.5' 70°16.0' 1424 41°54.5' 70°23.9' 0612 42°02.5' 70°08.1' 1428 41°54.5' 70°29.3' 0616P 42°02.5' 70°13.3' 1510P 41°53.5' 70°05.3' 0620 42°02.5' 70°18.5' 1514 41°53.5' 70°10.7' 0710P 42°01.5' 70°05.3' 1518 41°53.7' 70°16.0l 0714P 42°01.5' 70°10.7' 1522 41°53.5' 70°21.0' 0718 42°01.5' 70°15.7' 1526 41°53.7' 70°26.8' 0722 42°01.6I 70°21.4' 1530P 41°53.6' 70°32.0' 0812 42°00.6' 70°07.9l 1608 41°52.5' 70°02.3' 0816 42°00.6' 70°13.4' 1612 41°-52.5' 70°08.0' 0820 42°00.6' 70°18.9' 1616 41°52.5' 70°13.3' 0824 42°00.5' 70°24.1' 1620 41°52.7' 70°18.5' 0910P 41°59.5' 70°05.3' 1624 41°52.6' 70°24.0' 0914 41°59.3' 70°10.6' 1628 41°52.5' 70°29.3' 0918 41°59.3' 70°16.1' 1710P 41°51.5' 70°05.3' 0922 41°59.3' 70°20.5' 1714 41°51.5' 70°10.7' 0926 41°59.4' 70°26.7 ' 1718 41°51.6I 70°16.0l 1012 41°58.5' 70°08.0' 1722 41°51.4' 70°20.6 ' 1016 41°58.4' 70°13.3' 1726 41°51.4I 70°26.6' 1020 41°58.6' 70°18.7' 1730P 41°51.5I 70°32.2 ' 1024 41°58.5' 70°24.0' 1808P 41°50.5' 70°02.6' 1028 41°58.5' 70°29.3 ' 1812 41°50.6' 70°07.8' 1110 41°57.5' 70°05.3' 1816 41°50.4' 70°13.3' 1114 41°57.5' 70°10.7 ' 1820 41°50.6' 70°18.5' 1118 41°57.5' 70°16.2' 1824 41°50.4' 70°24.0f 1122 41°57.4' 70°21.1' 1828 41°50.6' 70°29.3' 1126 41°57.5' 70°26.7' 1910 41°49.4' 70°05.4' 1130 41°57.6' 70°32.2 ' 1914 41°49.5' 70°10.7 ' 1212 41°56.5' 70°08.0' 1918 41°49.5' 70°16.0' 1216 41°56.8T 70°13.4t 1922 41°49.4' 70°20.9' 1220 41°56.5' 70°18.5' 1926 41°49.3t 70°26.8' 1224 41°56.8' 70°24.1' 1930P 41°49.5' 70°32.0' 1228 41°56.6' 70°29.1' 2008 41°48.5' 70°02.7' 1232P 41°56.5' 70°34.7' 2012 4l°48.5t 70°07.9' 1310 41°55.6' 70°05.6' 2016 41°48.4I 70°13.4' 1314 41°55.5' 70°10.7' 2020 41°48.4' 70°18.5' 1318 41°55.4' 7Q°15.9' 2024 41°48.3' 70°24.0' 1322 41°55.5' 70°21.1' 2028 41°48.3' 70°29.6' 1326 41°55.5' 70°26.8' 2110P 41°47.5' 70°05.3 ' 1330P 41°55.5' 70°32.0' 2114 41°47.5' 70°10.8' 1412 41°54.5' 70°08.0' 2118 41°47.5' 70°16.0' 1416 41°54.4' 70°13.3' 2122 41°47.5' 70°20.5 '

106 - r

CAPE COD BAY QUADRATS (cont.)

Quadrat # Latitude Longitude Quadrat # Latitude Longitude

2126 41°47.4' 70°26.7' 2314P 41°45.5' 70°10.6' 2130P* 41°47.5' 70°32.0' 2318 41°45.6' 70°15.8' 2212 41°46.6' 70°08.1' 2322 41°45.5' 70°21.6' 2216 41°46.6' 70°13.3' 2326P 41°47.5' 70°26.6' 2220 41°46.5' 70°18.6' 2416P 41°44.5' 70°13.3' 2224 41°46.6' 70°24.1' 2420P 41°44.5' 70°18.6' 2228P 41°46.6' 70°29.5' 2424P 41°44.5' 70°24.0 '

*P indicates that the station is a partial quadrat.

The latitude and longitude given is for the center (El) of

the quadrat even though this may not have been sampled as

in the case of some partial quadrats.

107 DATA at E-l (center) DEPTH (below mean low water) in meters and !i Corner from which qualitative sample was taken / (0/00) (0/00) (OC) (OC) Quadrat Date Surf. Bott. Surf. Bott. El E2 E3 E4 E5 Sal. Sal. Temp . Temp. _ _ _ _ 0514 10/16/69 31.632 31.629 16.0 15.7 6.4 0518 5/14/68 31.118 32.024 9.3 3.5 53.7 55.2(E) 50.6 52.5(C) 56.4(N) 0612 4/24/68 31.097 31.846 5.2 5.2 8.8 0.6(E) 15. 9 (C) 19.2 1.5(N) 0616 8/18/69 31.250 31.254 22.1 21.6* 6.7 - - 50. 9 (E) 7.9(N) 0620 4/18/67 31.816 32.324 4.0 2.9 55.2 55.8(C) 55.8(N) 55.5 57.0(E) 0710 10/16/69 31.632 31.607 16.0 15.5 - - - 12.2 - 0714 10/16/69 31.681 32.025 15.5 11.1 - - : 28.7 40.6 - 0718 1/6/69 32.070 32.549 0'.5 3.1 52.8 54.0(C) 49.7 50.0(N) 55.5(E) 0722 . 1/20/69 32.444 32.991 1.9 3.6 51.8 53.1 51.9(C) 51.2(N) 53.4(E) 0812 3/10/69 32.528 32.550 1.6 1.6 22.0 2Q.KC) 17. 7 (N) 24.7 (E) 22.3 0816 7/25/67 30.742 31.788 21.6 5.7 42.1 41.5(N) 37.5 39.0(E) 44.5CC) 0820 8/20/68 31.534 32.028 18.4 6.2 48.8 50.6 47.6(C) 48. 5 (N) 51.2(E) h-0824 6/28/67 31.810 31.746 15.0 5.6 47.6 48.5 47.0(E) 45.8(C) 47.6(N) - §0910 8/19/69 31.250 31.199 22.7 22.7 2.4 - 9.2{N) 6.7(E) 0914 2/20/68 31.838 31.877 -1.5 -1.5 30.5 28.7 32.9(N) 31.4(C) 32.6(E) 0918 1/23/68 31.571 81.806 -1.0 0.4 41.5 43.9(N) 42.4(C) 41.8(E) 44.8 0922 3/27/68 32.270 32.137 2.0 1.7 43.6 44.,2(E) 41.5(C) 42.4(N) 44.8 0926 6/10/68 30.732 31.953 13.0 4.2 47.9 50.0 47. 6 (E) 45.4(N) 47.6(C) 1012 9/7/67 31.151 31.517 16.8 7.2 23.2 17.7(N) 19.8(C) 24.7(E) 24.4 1016 8/19/68 31.065 31.857 20.0 7.0 34.2 34. 2 (E) 31. 7 (W) 34.2 36.6(C) 1020 3/23/67 32.193 32.274 i.,'o 1.8 42.7 40.6(C) 40.0(N) 41.5 45.KE) 1024 12/19/68 32.301 32.307 6.iO 6.0 45.1 47. 3 (E) 45.7 43. 9 (C) 45.8(N) 1028 4/21/69 31.883 32.398 6.2 4.2 37.2 39.7(C) 37. 8 (N) 34.2(E) 30.8 - 1110 8/19/69 31.226 31.253 23.4 22.8* 5.2 - 7.3(E) 8.5(N) 1114 3/11/69 32.443 32.481 1..5 1.5 29.9 29.6{E) 29.9(N) 31.KC) 30.8 1118 9/30/68 31.806 31.972 13.0 . 4.4 40.9 40.6 39.0 39. 7 (E) 39,7(C) 1122 12/19/68 32.284 32.280 5.8 5.8 42.7 44.2(C) 40.6CN) 41. 8 (E) 43.9 1126 5/12/69 30.772 32.079 10.0 4.8 43.9 44.8(C) 44.5 42.1(E) 43,3 1130 1/22/68 31.884 31.842 1.0 0.7 26.5 34.5(C) 28. 9 (E) 15.3(N) 25.9 1212 3/23/69 32.342 32.384 3,0 3.0 18.6 15.6(C) 13. 7 (N) 21. 4 (E) 23.2 1216 12/19/67 31.811 31.672 6.0 6". 5 32.0 31.7 (N) 32.0(E) 32.3 37.8(C) 1220 8/26/68 31.548 31.941 17.8 6.2 25.9(D) 37.5(C) 33.9(N) 33. 9 (E) 37.2 1224 3/27/68 32.142 32.217 2.0 1.8 40.3 41.8(N), 38.7(C) 38.4(E) 41.2 1228 5/10/67 31.291 31.469 6.0 4.8 30.8 32.6(E)' 30.5(C) 26.8{N) 31.1 1232 10/16/69 31.661 31.742 15.0 14.0 12.2 - - - — Page 2

1310 9/10/68 31.621 31.614 17.5 17.5 3.1 -0 . 3 (N) 0.3 6.4C.C) 8.5(E) 1314 4/23/68 31.945 31.985 5.9 5.0 29.6 29 .9 CO 27. UN) 29.9(E) 30.2 1318 6/14/67 30.832 31.580 13.5 5.7 33.9 34 . 5 (N) 33.6(E) 32. 6 (C) 35.7 1322 7/24/67 31.002 31.776 15.9 4.8 33.9 38 -UN) 35.7(E) 36. 9 CO - 39.7 1326 7/22/66 31.577 31.929 16.0 6.0 35.7 32 ,9(C) 34.8(E) 31.7(N) 32.6 1330 7/21/69 31.205 31.347 17.9 12.9 6.1 17 .UN) 5.5 — 5.5 1408 Station not taken because of logistic problems 1412 6/11/68 30.954 31.529 14.0 7.0 12.8 10.7(N) 8 . 5 (C) 14.0<(E) 18.3 1416 10/1/68 31.764 31.901 16.5 9.5 30.2 30 .5(0 29.3(N) 29.6 32.0(E) 1420 12/12/68 32.102 32.140 6.6 5.7 31.4 33 .2(E) 32.3(C) 32.6(N) 34.2 1424 11/19/68 31.995 32.228 9.5 9.5 35.1 36 .3(E) 33. 6 (C) 33.6(M) 35.9 1428 5/13/69 30.737 32.035 9.9 4.8 24.7 29 . 3 CO 27.8 24. 7 (N)CE)24.4 1506 Station not taken because of logistic problems - 4.9(C) 1510 9/11/69 30.978 30.976 19.4 19.4* 1.5 - i. 5 (N) 1514 1/19/67 31.775 31.989 .2.0 • 2.2 16.8 17 .7 CO 17,7(E) 17. 7 (N) 16.8 1518 1/23/68 31.544 31.694 '0.6 0.9 ' 33,9 32 .9CN) 31.4(C) 31.7(E) 33.2 1522 8/19/68 31.242 31.923 18.0 7,0 32.2 32 .9 31. UN) 30. 8 (.C) 32.0(E) 1526 1/21/69 32.428 32.467 1.5 1.6 29.6 33 -2(C) 33.6(N) 24. 1(E) 32.9 ------1530 11/21/67 - 10 .UN) 11.3 1608 9/6/67 30.813 30.439 18.8 18.7 4.3 2. 4 (N) 3. 4 CO 6.4 (.E) 4.9 1612 5/13/69 30.326 30.16 12.0 12.0 5.8 3.4 (C) 2. 1(N) 6.UE) 9.2 1616 4/22/68 31.902 31.992 5.9 5.1 26.5 26 1 5 (N) 23.5(C) 25.6 28.UE) 1620 12/19/67 31.661 31.663 6.0, 6.0 30.5 30 .2(N) 29.6 (C) 29 . 6 (E) 29.6 1624 5/13/68 31.094 31.486 10. O! 5.5 30.8 33 .2(C) 31.7CN) 32.0(E) 32.0 1628 3/26/68 32.108 32.154 2.0, 1.8 22.9 25 .9 CO 25.0(E) 19.8CN) 19.5 1706 Station not taken because of logistic problems 1710 9/11/69 31.147 31.177 19.5 19.5* 3.4 - 5.5 4 . 0 CO 3. 1(N) 1714 1/21/69 32.227 32.221 0.7 0.8 14.0 13 .7 (N) ll.O(C) 15.6CE) 19.5 1718 10/29/68 31.969 31.991 13. '4 13.1 26.2 27 .5(N) 25.6(E) 25.9(C) 27.8 1722 3/17/66 32.313 32.304 4.'0 3.3 29.0 29 .6(N) 29. 9 (E) 29.9(C) 30.2 1726 8/18/66 32.023 31.767 18.5 6.1 24.1 25 .6 CO 24. 4 (N) 24. 4 (E) 25.9 - 7.6 1730 11/21/67 no data no data no data no data 10 .7 — — 1808 8/19/69 31.198 31.209 23.7 23.5* 4.0 3. 1 (O 4.6(N) - 3 . 1 (E) 1812 2/20/68 32.142 31.961 1.0 1.0 2.4 •2 .UN) 9.5(C) 4.3CE) 3.1 1816 5/13/69 30.924 31.445 10.0 6.5 19.2 18 .9(0 15.3(N) 19. 5 (E) 22.9 1820 10/1/68 31.779 31.955 12.5 7.1 26.5 27 .UE) 24.7{N) 25. 3 CO 24.7 1824 10/1/68 31.810 31.949 14. '0 ' 8.0 ' 23.8 23 .5 22.0(C) 22.0(N) 23.2 1828 3/11/69 32.275 32.276 1.0 1.5 19.8 22 .6(C) 19.8(N) 13. 1(E) 12.5 1906 Station not taken because of logistic problems 1910 5/17/67 30.903 30.855 10.5 10.5 5.2 4.9 CO 4.9(M) 4.9(E) 4.9 1914 11/18/68 31.945 31.956 8.0 8.0 11.6 8.5(N) 12.8(C) 12.8(E) 13.7 1918 8/4/66 31.714 31.924 18.0 6.8 19.8 21.4 (N) 17.7(C) 20. 1(E) 23.2 Pacre 3

1922 8/14/67 31.190 31.734 14.5 6.6 24.4 25.6(E) 23.2(C) 23.5(N) 24.1 1926 11/19/68 31.871 31.948 9.5 9.5 23.8 24.4(C) 22.3{N) 21.4(E) 24.1 1930 11/21/67 no data no data 6.0 no data 5.5 8.2(N) 10.HE) - - 2008 4/23/68 31.876 31.895 7.2 7.1 5.8 4.9CE) 3.7(N) 6.KG) 6.1 2012 12/11/68 31.346 31.703 1.5 2.5 9.8 8.8(C) 7.6(N) 8.2{E) 9.8 2016 6/12/68 31.005 31.328 13.2 8.1 17; 4 10.7(E) 10.4 15.9(N) 18.3(C) 2020 4/24/68 31.574 31.532 6.8 5.1 21.0 22.9(E) 20.1(N) 21.OIC) 24.4 2024 3/27/68 31.710 32.201 2.4 1.8 21.0 22.0(E) 22.0{N) 21.4(C) 23.2 2028 3/21/66 32.342 32.493 3.5 3.0 15.6 15.6(C) 15.6(N) 6.7(E) 16.2 2110 9/11/69 31.013 30.874 19;5 20.0 7.0 8.8{C) - 3.HE) 7.6(N) 2114 10/25/67 31.557 31.532 11.8 11.5 8.5 8.8(N) 7.3(C) 10.4

*At a few shallow stations, the BT was not used, C = clam dredge so the bottom temperature was taken from the E - epibenthic sled Van Dorn bottle or was estimated at being the N = naturalist dredge same as the surface temperature. D = dive sample (at 1220 only) 1 ,' SEDIMENT ANALYSES ' -, CAPE COD BAY

f ' Standard Deviation' \ Gravel * Sand % Silt \ Clay e Sediment Major Mode Median;Hean (sorting) , "•-;• ' ••" --( , * *^ f-l« (-r-481 f4-R«l (8 - 10 (B) Class . OS14-E3 2 00 0* 7n • , ,« *.uu , S6.70 1 ,30 0 sand 0,50(66.0) 0.47;O.S2 0.85 - - 0,74 5.87 051B EJ - 0 • ' ' 50.30 38.20 1 11.50 silty sand • 3.60(40.1) ' 4,02;4.78 2.33 0.86 , ' '." 2.57 E2 • ° 67.35 21.84 10.88 silty sand 2.50(44.1) 3.04;4.1S 2.62 0.73 ' • 1.27 E3 ° 78,98 11.45 9.52 sand 2.50(56.5) 2,73;3.67 2. 55 0.96 2,83 E4 ° 30.53 60.82 8.58 sandy silt 4.50(47.4) 4,40;4.81 2.10 0.87 3.27 ES ° '55.42 30.36 t 14.17 silty sand 2.60(29.2) 3.65;4,6S . 2.98 0.63 .0.84' 0612-E1 . ;' 2tlo 96 20 . fl 5Q 1.20 sand 0.40(59.1) 0.20;0,32 1.40 . 2.59 34.58 E2 '• O-16 100.33 0.01 0 sand 1.20(54.6) 1.06;1.0S . 0.65 -0.07 "- -0.48 .." . '°'» ' 81,79 ' 9.43 8.59 sand 3.30(42.7) 3.20;3.80 2.37 1.02 .' 3,76 O . E" . °-18 ' 6.«2 71.14 22.26 clayey silt 4.50(45.6). S,03;6.3S 2.95 0,63 • 1.05 ES ° 99.98 0 0 sand 0.50(85.2) . . 0.49;0.49 0.46 ' ' . O,08 0,58 \ k 0616-E1 13.50 86.sc 0 0 - 0.50(62.6) . 0.27;0.01 1.17 --0.63 2.90 02 " . '°' . 59. «S 27.28 13.22 silty sand 2.60(38.5) 3.35;4.63 2.91 ' 0.65 0.87 - . ES 6-°3 92. 1M 1.11 0 sand 0,30(53.8) o.ii;0.io 0.85 0.69 7.27 0620-E1 nu ,, .„ 26. «O 53.30 20.30 sand silt clay 4.30(33.0) 4.72;5.80 2.67 O.SS 0.28 " ° 50.2&,' 35.92 - 13.75 silty sand 3.50(24.5) 4.02;4.73 2.75 0.44 0.2S " ° 2S.8S '53.47 22.60 sand silt clay 4.30(22.4) S'.29;6.08 2.67 0.41 0.16 0 9. Iff 69.02 21.42 clayey silt 4.50(35.5) 5.32;6.24 2.50 0.53 0.36 ES °-02 20.6* 59,35 19.98 sandy silt 4.SO(28.fl) ; 5.07;5.9S 2.S$"'™7~\ 0.48 0.37

S ' ~~" " '" "" "~ - -

Sediment Analyses ..Cape cod Bay- Cc=Dnt,d) . 2 •

- Standard G e Deviation ,le (< -T0 } , J " * Silt \ Clay Sam J 1 4 Sediment Major Mode Median ;Mean (sorting) • - I' ~ g" (4-80) (8 - W 0) Class 9 f%l 0 0 P)-units Skewness Kurtosi s 0710-« . 2-40 ,*_«, mf It00 0 sand 0.50(60.9) 0.51;D.S4 0.84 0.50 .. 4.60 0714-E4 40.3 4a8 i1 - 10.2 1.3 -0.60(43.4) -0.80;-0.31 2.45 0.89 3.97 718 EI ° - 13.20 silty sand 3-50(35.1) 3. 95;<1.88 2.49 0.59 0.63 E2 0 ij .BJ **-»* 40.03 15.02 silty sand 2,60(27.7) 4.31;5.05 2.92 '0,55 0,51 E3 0 t* ~M S4.22 33_21 12.54 silty sand 3,30(28.9) 3.86;4.81 2.61 0.64 1,02 E4 ° 15.12 . 67 88 16.99 clayey silt 5.50(23.0) S.66;6.13 2.54 0.53 1.25 ES 0 AE 0>- 65-E= 24.19 9,92 silty sand 3.20(34.2) 3.49;4.26 2.31 0.70 1.17 0722-E1 "0 „ ^ •9-S*£ 78.44 11.59 silt 4.60(43.4) 4.9S;5.74 2.45 1.02 3.56 " ° ."-SI 78.34 - 11,14 silt 4.70(35.8) 5.16;S.64 2.07 0.80 •2.99 E3 Q a8 ;_ -= - 78.94 12.57 silt 5.70(30.8) S.76;6.1S 2.22 0.78 3. 'OS U " °' ' I°.-3 70.89 18.68 clayey silt 4.70(28.0) S.S2;6.08 2.28 0.42 0.77 ^S 0 1Tf~,ar *-^ 66.28 19.50 clayey silt 4.50(40.7) 4.92;5.96 2.61 0,64 1.02 0812-E1 0 10in CTsr - - 64.32 25.14 clayey silt 5.70(22.2) 6.1S;7.13 3.38 E2 0.72 l.'SO 1.32 68f.a . K—7 16>30 13.71 silty sand 1.00(18.2) 2.36;3.53 3.70 0.62 0.79 H3 0 on -,, 90-^1 4.74 5.04 send 1.50(58.0) 1.61;2.19 2.18 1.35 6.93 E4 0 4. =tts=> - 76.20 19.25 silt 5.50(45.6) S.79;6.70 2,69 Ot78 2.07 ES 0 -r -7T '-^ 78.15 14.15 silt 6.40(42.3) 6.21;6.6S 2.60 0.82 2.98 111 Sediment Analyses - Cape Cod Bay (cont'd) - 3

Standard Deviation V Gravel % Sand \ Silt * Clay Sediment Major Mode Median;Mean (sorting) Sample {< -] 0) (-1 - 4 0) [4-80) (B - 10 til Class f> W P 9 0-units Skevness Kurt 03 is

'0816-E1 0 54.77 31.10 14.10 silty sand 3.30(30.0) 3.83;4.78 2.52 O.S7 0.38

E2 0 26.16 56.27 17.56 sandy silt 4.40(34.6) 4.69;5.62 2.59 0.61 '0.75

E3 0 41.66 • 43.22 15.08 sandy silt 3. 60[24.8) 4.36;5.21 2.66 0.59 0.72

E4 Q 43.70 40.77 15.51 silty sand 3.50(32.5) ' 4.32;5.21 2.49- ' 0.56 " 0.37

ES 0 60.04 22.73 17.17 silty sand 2.60(36.2) 3.46;4.80 3.06 0.62 0.42 0820-E1 0 5.63 69.41 24.95 clayey silt 4.60(28.4) S.97;6.70 2.57 0.49 0.23

E2 0 5.78 68.13 26.09 clayey silt 4.70(21.4) 6.30:6.81 2.59 0.36 0.34

E3 ' 0 .7.47 71.38 21.15 clayey silt 4.60(27.4)' S.77;6.34 2.45 0.45 0.89

E4 'o 7.22 69.93 22.83 clayey .silt 4.60(26.2) S.89;6.44 2,43 0.41 0.63

ES 0 3.43 70.71 25.86 clayey silt 4.60(24.7) 6.24;6.83 2.49 0.46 0.36 0824-E1 0 30.22 S4.58 15.18 sandy silt 4.20(31.8) 4.63;5.44 2.38 0.65 1.09

E2 0 69.79 15.53 14.63 silty sand 3.40(38.0) 3,46;4.40 2.77 0.66 0.74 E3 0 11.13 66.08 22.79 ' clayey silt 4.60(30.1) 5.47;6.31 2.52 0.45 0.11 E4 " 0 27.98 52.84 19.16 - sandy silt 4.50(20.1) 5.17;5.65 2.87 0.27 0.07

.ES o' 37.63 46.42 15.94 sandy silt 3.90(27.6) 4.47;5.32 2.73 0.59 0.79 0910-E1 0 99.99 0 0 sand 1.50(70.5) 1.41;1.39 0.61 -0.00 O.T2

- E4 37. 2S 59.94 2.18 0 gravel > lOt -0.50(41.2) -0. 72;-0.85 1.52 0.53 2.60 ES 0.03 98.33 0.02 1.61 sand 0.60(69.9) 0.68;0.91 1.39 2.81 36.32

. •*• '

-- f

Sediment Analyses - Cape Cod Bay (cont •d) - 4 Standard Deviation \ Gravel \ Sand \ Silt \ Clay Sediment Major Mode Median;Mean (sorting) Sample (< -1 0) (-1 -40}' (4-80) (B - 10 0) Class 0 {*) 0 0 0-units Skewness Kurtosls

OD14-E1 IB 10.15 60.94 28.90 clayey silt 4.50(29.7) S.95;6.69 2.72 0.43 -0.11

E2 D 7.80 64.35 27.85 clayey silt 5.50(18.9) 6.47;6.92 2.66 0.26 0.21

E3 O 6.43 71.09 22.48 clayey silt 5.50(34.5) S.91;6.81 2.76 0.67 1.30

E4 13 6. 84 68.14 .25.02 clayey silt 6,30(23.4) 6.27;6.90 2.67 0.49 0.4?

E5 D 21.84 55.51 22.63 sand silt clay 4.60(20.2) 5.54;5.98 3.03 0,28 0.11

0918-E1 T) ' 7.28 66.46 26.22 clayey silt 4.50(34.3) 5.6S;6.S4 2.54 0.44 -0.24

E2 I 19.85 57.69 22.49 clayey silt 4.50(22.6) S.45;6.20 2.74 0.49 0.37

E3 D S.24 . 65.30 29.40 sandy silt 5.60(22.6) . 6.56;7.10 2.49 0.36 0.26

• E4 D 7.82 74.22 17.90 clayey silt 5.50(33.8) S.77;6.31 2.21 0.55 1.17

E5 D 4.76 68.94 26.64 clayey silt 5.00(22.5) 6.15;7.00 2.85 0.5ft 0.63

0922-E1 ' 0 4.83 68.68 26.47 clayey silt 4.50(34.4) S.9S;6.69 2.59 0.48 0.07

E2 0 4.63 55.57 29.80 clayey silt 4.80(23.5) 6.24;7.01 2.75 0.38 0.00

E3 X 3.18 68.82 28.01 clayey silt 4.60(29.1) ' 6.07;6.91 2.76 0.46 0.04

ES D 9.56 66.51 23.86 clayey silt 4.50(35.2) 5.34;6.43 2.73 0.56 0.36

0926-E1 X 46.18 39.24 14.58 - silty sand 3.60(37.9) 4.17;5.24 2.76 0.76 1.47

E2 T 45.41 44.83 9.70 silty sand 3.80(26.7) 4.1BJ4.73 2.21 0.53 0.65

E3 C 34.45 55.92 9. 57 Silty sand 4.20(26.4) 4.59;5.10 2.25 0.50 1.02

E4 ^^ti. 47.20 36.45 15.85 silty sand 3.00(22.9) 4.11;S.OO 2.93 0.59 0.71 112 Sediment Analyses - Cape Cod Bay (cont'd) - 5

Standard Deviation * Gravel * Sand \ Silt * Clay Sediment Major Mode Median;Moan (sorting) Sample (< -1 p) (-1 . A 9) (4 - 8 p) (8 - 10 0) Class 0 (*) 0 0 0-units Skevmess KurtosiS

10I2-E1 0.17 67,60 20.99 11.04 silty sand 0.80(27.5) 1.93;3.23 3. OB 0.51 -0.15

E2 0.10 88.59 7.00 4.28 sand 1.50(53.1) 1.65:2.22 2.12 1.27 6.54

ES 0 6.00 62.58 31.36 clayey silt 5.80(17.3) 6.75;7.17 2. SB 0.27 0.02

1016-E1 0 6.62 68.37 24.99 clayey silt 4.60(24.8) 6.20;6.B5 2.68 0.48 0.21

• E2 0 22.56 59.14 18.28 sandy silt 4.80(18.3) 5.S3;S.99 2.64 0.44 0.61

E3 0 8.64 72.00 19.35 clayey silt 5.30(22.9) S.94;6.49 . 2.47 0.54 1.05

E4 0 13.92 66.39 19.67 clayey silt 4.60(21.4) 5.90;6.28 2.50 0.34 0.34

ES 0 9.57 . 66.27 18.91 clayey silt 4.60(23.7) 5.61:6.18 2.56 0.47 0.82

1020-E1 0 '3.01 74.97 • 21.98 clayey silt 4.90(23.1) 6.1S;6.70 2.28 0.50 0.47

E2 0 11.07 63.43 25.49 clayey silt 6.30(18.9) 6.34;6.S2 2,66 0,07 0.03

E3 " 0 4,80 70.70 24.50 clayey silt 4.70(21.9) 6.27;6.73 2.29 0.41 0.18

E4 . 0 6,01 69.47 24.53 clayey silt 4.60(25.3) , 6.10;6.58 2.31 0.38 > 0.07

ES 0 2.45 71.36 26.19 clayey silt 5.10(23.2)' . 6.26;6.B7 2.46 0.44 0.77

1024-E1 0 29.49 51.33 19.14 sandy silt 3.80(28.9) 4.81;5.76 2.54 0,52 0.25

E2 0.04 8.B5 67.78 23.31 clayey silt 4.60(26.0) 5.91;6.46 2.51 . 0.41 -. 0.61

E3 •0 JO. 76 70.28 18.95 clayey silt 4.60(29.3) S.S3;6.19 2.35 0.58 l.OS

E4 0 • 13.11 67.29 9.09 sandy silt 4.50(43.4) 4.88;5.97 2.67 0.66 1.09

ES 0 20.85 52.80 15.59 sandy silt 4.20(24.0) 4.78;5.42 2.50 0.47 0.57

S

„ Sediment Analyses - Cape Cod HKJV (CTlt'd) - 6 Standard Deviation * Gravel * SOSK % Silt * Clay Sediment Major Mode Median;Mean (sorting) Sample (< -i 0) (.] - t an f4 - B 01 (8 - 10 0) Class P (*) (B 0 - • • ' ' '0-units ' 'Skewness Xurtosis

1028 -El 2.99 75.B2T 12.32 • 8,81 sand 1.40(36.4). 1.66;2.70 2.86 0.68 1.08

E2 0.14 71.ZTT 18,52 10.14 silty sand 3.40(43.0) 3.47;4.20 2.24 0.78 1.73

E3 0.32 58. 2T. 18.21 13.24 silty sand 3.20(35.6) 3.43;4,44 2.80 0.76 • 1.66

E4 0.05 Tl'.tE 18.96 9,83 silty sand 3.50(48.9) 3.56;4.26 2.16 0.83 1.96

ES 1.48 70.tr 18.23 10.14 silty sand 3.40(27.4) 3.18;3.7S 2.64 0.51 0.63

1110-E1 0,04 99. S4- 0.01 0 sand 0.60(65.2) 0.73;O.S4 0.70 0.50 1.97 E4 25,16 74. OS 0.81 0 gravel T 10* -0.50(51.9) -O.S3;-0.68 1.26 0.26 3.32 -ES 18.07 76. 3T 1.56 4,03 gravel > 10* -0.40(36.6) 0.15:0.61 2.47 1.35 8.03 1114-E1 .0 - 9.3T 68.74 21.91 clayey silt 4.60(31,9) 5.41;6.43 2.73 0.62 0.64 E2 0 14.49" 65.24 20.26 clayey silt 5.80(24.0) 5.94;6.48 3.08 0.47 0.92 E3' 0 ' 28. 7T 51.33 19.97 sandy silt 6.30(15.7) 5.S7;S.86 2.96 0.32 0.09 E4 •0 21.11. 63.66 15.21 sandy silt 5.50(31.8) 5.4S;5.82 2.84 0.52 1.29 ES 0. 22.21 59.96 17.82 ' "sandy silt 5.50(21.4) " S.49;5.86 2.85 0.39 0.65 1118-E1 0 6.54- 66.46 26.95 clayey silt 4.70(20.8) 6.33;6.90 2.58 0.47 0.26 E2 0 12.79 . 67,78 19.41 clayey sitt 5.10(20.9) 5.BB;6.17 2.49 0.2S 0.67 E3 0 16.10 69.02 14.87 sandy silt 5.40(23.8) 5.58;5.87 2.62 0.42 1.40 E4 0 7.24. 68.59 24.15 clayey silt 4.60(22.8) 6.34;6.71 2.65 0.42 0.48 £5 0 3.38 74.38 22.23 clayey silt 4.70(24.5) 6.1l';6.65 2,30 0.53 0.72 113 Sediment Analyses - Cape Cod Boy (cont'd)

Standard Deviation. \ Gravel \ Sand * Silt I Clay Sediment Major Mode Median;Mean (sorting) Sample (< -1 0) . (-1-4 0) (4-80) • (8 - 10 0) Class 0 \ 0 P 0-units Skewness Kurtosis

' 1122-E1 0 10.88 65.10 23.98 clayey Silt 4,50(27.6) 5.79;6.42 2.42 0,43 0.07

E2 0.01 ' 9.02 68.61 • 22.33 clayey silt 4.60(25.4) S,BS;6.43 2.53 0,43 0.56

: E3 -0 7.54 67.27 25.17 Clayey silt 5,00(20.8) 6.18;6.66 2.50 . 0.33 0.41

'E4 0 5.71 69.53 24.74 clayey silt 4,80(23.0) 6.12;6.69 2.43 0.41 0.33

E5 0 16,39 65,75 17,85 Clayey silt 4,60(26.2) 5.41;5.97 2.50 0,43 0.80

1126-E1 0.14 43.50 36.79 19.53 silty sand 3.50(30.0) 4.42;5.44 2.77 0.43 0.02

E2 0.09 56.09 32.33 11.47 silty sand 1.70(20.2) 3.S3;4.24 2.76 0.36 -0.40

E3 0.51 47.57 34.63 17.27 silty sand 3.50(34.3) 4.12;S.29 3.06 0.63 0.98

E4 0.36 66.73 21,03 11.85 silty sand 1.70(23.2) 3. 02; 3. 88 3.03 0.64 1.21

E5 0 63.62. 24.40 11.96 silty sand . 2.80(28.3) 3.41;4.37 2.86 0.74 1.75

1130-E1 ' 0 88.07 7.06 4.86 sand 3.30(50.7) 3.17;3.S3 1.70 1.40 .8.26

E2 0 77.90 18.50 3.68 . sand 2.80(48.8) 3.1S;S.« 1.77 1.'04 5. IS

• E3 0,31 70.16 25.07 4.40 silty sand 3.00(25.3) 3.12;3.44 2.21 0.60 2.37'

E4 0.12 97.28 1.02 1.58 sand 2i50(80.0) 2.5S;2.71 1.16 2.49 31.31

E5 0 . 03 90.54 7.93 1.49 sand 3.20(51.4) 3.14;3.27 1.13 1.39 12.29

1212-E1 4.23 92.76 1.26 1.71 sand 0.30(44,5) 0.25;O.S4 1.76 N 1.83 17.07

E2 2.02 94.51 1.09 2.36 sand 0.50(45.4). 0.55;0.84 1.84 1.83 16.30

E3 10.04 8,7,87 0.41 1.66 gravel > 10% 0.40(42.5). 0.27;0.3S 1.74 1:74 18.67

E4 0.30 94.77 • 1.63 3.28 sand 0.60(43.8) 1.05;1.51 1.97 ._, , 1.52 10.55 E5 0.16 86,40 7.31 6.13 , sand • 0,60(39.2) 1.19;l.B6 2.30 ' 1.03 3.87

Sediment Analyses - Cape Cpd Bay (cont •d) - 8 • -I * . Standard Deviation \ Gravel % Sand \ Silt ' % Clay Sediment Major Mode Median ;Mean (sorting) Sample (< -1 0) (-1 - 4 0) (4-80) (8 - 10 0) Class . 0 \ 0 0 0-units Skewness Kurtosis

1216-E1 0 6.21 71.59 22.17 clayey silt 4.50(36.9} S.46-,6.49 2.61 0.57 0.50

E2 0 11-30 63.99 24.70 clayey silt 5.70(21.2) 7.06;7.48 2.90 0.19 0.39

E3 0 13.97 63.79 22.23 clayey silt 6.10(22.2) 6.15;6,51 2.67 0.29 0.49 E4 ' 0 11.75 65.40 22.62 clayey silt 4,50(27.0) 5.82;6.39 2.42 0.41 -o:os

•E5 0 5,07 70.19 21.73 clayey silt ' 6.40(26.7) 6.40;6.68 2.39 0.27 0.85 J

1220-E1 9.68 75.94 7.60 3.77 sarid . 1.50(39.6) 1.41;1.65 2.54 0.66 3.17

E2 0 2.91 71.46 . 25.62 clayey. silt ' 4.80(23.4) 6.28;6.81 2.36 0.42 0.34

E3 0 5.41 64.10 30.49 clayey. silt 4.70(20.5) 6.52;7.07 2.71 0.32 0.01

-.E4' 0 . 7.21 66.15 26.62 clayey silt 6.40(19.3} 6.51;6.8S 2.41 0.31 0.26

ES 0 " 3.51 68.22 31.77 clayey. silt 4.60(24.5) 6. 36; 6. 86 2.44 0.39 0.16

1224-E1 - 0 27.65 54.22 18.10 sandy silt 4. 20(34. 3) 4.63:5.63 2.53 0.65 0.77

E2 0 14.79 61.96 23.24 clayey silt 4.50(21.7) S.89;6.43 2.62 0.43 0.28

E3' 0 17.06 ' 61.05 21.87 clayey silt 4.50(29.9) S.22;6.16 2.68 0.52 0.46

E4 0 26. SI 56.48 16.59 sandy silt 4.30(28.9) 4. 82; 5. 69 2.59 0.61 1.14

E5 0 2S-50 53.01 17.48 sandy silt 4.30^10.3) - 4.68;5.59 2.60 0.63 1.05

112S-^ 0.09 61.2* 23.66 14.98 silty sand 2.60(29.8) 3.38;4.47 2.95 0.60 0.60 E2 0.02 72.15 15.73 12.10 silty sand 2.70(37.0) 3.16;4.10 2.58 0.73 . 1.21 E3 0 6= .74 20.94 13.29 silty sand 3.40(40.6) 3.60;4.48 2.53 0.68 1.02 E4 0 6S.20 20.76 9.99 114 silty sand 3.00(25.9) 3.18;3.87 2.54 0.59 0.76 Sediment Analyiei - lap* Cod Bay [conl'd) - 9

Standard Deviation *'Crave3 * Sand * Silt % Cl*y Sed latent Major Mode MsdianjMesn (sorting) Sample (< -1 0) (-1 - 4 0 (4 - 8 fl) (8 - 10 0) Class 0 * t t> 0-units Skevnesa Kurtolii

1212.E2 0.08 95.72 1.12 3.05 land 2.50(83.8) 2.54;2.80 1.48 2.21 20.47

J310-E1 0.3-7 99.81 0 0 sand 1.30(54.6) l.H',1.10 0.70 0.10 0.70 i " n 0.02 98.98 0.99 0 land 1.40(68.1) l.SO;1.28 0.67 0.37 4.4-j, ; » 0.05 9B.60' 1.34 0 • sand 1.50(69.0) 1.57;1.6J 0.78 0.76 7.77 | E4 0.20 98.41 O.SB 0.99 sand 0.50(75.1) 0.39;0,4B 1.22 3.07 47.08 ;

- ES 16.40 72,59 0.13 0.86 (ravel > 10V •12.40(14.6) -0.57;-0.59 1.49 1.B4 26.61

1314-E1 0 12.34 63.89 23.73 clayey silt 4.50(26.3) 5.81-.6.50 2.66 0.50 0.30

E2 0 44.60 37.05 i 18.34 illty sand 3.60(35.9) 4.21;S.42 2.99 0.69 1.00 v E3 o 44.88 34.91 20.19 iind silt cliy 3.10(16.2) 4.34;5.19 3.26 0.31 -0.27

E4 0 11.65 64.14 24.20 clayey lilt 6.40(23.6) 6.41;6.76 2.56 0.33 0.39

ES 0 ' 7.25 68.97 23.76 Clayey silt 6.40(22.8) 6.25;6.7S 2.59 0.43 Q.6D

1318-E1 0 7.55 73.74 18.69 clayey lilt 4.60(29.5) 5.72;6.31 2.32 0.57 0.69

E2 0 7.29 71.46 21.26 Clayey silt 5.50(37.7) 6.31;7.22 2.65 0.44 O.B7

E3 0.09' 6.88 73.26 19. 7S clayriy lilt 4.70(18.7) 6.79;6.7B 2.40 0.42 1.14

E4 0 7.64 66.09 26.26 clayey lilt 4.70(22.7) 2.45 0.30 i 6.21;6.68 0.02 ! 0 3.89 66.82 29.29 clayey silt 5. 60(23. 5) 6.66;7.14 2.33 0.31 0.13 ii

i Sediment Analyses - Cape Cod Bay (cont'd) , 10

Standard Deviation % Gravel \ Sand t silt * Clay Sediment Major Mode Median;H ea n (sorting) S*>ple (< -1 0) (-1 - 4 J (4 - 8 0) (8 - 10 0) Class 0 \ P > p-units SVoxnesi Kiirlosil

. 1S22-E1 0 12.04 68.37 19.55 clayey lilt 4.50(32.8) 5.31;6.22 2.58 0.62 0.9D

E2 0 B.76 62.75 28.50 clayey silt 4.70(22.0) 6.24;6.72 2.B9 0.20 0.07

E3 0 30.23 64.63 25.07 clsyby lilt 4.60(24.1) S.96;6.52 2.48 O.IB 0.10 ! '0 11.69' 66.10 22. IS clayey silt 4. SO [28. 4) S.60;6.S7 2,53 0.4S 0.04

j ES 0 11. 23 59.82 18.94 clayey lilt «. 50(25. 3) 5.82;6.29 2.37 0.51 0.60

j 1SI6-E1 0 74.80 17.01 8.17 silty land 3.50(73.0) 3.63;4.27 1.89 1.12 4.24

E2 0 • 50.51 40.17 9.33 ' *llty land .3.60(44.4) 4.0314.69 1.96 0.6B 1.49

E4 0 • 67.15 20.27 12.59 silty sand 3.40(39.9) 3.55;4.44 2,52 0.73 1.33

j EE 0 75.64 14.42 9.88 sand 2.60(40.2) 3.05;3.84 2. 35 0.81 1.74

\ 1330-E5 0 95.49 O.B1 3.68 sand ' 2.50(77.2) 2.43;2.69 1.6S l.BI 15.31

1 1«13-E1 28.03 71.51 0.45 0 - -0.50(50.6) -0.57;-O.S5 0.91 0.44 4.07

! E2. •14.25 65.70 0.01 0 - -0.50(60.1) -0.40;-0.41 0.79 -0.23 1.23 I ! 4. IS 95.17 0.64 0 sand -0.40(55.4) -0.15;-0.06 0.83 l.OB 12.47 1 • E4 2.69 97.27 0.01 0 sand 0.40(47.5) 0.35-.0.43 0.95 0.34 0.79

j - BS 9.92 B8.1B 0.77 1. 10 sand -0.40(56.2) -D.!7;-0.04 1.50 2.26 26.83

1 U16-E1 0 25.13 52.06 22.77 land silt clay 3.70(23.7) 5.50;6.18 2.66 0.40 -0.19

E2 0 27.86 54,27 17.86 sandy silt 3,80(19.4) 5.47;S.B6 2.69 0.33 0.32

E3 0.10 34.47' 49,99 15.41 sandy Silt 3.50(26.3) 5.40;S.72 2.59 0.44 O.SB

E4 0 33.41 47,15 19.43 landy silt 3.50(24.8) S.37jS.Bl 2.69 0.38 0.20 ES 0 19.51 S9.32 21.15 clayey silt 6.40(22.0) 6.02;6.32 2.69 0.36 ' 0.49

115 Sediment Analyses - Cape Cod Bay (cont'd) 11 Standard Deviation \ Gravel % Sand • I Silt % Clay Sediment Major Mode Median ;Mean (sorting) Sample (< -1 0) C-l - 4 0) (4 - 8 g) (8 - 10 0) Class 0 * 0 0 0-units ' Skewness Kurtosis

'1420-E1 0 17,. 66 58.90 23.41 clayey silt -4.40(23.5) 5.61;6.32 2.57 0.41 -0.10 E2 . 0 ' .ins 68.82 19.68 clayey silt 4,60(23.9) 6.06;6.31 2.56 0.34 0.58

S3 0 SO. 59 36.54 12.58 silty ssniJ 2.90(25.0) 3.98;4.78 2,66 Q. 69 1.S6 / E4 0 22.57 54.13 23.28 ' sand silt clay 4,50(15.9) 5.79;6.20 2.77 0.32 ' 0.08 .

ES 0 • 5.01 70.00 24.98 clayey silt 4.60(26.3) 6.1B;6.75 2.51 0.24 0.49

1424-El' 0 26.56 59.49 13.94 sandy silt , 4.30(31.8) 4.73;5.47 2.23 0.64 0.94 E2 0 ' 14.08 ' 66.93 . 18.98 clayey silt 4.50(27.0) S.63;6.07 2.18 0.31 -0.32 E3 0 27.08 56,72 16.18 sandy silt 4.10(21.7) S.12;5.76 2.70 0.58 1.19 E4 0 22.05 69.80 8.17 sandy silt 4.60(41.1) 4.68;S.19 2.29 1.27 6.44^ ES 0 36.76 46.75 16.47 sandy silt 3.60(33.5) 4.61;5.58 2.66 0.66 1.18

. 1428-E1 0 ' 64.05 24.12 11.80 silty sand 3.50(42.1) 3. 65; 4. SO 2.46 0.83 1.93 E2 0.13 70.85 17.04 11.95 silty sand 3.50(54.3) 3.61;4.S1 2.76 0,89 2.87

E3 65.75 24,79 5.93 3.52 gravel > 10% 3.50(6.8) -2.12;-0.57 3.16 0.87 2.47 E4 0.04 79.09 13.74 7.10 sand 3.10(43,5) 3. 22; 3. 78 1.98 1.01 3.79 ES 0.38 80.63 12.12 6.87 sand 2.50(46.1) 2.73;3.35 2.25 0.91 . 3.25

1510-E1 0.36 99.62 0 0 sand 1.50(73.9) 1.37;1.32 0.59 -0.37 1.32

E4 0.05 99.05 0 0 sand 1.40(64,9) 1.26;1.21 0.62 -0.18 -0.26

ES 0,40 98.43 0.34 0.81 sand 0.40(68.2) 0.32;0.'38 1,17 2.97 48.58

zr

Sediment Analyses - Cape Cod Bay (cont 'd) - 12 Standard Deviation % Gravel * Sand % Silt t Clay Sediment Major Mode Median ;Mean (sorting) Sample (< -1 0) (-1 - 4 0) (4 - 8 V) (8 - 10 0) Class 0 * 0 0 0-units SVewness Kurtosis

1S14-E1 10.76 87.53 ID. 51 1.16 -. -.0.50(59.8) -0.34; -0.14 1.45 . 2.61 34.49 E2 ' 11.56 86.47 31.94 0 - -0.40(54.1) -0.28;-0.11 1.11 0.95 - 5.90 E3 • 8.67 . 91.33, 0 0 sand -0.50(63.9) -0.34;-0.31 0.77 -0.04 2.65

E4 2.SS 95.29 CD. 75 1.37 sand -0. 40(59.4) -0.20;0.14 1.61 2.39 23.88

ES 0 58.02 ZT7.BO 14.14 silty sand 2.70(31.2) 3.64;4.69 2.71 0.57 0.35

1518-E1 0 78.31 12.10 9.59 sand 2.80(43.4) 3.16;3.99 2.39 0.94 2.66 E2 0 15.34 6H..49 18.10 clayey silt 4.60(22.7) 5.64;6.04 2.23 0.35 0.16

E3 0 27.79 SI. S3 20,65 sand silt cloy 3.70(21.5) S.S2;5.97 2.71 0.33 0.15

E4 . 0 24,03 5-4.11 21.86 sand silt clay 3.80(20.3) 5.56;6.12 2.69 0.43 .0.43 ES 0 14.48 SB, 72 26.79 clayey silt 4.50(26.0) 5.90;6.51 2.76 0.38 -0.01

1522-E1 0 21.11 SB. 75 20.11 sand silt clay 4.30(22.9) 5.42;6.11 2.56 0.49 0.25 E2 0 16.16 622.43 . 21.40 clayey silt 4.50(24.1) 5.75;6.24 2.51 0.41 0.39

E3 0 . 19.82 610.52 19.65 sandy silt 7.40(18.0) 5.93;6.1S 2.56 0.16 . 0.17 E4 0 25.97 S56.92 17.10 sandy silt 4.30(2.76) 4.91;5.72 2.53 0.60 1.40 ES 0 16.01 631.34 22.63 clayey silt 4.50(20.9) S.93;6.31 2.46 0.32 0.14 1526-E1 0 57.14 228. 4S 14,41 silty sand 3.50(54.9) 3.88;5.03 2.56 0.78 1.44 E2 0 58.95 219.12 11.92 silty sand 3.50(51.1) 3.65;4.80 2.50 0.98 3.60 E3 0 46.49 4CD.18 13.31 116 silty sand 3.60(41.9) 4.18;S.08 2.37 0,78 2.19 E4 0.10 58.23 2H.48 16.21 silty sand 3.50(47.9) 3.85;S.OO 2.73 0.70 1.09 5*dl«ent Analyiei • C»pe Cod Bay, (cont'd) - IS

Standard Deviation \ Gravel t Sand \ Silt \ Clay Sedlmnt HIJOT Mode Median jHeafl (sorting) Sanole (< -1 0) (-1 - * 0) (4 - B f) (B - 10 0) Clan 9 \ e e . fl-uniti SVeimess Kurtosli

1S30-E2 0 97.72 2. 25 0 land 1.60(56.5) 1.85;1.93 0.7(. 0.45 1.64

El • 0 99.96 0.01 0 land 1.50(74.0) 1.61;1.67 0,58 0.18 0.51

1608-E1 3.14 94.97 0.47 • . I.J8 ' und 1.30(41.0) 1.05;1,13 1.S2 !.61 17.89

El 0.11 99.84 0.02 0 »and 1.60(51.3) 1.66;1.67 0.7B -0.03 -0.20 • /

El \.OT ' • 97.72 L.IS 0 »nd 0.90(43,0) 0,91;0.93 0.96 0.2B 1.66^

E4 0.35 98.61 1.01 0 sand 1.20(46.6) 1.16;1.21 0.89 0.37 1.47

ES 0.42 97.79 o.so • 1.2S und 1.10(41.8) 1.19:1.40 1.45 . . 1.73 18.78

1612-E1 O.OS 99.92 0 0 land 0.50(76.6) 0.48;0.50 0.61 0.52 S.04

1 E2 0.09 98. S9 0.16 1.14 s»nd 0.60(64.3) 0.74;0.93 1.24 2.82 40. B9 El 0.07 98. 42 0,08 1.41 sand 1.30(55.8) 1.1!;1.23 1.10 2.59 14.94

E4 0.11 98.55 1.33 0 sand 0.40(55.7) 0.2S;0.27 0.84 0.85 7.48

• ES B.S3 90.66 o.ai • o jmd -0.50(66.1) -0.37; -0.28 0.77 1.10 11.60

I616-E1 . 0 49.33 35.43 15.20 silty sand 3.50(44.4) 4.09;5.21 2,62 • 0.72 1.15

E2 0.28 24.31 50, SO 24.67 und lilt clay 4.40(19.7) S.SO;6.07 3.02 0.24 0.13 '

E3 0 SB. 24 27.36 14.38 illty s»nd 3.40(34.2) 1.76;4.80 2.69 0.62 1.02

E4 0 48.19 34.09 17.71 illty land 3.50(31.5) 4.19;5.25 2.86 0.46 0.43

E5 0 28. 57 51.09 20.13 sand lilt clay 3.70(23.0) 5.3SJ5.90 2. SB 0.34 0.06

1 t Bedinttlt Analyses - Cape Cod Bay (cont'd) - • 14

Standard Deviation \ Gravel t Sand * 5111 \ Clay Sediment Major Hods Median: Mean (sorting) Sample (<•-! «) (-1 - 4 0) (4 - 8 0) (8 - 10 0) Clm e \ B 0 0-unit! Skevness (urtosls 1620-E1 0 43.16 39.31 17.50 lilty land 3.50(28.6) i 4.40;5.3S 2.75 0.46 0.09 E2 ' 0.0! 76.48 52.51 10.95 landy silt 4.00(22.6) S.15;5.94 2.77 0.3B 0.10

El 0.21 47.41 . 39. 7S 12.62 silty sand 3.50(36.4) 4.17;S.03 2.49 0.50 0.89 1 E4 2.12 39.40 19.94 18.34 silty sand -0.50(18.3) 4.74;4.59 4.03 0,18 -0.64 ES 0 31.52 47.45 18.97 sandy lilt 2.70(18.0) S.01;5.61 2.72 . " 0.37 -0.02 '.

1624-Et 0 . 60,37 35.58 14.03 iltty sand 1.60(54.0) i. SI -,4.52 2.64 O.M 0.65

E2 0 30.19 S2.40 17.35 sandy jilt 4.10(31.2) 4.63;5.S7 2.60 0.60 0.63

E3 0.01 65.98 25. BB 9.96 silty sand 2.60(37.8) 3.23:4.17 2.43 0.57 0.49

E4 0.06 43. SB 40.49 15.45 slltv land 3.20(20.6) 4.31;5.10 2.83 0.55 0.80 t ES 0.06 93.64 3.71 2.57 sand 1.60(56.4) 1.83;2.19 1.65 1.75 13.95

1628-E1 0.09 76.92 15.33 7.68 land 3.50(66.9) 3.59;4.03 2.05 0.8D 3.31

E2 -0.12 60.54 29. Bl . 9.51 silty land 3.50(26.4) 3.60;4.06 2. SB 0.43. 0.39

El 0 61.07 29.08 9.83 tilty land 3.50(46.7) S.7B;4.53 2.14 0.71 1.52

E4 0 41.15 39.58 19.27 illty land 1.60(31.4) 4.44;5.51 2. BO 0.53- 0.22

ES 0.01 85. S4 11.19 3.24 sand 3.40(4.16) 3.15;1.29 1.69 0.99 6..ZS. -

1710-E1 1.57 97.53 0.91 0 sand 0.60(50.0) 0.92;0.93 O.B1 '0.22 1.18

El 0.0! 98. S7 0.14 0.93 land 1.10(53.8) 1.03;!.. 13 1.11 .2.66 41.27

E4 0.12 9B.54 0.17 1.15 land 1.10(53.4) 1.03;l,J4 1.20 2.63 18.16 ES 0.25 98.85 0.04 0.84 sand 1.00(52.4) 1.00)1.10 1.11 2.71 44.21

117 Sediment Analyses - Cape Cod Bay (cont'd) - IS Standard Deviation \ Gravel \ Sand % Silt % Clay Sediment Major Mode Median; Mean (sorting) 0-units Kurtosis Sample (< -1 0) J-l - 40) (4-80) (8 - 10 0) Class 0 \ 0 0 Shewness

1714-E1 13.64 86.33 0 0 - -0.40(49.7) -0.25; -0.23 •0.81 0.05 0.46 E2 . ~y.io 96.20 0.04 0.64 sand -0.30(54.7) -0.J2iO.00 1.08 2.79 50.17 E3 0.95 98.38 0.01 0.65 sand -0.20(51.6) -0.10;0.10 1.08 2.67 47.93

E* 0.95 ' 97.42 1.64 0 sand -0.30(41.8) 0.22;0.46 1.19 _"0.72 ' 3.82

ES 5.20 - 91.34 1.18 2.26

1718-E1 0 50.72 32.93 16.36 silty sand 3.50(34.6) 4,04;5.07 2.59 • 0.50 0.05

E2 , 0 43.30 40.78 . 15.92 silty sand 3.60(28.0) 4.31;5.3S 2.98 0.69 1.22

E3 0 61.91 27.06 11.02 silty sand 5.50(44.4) 3.74;4.fil 2.29 0.62 0.65

'ES 0 61.75 30,35 7.90 silty sand 3.50(34.3) 3.6S;4.33 2.35 0.52 0.51

1722-E1- 0 60.74 29.06 10.16 silty sand 3.50(55.2) 3,82;4.63 :.04 0.80 1.65

E2 0.07 41.27 45.75 12.89 sandy silt 3.60(29.8) . 4.40(5.13 2.46 0.54 0.99

E3 0 57.46 29.67 ' 12.62 silty sand 2.90(50.7) S.70-,4.63 2. 52 0.64 o.fs

ES 0.07 59.46 29.72 10.73 silty sand 3.50(40.1) 3.77;4.48 2.22 0.70 1.36

1726-EJ 0 30.38 52.11 17.48 sandy silt 3.80(23.0) 4.96;5.S9 2.56 0.37 0.21 1 E2 o 46,30 34.10 19.56 silty sand 3.30(20,6) 4. 26; 5.23 3.01 0.43 -0.18

. E3 0 41.37 45.14 13,47 sandy silt 3.60(29,9) 4.40;5.19 2.52 0.57 1.20

E4 0 61.55 29.70 8.69 silty sand 3.50(45.5) 3.76;4-39 2.09 0.77 1.97

ES 0 34.33 51.80 13.86 sandy silt 3.80(32.0) 4.S6;S.47 2.58 0.76 1.9S

f

Sediment Analyses - . Cape Cod Bay (cont'd) -. 16

Standard Deviation \ Gravel V Sand \ Silt \ Clay Sediment . Major Mode Median; Mean (sorting) Sample '(-I - 4 0) (4-80) (8 - 10 0) ' Class 0 ' % 0 0 0-units SVewness Kurtosifl 1730-E2 1.18 97.21 1.58 0 sand 1.50(52.8) 1,46;1.48 0,91 0.12 • 1.93 E3 0 99,99 0 0 Sand 0.60(61.0) 0.81;0.91 0.67 0.39 1.73 1808-E1 0.86 98.06 1.05 0 sand 1.60(47.4) 1.72;1.71 0,88 -0.12 1.30 E2 6.63 91.65 1.69 0 sand 0.80(37.6) 0.73;0.74 ' 1.21 0.36 2.92 E3 0.03 95.09 1^24 3.62 sand 1.80(41.8) J.85;2.13 1.86 1.62 12.24 ES 0.86 94.29 0.72 4.1Z sand 1.30(45.1) 1.13;1.47 2.10 1.68 12.06 1812-E1 0 98.99 0.99 0 sand 0.70(57.5) 0,87;0.96 0.72 0.61 4.69 E2 2.28 97.71 0 0 sand 0.50(39.2) 0.52;O.S7 1.00 0.23 0.43 E4 0.06 99.92' 0 0 sand 1.50(72.4) 1.3S;1.33 0.62 0.12 1.9S 0 E5 99.98 0 0 • sand 1.40(60.3) 1.14; 1,14 0.67 0.15 1.12 1816-E1 2.68 95.14 0.97 1.16 sand 0.30(46.1) 0.26;0.49 1.53 i.ee 20.22 E2 4.03 94.22 1.7S 0 sand -0.30(37.3) 0.31;0.46 1..13 0.47 1.62 1.16 E3 98.05 0.97 0 sand 0.50(55.1) 0.60;0.66 0.90 0.74 7.30 O.S4 E4 95.77 1.21 2.46 sand 1.90(43.0) 1.92;2.12 1.69 1.59 13.69 O.O3 E5 78.97 12.95 . 8.03 sand • 2.50(46.0) 2.71;3.S3 2.41 0.84 1.99 1820-E1 0 65.26 23.77 10.94 silty sand 3.40(35.9) 3.55;4.36 2.48 0.67 1.19 E2 0 60.26 26.90 12,83 silty sand 2.70(31.1) 5.52;4.56 2.1ft 0.60 0.77 E3 0.03 67.10 21.74 11.11 silty sand 3.10(32.2) 3.aD;4;29 2.48 0.57 0.33 E4 0 68.33 22.65 9'°° 113 silty sand 3.40(40.6) 3.52;4,25 2.17 0.74 1.41 ES 0 44.81 43. OS 12.12 silty sand 3-SQfXfi 0\ A -91 . r * » Sediment Analyses - Cape Cod Bay (cont'd) - 17 Standard Deviation % Gravel \ Sand \ Silt * Clay Sediment Major Mode Median; Me an (sorting) Sample (< -1 P) (-1 '- 4 0) (4-80) (8 - 10 0) Class 0 * 0 0 0-units SVowness fcntosil 1S24-E1 0 51.19 33.46 15.30 silty sand 3.50(31.2) 4.00;4.97 2,58 o.so 0.09

E2 0 54.27 '30.60 15.12 silty sand 2.80(25.5) 3.80;4.82 2.81 0.49 0.17

E3 0 57.61 25.83 16.54 silty sand 3.30[30. 9) 3.74;4.99 3.06 0.60 0.74

E4 0 45.32' 39.31 '15.35 silty sand 3.50(1.88) 4.31;5.12 2.91 • 0.28 -0.50

E5 0 55.56 ' 29.13 15.30 silty sand 3.10(23.7) 3.74;4.6B 2.78 0.48 -0.02

182B-E1 0 46.19 37.53 6.24 silty sand 3.50(35.1) 4.22;5.20 2.54 O.SO 0.13

E2 0 29.79 51.21 18.98 sandy silt 3.90(23.5) 4.98;5.77 2.71 0.44 0.36

E3 57.23 41.37 0.81 0.56 gravel > 10* -1.50(57.2) -1.13;-0.2S 1.82 0.87 6.04

E4 0,50 97.93 0.20 1.35 sand 0.70(56.5) 0.84; 1,02 1.33 2.61 34.76

. E5 0.06 97.08 . 0.27 2.59 sand 'l. 30(53. 7) 1.13;1.30 1.39 1.92 17.74

1910-E1 - 24.32 74.84 0.82 .0 - 0.40(36.9) -0.03;-0.19 1.33 ' -0.05 0.85

E2 4.48 95.48 0.01 0 sand 0.20(43.4) 0.22;0.31 O.frS 0.39 1.11

E3 2.22 96.29 1.48 0 sand 0.80(45.3) - 0.97;1.03 0.99 0.28 2.04

E4 2.18 98.18 0 0 sand 1.50(55.9) 1.22;1.04 0.92 -0.35 0.18

E5 0.41 98.51 1.07 0 sand 0.80(46.9) 0.91;0.9S 0.87 0.32 2.18

1914-E1 7.16 91.39 l.*4 0 sand 0.50(79.2) 0.43;0.37 0.93 0.11 7.50

E2 0.19 . 98.75 0.11" 0.94 - sand 0.60(56.0) 0.80;0.94 1.18 2.70 41.91

E3 • 0.15 92.18 2.33 5.33 sand 2.40(53.3) 2. 29; 2. 64 2.06 1.38 8.06

E4 0.56 97.95 0.54 l.« sand 0.90(50.9) 1.01-.1.18 1.57 2.43 30. S6 E5 9.88 .89.27 0 0.83 sand 0.60(45,9) 0.64;0.62 1.36 1.56 23,16

Sediment Analyses - Cape Cod Bay (cont'd) - IS,

Standard Deviation . \ Gravel * Sand * Sits % Clay Sediment Major Mode Median; Mean (sorting) Sample (< -1 0) C-l - 4 0) (4 - 8 an (8 - 10 0) Class 0 \ 0 0 0-units Skewness Kurtosis

1918-E1 0 80.16 10. as 6.85 sand 2.70(45.6) -3.09;3.81 2.17 0.94 2.60

£2 - 0 78.18 13.53 8.25 • sand 2.60(48.6) 3.02;3.81 2.18 0.91 2.46

E3 0 • 91.27 r 3. 577 5.32 sand 2.50(58,6) 2.54;2.95 2.01 1.32 7.25

E4 0.05 77.21 12.377 10.38 sand 2.90(40.9) 3.20;3.96 2.32 0.84 1.93 j ES 0 62.34 25,53 12.09 silty sand 3.40(40,5) 3.69;4.66 2.49 0.67 0.95

1922-E1 0 61.26 27.ST7 11.50 silty sand 3.50(43.9) 3.7S;4.67 2.42 . 0.72 1.26

E2 0.23 50.57 32.CH2- 17.18 silty sand 3.50(34.5) 4.03;5.08 2.62 0.47 0.05

E3 0 57.73 26. 4-r 15.79 silty sand 3.40(32.8) 3.76;4,82 2.65 0.55 0.21 E4 0 54.66 32.4ffi 12.79 silty sand 3.50(43.6) 3.93;4.89 2.41 0.66 0.95 E5 0 57.34 30.SH 12.38 silty sand 3.40(32.9) 3.7B;4.63 2.43 0.57 0.33

1926-E1 0 38.08 47.211 14.68 sandy silt 3.70(36.6) 4.41;S.30 2.35 0,64 0.69 E2 0.02 20.96 ' 58. SB 20.20 ' sand silt clay 4.50(34.3) 4.87;S.91 2.86" 0.59 0.73 E3 ' 0 53.61 32.9-u 13.43 sllty sand 3.40(32.5) 3.92;5.01 2.96 0.77 1.85

Efl 0.05 42,3? 42.74i 14.84 sandy silt 3.80(23.6) 4.34;5.10 2.80 0,53 0.66 E5 3.36 78.55 12.777 5.30 sand 2.20(28.7) 2.15;2.64 2.46 0.68 2.10

1930-E1 0.21 98.27 i.si: 0 sand 0.80(51.1) 0.97;1.0S 0.81 0.62 4.05

E2 0.16 99.82 0 0 sand 0.50(78.2) 0.54;0.61 0.65 0.83 5.94 E3 0.44 99.54, 0 0 sand 0.50(74.2) -1 -i n 0.53;0.57 0.66 0.61 4.87 Sediment Analyses - Cape Cod Bay, (cont'd) - 19

Standard Deviation 4 Gravel \ Sand . \ Silt \ Clay Sediment Major Mode Median; Mean (sorting) Sample (< -1 0) (-1-40) (4-8 0) (8 - 10 0) Class 0 * 0 0 0-units Skewness Kurtosis 2008-E1 0.1S 98.72 l.n o"~ sand 0.60(46.8) 0.92;1.12 1.04 0.34 0.35

-E3 .11.49 86.97 ' 0.14 1.40 gravel > 10\ 0.80(30.1) 0.40;0.48 1.50- 1.11 10.53 '

E4 0.31 96.90 0.41 2.38 sand 2.40(56.7) ' 2.23;2.26 1.56 1.66 16.68 ES 0.47 "•90 0.16 1.39 sand 1.40(59.8) 1.31; 1.36 1.14 1.84 22.01 1.88 2012-E1 0 98.47 i.S1 o sand 1.60(61.8) 1.78;1.87 0.69 0.43

E2 0.79 92.87 6.32 0 sand 2.30(46.7) 2.04;1.97 1.11 -0.01 1.06

E3 0.23 93.88 - S.87 - 0 sand 2.00(44,4) 1.97;1.9S 1.12 -0.05 1.15

E4 7.63 90.20 2.15 0 sand -0.50(46.6) -0.06;0.22 1.20 0.60 2.16

E5 0 95.33 4.66 . 0 sand 2.30(55.8) 2. 18; 2. 20 0.80 0.39 1.85 21. S5 2016-E1 O.OS 95.94 i,64 2.33 sand 2.50(79.0) 2. S3; 2. 74 1.31 2.18

E2 -' " 0.33 98.00 " 1.65 Q sand - 0.70(52.5) 0.85;0.93 O.BS 0.61 4.21

E3 0.92 98.94 18,15 0 sand 1.40(62.1) 1.25; 1.17 0.70 -0.29 1.57

E4 0.12 95.32 ~,12 2.45 sand • 2.50(67.3) 2.54;2.71 1.40 1.63 15.72

E5 0.42 97.84 ffi-fi3 0.89 ' sand 0.50(48.4) 0.70;0.87 1.32 1.71 20.40 2020-E1 0 23.70 5^.67 19.61 sandy silt ' 4.20(27.7) 4,99;5.94 2LS6 0.53 0.21 E2 0.09 ' 67.34 Z?Z-01 8. 55 silty sand 3.40(39.8) 3.54;4.31 2.34 0.59 0.81 E3 0 17.80 -*S;J56 32.62 clayey silt 7.30(17.9) 6.99;7.02 3.12 0.10 -0.44 E4 0.01 83-16 X-34 7.49 sand 2.60(47.9) 2. 96; 3. 59 2.12 1.08 4.04

E5 0 75.73 CS.16 11.10 sand 2.60(41.8) 2.96;3.85 2.50 0.72 1.16

j

Sediment Analysis - Cape Cod Bay. Ccopt'd? - -20 Standard Deviation % Gravel % Sand *- Silt % Clay . Sediment Major Mode Median; Mean (sorting) Sample (< -1 0) (-1 - 4 0) (4 — s 0) (8-10 0) Class "0 * 0 0 0-units Skewness Kurt os is 2024-E1 0.35 69-65 L7t-T72 12.19 silty sand 3.40(29.2) 3.29;4.01 2.80 0.61 0.81 E2 ' - 0 73.86 1*^38 11.74 silty sand 2.40(36.7) 2. 61; 3. 68 2. 8S 0.81 1.82 E3 0 .58.65 3IC2,04 11.30 silty sand 3.50(44.4) 3.82;4.65 2.25 0.60 0.80 .E4 0 35,46 *rr_"06 17.46 sandy silt . 3.60(25.0) 4.77;5.40 2.50 0.39 0.28 ES 1.75 87.27 6=1,85 4.13 sand 0.70(23.9) 1.34;1.86 2.39 0.86 3.45 2028-E1 0 60.51 21.1136 11.10 silty sand 3.50(54.8) 3.83;4.83 2.33 0.76. 1.48

- E2 1.93 ', 75.71 16=L-J29 • 6.08 sand 2.50(37.4) 2. 78; 3. 30 2.32 0.69 2.56

E3 0.03 96.65 l_.4i 3.57 sand 1.50(61.3) 1.49;1.87 1.94 1.88 15.04

E5 0.04 98.22 0^772 1.02 5&nd 1.40(60.5) 1.30;1.40 1.23 2.32 30.83

2110-E1 3.30 95.76 0^,52 0 5 and 1.20(34.4) 0.61;0.61 1.04 0.19 0.70

E2 '1.89 96-37 1-ZT72 0 sand 1.20(43.5) 1.07;1.07 1.01 0.22 1.67

E3 1.59 96.44 1-1.S5 0 sand 0.50(48.6) 0.61;0.69 1.00 0.5* 3.21

E4 0.06 99.94 -. D 0 sand 2.40(61.7) 2.17;2,1S 0.62 -0.12 -0.45 2114-E1 O.S7 • 94.02 5_ZJ39 0 sand 1.80(44.3) 1.88;1.94 1.00 0.23 1.42 E3 3.20 95.68 S-O-IO 0 sand 1.50(41.4) 1.31; 1.26 1.17 0.07 0.99

E4 7.77 90-06 C-S.B7 1.50 sand 2.00(47.2) 1.90;1.84 1.60 0.86 11.88

ES 1.04 91-22 2_S,«3 - 4.31 • and 2.40(36.2) 2.13;2.34 2.13 1.12 6.66 120 - Cape Cod Bay (cont'd) - 21

Standard Deviation \ Gravel * Sand \ Silt * Clay Sediment Major Mode Median ;Mean (sorting) Sanrole (< -1 0) (-1 -40). (4-80) (8 - 10 0) Class 0 0 0 \ 0-units Skewnesj Kurtosls 2118-E1 0.14 78.95 12.00 8.90 sand 3.00(29.8) 2.93:3.3* 2.63 0.62 1.25

E2 ' 0.04 95.29 1,99 2.65. ' sand 0.50(70.4) 0.66;1.10 1.80 1.90 15.43

E3 9.89 88.46, 1.61 0 sand 1.40(39.4) O.BO;0.63 1.26 0.08 0.24

E4 0 98.15 1.07 0.76 sand 2.30(52,6) 2.1S;2.22 1.03 1.98 27.76

E5 0.06 95.09 3.20 1.64 sand 1.50(60.5) '1.71;2.04 1.48- 1.67 14.22

2122-E1 0 71 '.43 18.59 10.04 silty sand 3.40(43.8) 3.49[d.26 2.35 0.84 2.15

E2 0 46.42 33.92 17.66 silty sand 3.50(39.6) 4.14;5.32 2.74 0.57 0'.«7 E3 0 70.18 19.22 10. S9 silty sand 3.40(41.4) 3.49;4.30 .2.52 0.80 2.18

E4 0 61.57 27.13 11.30 silty sand 3.50(47.2) 3.76;4.69 2.44 0.74 1.59

E5 0,09 60.67 28.64 10.58 silty sand 3.50(44.1) 3.76;4.68 2.45 0.79 2.10

2126-E1 1.44 81. 7S 12.01 d.76 send 0.60(35.9) l.Ql;l.« 2.63 0.88 2,55 E2 5.18 84.74 6.31 3.73 sand 0.70(29.9) 0.79; 1.31 2.40 1.05 4.76

E3 0 62.11 28.93 8.93 silty sand 3.50(56.0) 3.80;4.53 2.00 0.90 2.46

E4 0.07 86.20 10.02 3.68 sand 2.50(64.8) 2.73;3.23 1.74 1.39 8,57 E5 0.10 51.22 36.64 12.02 silty sand 3.50(37.8) 4.02;4.82 2.27 0.47 0.40 ' 2130-E2R 0.06 98.86 1.07 0 sand 1.30(52.7) 0.80 0.32 2.84 (above represents sediment sample taken on revisit to this station - original sediment sample was lost)

Sediment Analyses - Cape Cod Bay (cont'd) - • 22

Standard Deviation • % Gravel % Sand \ Silt V Clay Sediment Major Mode Median; Mean (sorting) Sample (< -1 0) (-1 - 4 0) (4-80) (8 - 10 0) Class 0 0 0 * 0-units Skewness Kurt os is 2212-E1 0.12 98.40 1.46 0 send 1.90(50.6) 1,98:1.99 0.77 ' -0.04 1.93 E2 • 0 97.32 2.66 0 sand 1.60(60.4) l.Bl;1.91 0.74 O.S5 2.51

E3 0 99 .96 , 0.01 0 sand 1.50(87.8) 1.47;1.48 O.fifi -0.12 0.41 E4 o 98.82 1.13 0 sand 2.10(35.1) 1.59:1.59 1.02 0.20 1.03 ES 61.55 35.97 2.46 0 gravel > 10* -1.50(61.6) -1.21;-0,37 1.72 O.S3 0.06 2216-E1 0.08 94.33 5.58 0 sand 3.40(46.5) 2.99;2.76 1,04 • -0.25 -0.30 E2 50.46 40.44 4.68 ' 4140 gravel > 10* -1.50(50.5) -0.96;0.54 2.93 0.86 2.88 E3 0.89 96.32 2.78 0 sand 1.00(47.9) 1.08;1.17 0.95 0.59 3.30 ES 0.16 97.62 0.81 1.39 sand 2.50(77.1) 2.5S;2.72 1.12 ' 2.04 25.42 2220-E1 0.29 93.80 2.79 3.07 sand 2.50(56.4) 2.44;2.66 1.63 l.SO 11.47 E2 0.12 94.32 2.40 3.16 sand 2.50(63.0) 2.58;2.79 1.60 1.S7 12,87 E3 o.Ol 92.04 4.12 3.80 sand 2.70(51.3) 2.92;3.2S 1.63 1.S5 10.65 E4 o 94.84 3.09 2.06 sand 2.50(57.7) 2.48;2.69 1.44 1.66 14.28 ES o 81.46 10.91 7.61 sandy silt 2.50(37.90) 3.17;3.58 2.10 1.08 3.85 2224-El o 78.97 13.06 7.94 sand 2.10(29.4) 2.72;3.35 2.31 0.82 2.13 E2 0 65.62 22.46 11.91 silty sand 3,50(49.3) 3.68;4.60 2,32 0.62 0.57 E3 . 0.04 66.98 • 26.17 6.80 silty sand 3.40(42.1) 3.58;4.19 2.05 0.85 2.17 E4 0.01 ,69.79 23.11 7.06 silty sand 3,50(57.6) 1 f\ n 3.66;4.27 1.94 1.00 3.69 1 / E5 0.29 54.94 33.53 11.24 li- Silty sand 3.40(25.0) 3.79;4.44 2.65 n.s? n no Sediment Analyses - Cape Cod Bay- (cont'd) 23

Standard Deviation \ Gravel X Sand % silt \ Clay Sediment Major Mode MedianjMean (sorting) Sample (< -1 0) (-1 - 4 p) . (4-80) (8 - 10 0) Class 0 0 ' 0 V 0-units SVewness Kurtosis

2228-E2 0.14 . 92.75 2.79 4.28 sand 2.50(70.0) 2.6Sj3.05 1.74 1.73 12.23

E5 • 0 97.57 2.42 0 sand 1.20(52.7} 1.08;1.12 0.73 0.31 1.2S

2314-E1 0.35 99.30 f 0.33 0 sand 2.50(76.7} " 2.50;2.45 0.71 -0.79 5.95 E2 O.OS 96.87 3.07 0 sand 1.50(72.8) 1.61;1.73 0.75 0.84 4.58 E5 0.02 97.05 2.92 0 sand 1.50(55.7) 1.62;1.72 • 0.91 0.43 1.52

2318-E1 5.51 93.39 1.07 0 sand 0.50(59.4) 0.4S;0.4S 0.96 0.32 3.96 E3 0 97.70 0.65 • • 1.58 sand 0.70(49.9) 0.99;1.26 1.46 1.98 21.20..,

E4 36.25 61.83 0.71 1.16 - -0.60(49.4) -0.74;-0.40 1.82 1.63 14.54 0.64 2322 El -0.12 62.9.1 25.45 11.48 silty sand 3.40(36.6) 3.63;4.50 2.57 0.96 0.45 . E2 0-09 63.83 26.46 9.60 silty sand 3.40(27.9) 3.48;4.14 2.51 0.18 E3 0 77.37 13.33 . 9.30 sand . 2.70(39.8) 3.12;3.90 2.46 0.90 2.60 E4 0.09 79.87 12.56 7.46 sand 3.40(36.'(1) 3.13;3.57 2.25 0.86 2.69 0.83 ES 0.05 65. 10 ' 24.47 10.39 silty sand 3.50(53.2) 3.72;4.55 2.29 2.20

0 2.72 2326-E1 97.77 0.68 1,51 sand 2.50(80.5) 2.57;2.74 1.10 35.86 E2 0-22 90:20 S.89 3,69 sand 2.60(61.8) 2.75;3.14 1.67 1.51 10.61 ES O.SS 94,54 1.67 3.36 sand 2.50(75.1) 2.52;2.74 1.64 1.73 U.77

2416-E1 0 99.96 0.02 0 sand 1.50(86.0) 1.53; 1.57 0.48 0.29 1.58 E2 0.03 97.96 3.00 0 sand 2.40(66.3} 2.31;2.28 0.67 0.13 1.79

0 1.64 1.88 E5 95.64 0.89 3.45 sand 2.50(69.8) . 2.49;2.7S 15.18

Sediment Analyses - Cape Cod Bay (cont'd) - . 24 ;

\ Gravel \ Sand \ Silt \ Clay Sediment Major Mode Median; Mean (sorting) Samole (< -1 0) (-1 . 4 0) . (4-80) (8 - 10 0) Cless 0 * 0 0. 0-units Skewness Kurtosis 2420-E1 0 99.93 0.06 0 sand 2.50(68.1} 2.30;2.21 0.68 -0.41 0.87 E2 0.03 95.43 1.04 3.50 sand 2.50(78.6) 2.50;2.76 1.61 1.95 16.21 ES 0.06 96.32 1.06 2.54 sand 2.50(64.4) 2.47;2.6S 1.45 1.99 19.12 2424-E2 0 91.84 3.87 4.24 sand 2.60(52.8} 2.80;3.16 1.76 1.S7 10.45 ES 0 90.11 4.79 5.10 sand 2.50(64.4) 2.72;3.18 1.86 l.SS 9.58

Methods^: The coarse fraction (coarser than 4 0) was separated by graded sieves (whole 0-unit intervals! and we:lehed. The fine fraction was analyzed by pipette analysis (whol-e 0-unit intervals).

Data was analyzed by the WHOI Sigma 7 computer. The program is described in Schlee, J., and J. Webster. 1965. "A computer program for grain siie data", kef. No. 65-42, WHOI, Woods Hole, Mass., (unpublished manuscript). Data was interpolated at 0.1 0 unit intervals.

All analysis is in terms of 0-units, not millimeters.

particle diameter (mm)

Exp 1 ana t ion of Re suUsj Sediment class could not be obtained from computer program when the gravel was more than 10*.

122 MATERIAL SYSTEMATIST COLLECTION LOCALITY

Algae Unworked Collection Gray Museum Protozoa Unworked Collection Gray Museum

Foraminifera Unworked Collection Gray Museum

Porifera Dr. Patricia Berquist Representative Dept. of Zoology specimens in Auckland University Gray Museum Auckland, New Zealand

Cnidaria

Hydrozoa Dr. Dale Calder Dr. Calder- to be Marine Research Laboratory deposited in Gray South Caroline Wildlife Museum at later and Marine Resources Dept. date P.O. Box 12559 Charleston, S.C. Anthozoa Dr. Larry Harris Gray Museum Dept. of Zoology University of New Hampshire Durham, N.H.

Nematoda Dr. Duane Hope Unworked collection U.S. National Museum with Dr. Hope Smithsonian Institution

Nemertea Unworked Collection Gray Museum

Platyhelminthes Dr. Louise Bush Gray Museum Dept. of Biology Dr. Bush Drew University Madison, N.J. Arthropoda

Acarina Unworked Collection Gray Museum Amphipoda (less Dr. Allan D. Michael Dr. Michael Caprellidea) UMass Marine Station Gloucester, Mass.

Anomura Dr. Austin Williams Gray Museum U.S. National Museum Representatives in Smithsonian Institution U.S. National Museum

Brachyura Dr. Henry B. Roberts Gray Museum U.S. National Museum Dr. Roberts Smithsonian Institution

7 123' Caprellidea Dr. John C. McCain Gray Museum Marine Biologist Environmental Dept. Hawaiian Electric Co Inc. Box 2750 Honolulu, Hawaii Caridea Mr. Richard Dowds Gray Museum University of North Caroline Institute of Marine Sciences Morehead City, N.C. Cirripedia Dr. Victor A. Zullo Gray Museum Program in Environmental Sciences University of North Carolina Wilmington, N.C. (also unworked collection) Cladocera Unworked Collection Gray Museum Copepoda Unworked Collection Gray Museum Crustacean Unworked Collection Gray Museum Fragments Crustacean Unworked Collection Gray Museum Larvae

Cumacea * Dr. William Gnewuch Dr. Gnewuch Sacred Heart University Bridgeport, Conn. Euphausiacea Unworked Collection Gray Museum .- — Mysidacea Dr. Roland Wigley Dr. Wigley- partially National Marine Fisheries completed- to be Service deposited in Gray NOAA Museum at later date Woods Hole, Mass. Ostracoda Dr. Louis S. Kornicker U.S. National Museum (Myodocopa) U.S. National Museum Division of Crustacea Smithsonian Institution Ostracoda Dr. Joseph Hazel Dr. Hazel (Podocopa) U.S. Geological Survey Nation Museum of Natural History Washington, D.C.

Pycnogonida Dr. Lawrence R. McCloskey Gray Museum Walla Walla College College Place, Washington

124 Stomatopoda Dr. Raymond Manning Gray Museum U.S. National Museum Smithsonian Institution Tanidacea Unworked Collection Gray Museum Isopoda Ms. Margaret A. Mills Ms. Mills 12 Fuller Street Magnolia, Mass. Echinodermata Asteroidea Dr. Frank X. O'Brien Gray Museum Biology Dept. Dr. O'Brien Southeastern Massachusetts University North Dartmouth, Mass. Echinoidea Verified by J. Fell Gray Museum University of Maine Holothuroidea Dr. David Pawson Gray Museum U.S. National Museum Smithsonian Institution (also unworked collection) Gray Museum Ophiuroidea Dr. John Dearborn Gray Museum Dept. of Zoology Dr. Dearborn University of Maine Orono, Maine Aplacophora Mrs. Amelie H. Scheltema Mrs. Scheltema Woods Hole Oceanographic Dr. Patricia Morse Institution Northeastern University Woods Hole, Mass. Nahant, Mass. Ms. Johanna Reinhart Gray Museum American Fisheries Society Ms. Reinhart 1319 18th Street NW Washington, D.C. Pelecypoda Ms. Johanna Reinhart Gray Museum Ms. Reinhart Polyplacophora Dr. Allyn Smith Gray Museum California Academy of Dr'. Smith Sciences Golden Gate Park San Francisco, Calif. Scaphopoda Unworked Collection Gray Museum

125 Oligochaeta Enchytraeidae Dr. Pierre Laserre Gray Museum Institut de Biologie Marine U.S. National Museum Universite de Bordeaux Dr. Laserre Arcachon, (Gironde) France Oligochaeta (less Dr. David Cook Gray Museum • Enchytraeidae} Great Lakes Biolimnology U.S. National Museum Laboratory Dr. Cook Fisheries and Marine Service, Canada Centre for Inland Waters 867 Lakeshore Rd. , P.O. Box 5050 Burlington, Ontario, Canada Polychaeta Ampharetidae Dr. Robert Zottoli Gray Museum Fitchburg State College U.S. National Museum Fitchburg, Mass. Dr. Zottoli Dr. D. Dean University of Maine Orono, Maine " " Aphroditidae Ms. Charlene Long Gray Museum Museum of Comparative U.S. National Museum Zoology Harvard University Cambridge, Mass if Apistobranchidae Ms. Margaret A. Mills Gray Museum Arabellidae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial British Columbia Museum Provincial Museum Victoria, British Columbia Mrs. Hobson Canada Archiannelida Dr. Claude Jouin Gray Museum Universite de Paris Museum National Faculte des Sciences d'Histoire Laboratoire de Zoologie Naturelle Paris 9 Quai Saint-Bernard, Paris Ve France (also unworked collection) Gray Museum Capitellidae Ms. Margaret A. Mills Gray Museum Chaetopteridae Unworked Collection Gray Museum Cirratulidae Dr. Peter Jumars Gray Museum P.O. Box 1529 Dr. Jumars Scripps Institute of Oceanography La Jolla, Calif.

126 Dorvilleidae Mrs. Katharine D. Hobson Gray Museum U.S. National Museum British Columbia Provincial Museum Mrs. Hobson Eunicidae Mrs. Katharine D. Hobson Gray Museum Flabelligeridae Ms. Charlene Long Gray Museum Ms. Long

Glyceridae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial Museum Mrs. Hobson

Goniadidae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial Museum Mrs. Hobson Hesionidae Unworked Collection Gray Museum Lumbrineridae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial Museum Mrs. Hobson Maldanidae Ms. Charlene Long Gray Museum U.S. National Museum Ms. Long Nephtydae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial Museum Mrs. Hobson Nereidae Ms. Charlene Long Gray Museum U.S. Nation Museum Ms. Long Onuphidae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial Museum Opheliidae Dr. C. Raymond Gilmore Gray Museum Nasson College Dr. Gilmore Springvale, Maine Orbiniidae Ms. Charlene Long Gray Museum U.S. National Museum Ms. Long

127 Oweniidae Mrs. Carol Q. Schwamb Gray Museum Marine Biological Laboratory Woods Hole, Mass.

Paraonidae Dr. Meredith Jones Gray Museum U.S. National Museum U.S. National Museum Smithsonian Institution {4 vials of new species Paraonis pygoenigmatica)

Paraonidae Mrs. Katharine D. Hobosn Gray Museum U.S. National Museum British Columbia Provincial Museum Mrs. Hobson

Pectinariidae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial Museum Mrs. Hobson Phyllodocidae Mrs. Pamela Polloni Gray Museum Woods Hole Oceanographic Institution Woods Hole, Mass.

Polynoidae Dr. Lennart Almkvist Dr. Almkvist Dept. of Invertebrate Zoology Swedish Museum of Natural History Stockholm, Sweden

Psammodrilidae Mrs. Katharine D. Hobson Gray Museum U.S. National Museum

Questidae Mrs. Katharine D. Hobson Gray Museum U.S. National Museum British Columbia Provincial Museum Allan Hancock Foundation Dr. David Cook (see Oligochaeta) Dr. J. Maron Ramos Banyuls-sur-Mer, France Mrs. Hobson Sabellaridae Mrs. Katharine D. Hobson Gray Museum British Columbia Provincial Museum Mrs. Hobson Sabellidae Dr. Karl Banse Gray Museum (Euchone) Dept. of Oceanography Mrs. Katharine D Hobson University of Washington (slides) Seattle, Washington

128 Sabellidae Mrs. Katharine D. Hobson Gray Museum U.S. National Museum

Scalibregmidae Ms. Margaret A. Mills Gray Museum

Serpulidae Dr. Dale Straughan Dr. Straughan Allan Hancock Foundation University of Southern California Los Angeles, Calif.

Sigalionidae Ms. Charlene Long Gray Museum U.S. National Museum Ms. Long

Sphaerodoridae Dr. Nathan Riser Gray Museum Marine Science Institute Northeastern University East Point, Nahant, Mass.

Spionidae Dr. James Blake Gray Museum The Pacific Marine Station U.S. National Museum University of the Pacific Dr. Blake Dillon Beach, Calif.

Spionidae Dr. Nancy Foster U.S. National Museum Dunbarton College Washington, D.C.

Sternaspidae Ms. Margaret A. Mills Gray Museum

Syllidae Unworked Collection U.S. National Museum Partially worked up by Ms. Long

Terebellidae Ms. Charlene Long Gray Museum

Trochochaetidae Ms. Margaret A. Mills Gray Museum Bryozoa Ms. Ruth Swanson Ms. Swanson Geology Dept. Wayne State University Detroit, Michigan (also unworked collection) Gray Museum Phoronida Unworked Collection Gray Museum Dr. Russell Zimmer Cataline Marine Laboratory Box 398 Avalon, Calif.

Brachiopoda Unworked Collection Gray Museum

129 Sipunculida Dr. Mary Rice U.S. National Museum and Echiurida U.S. National Museum Smithsonian Istitution (also unworked collection) Gray Museum

Chaetognatha Dr. Harding B. Owre Dr. Owre University of Miami Rosensteil School of Marine and Atmospheric Sciences 10 Rickenbacker Causeway Miami, Fla. (also unworked collection) Gray Museum

Ascidacea Dr. Harold H. Plough Gray Museum Amherst College Dr. Plough Amherst, Mass. (also unworked collection) Gray Museum

Hemichordata Unworked Collection Gray Museum

Pisces Dr. Sanford A. Moss Gray Museum Dept. of Biology Dr. Moss Southeastern Massachusetts University North Dartmouth, Mass.

130 Group: Porifera Systematist: Dr. Patricia Berguist Department of Zoology Auckland University Auckland, New Zealand

Phylum: Porifera Leucosolenia cancellata Scypha ciliata Cliona celata Halichondria bowerbanki H. panicea Haliclona canaliculata H. loosanoffi H. oculata Haliclona sp. Hymemacidon heliophila H. perleve , 'lophon proximum Isodictya deichmannae Microciona prolifera Polymastia robusta Prosuberites epiphytum Suberites ficus Suberites sp. Tedania suctoria

References

131

132 Group: Hydrozoa Systematist: Dr. Dale R. Calder Marine Resources Research Institute P.O. Box 12559 Charlestown, South Carolina 29^12

Phylum: Cnidaria Class: Hydrozoa Order: Anthomedusae/Athecata Suborder: Capitata Family: Corymorphidae Euphysa aurata (E. fareta) Corymorpha glacialis(C. pendula) Family: Tubulariidae Tubularia larynx Family: Acaulidae Acaulis primarius_! Family: Corynidae Sarsia tubulosa : -Suborder : Filif era Family: Stylactis arge Order: Leptomedusae/Thecata Family: Halaciidae Halecium halecinum Family: Calycellidae Calycella syringa Family: Lovenellidae Lovenella gracilis Family: Lafoeidae Lafoea dumosa Family: Campanulariidae Campanularia verticillata Clytia gracilis Clytia hemisphaerica (C. johnstoni) Gonothyraea loveni Obelia dichotoma Obelia geniculata Obelia longissima Family: Sertulariidae Dynamena pumila Hydrallmania falcata Sertularella polyzonias Symplectascyphus tricuspidatus (Sertularia) Sertularia argentea Sertularia cupressina Sertularia latiuscula

133 References Brinckmann-Voss , A., 1968. Anthomedusae/Athecatae (Hydrozoa, Cnidaria) of the Mediterranean. Fauna Flora Golfo Napoli , Monogr. , 39 = 1-96. Calder, D. R. 1970. Thecate hydroids from the shelf waters of northern Canada. J. Fish. Res. Bd. Canada, 27 : 1501-

Calder, D. R. 1972. Some athecate hydroids from the shelf waters of northern Canada, 29: 217-228.

Fraser, C. M. 19*14. Hydroids of the Atlantic coast of North America. Univ. Toronto Press, Toronto', 451 PP*

Naumov, D. V. I960. Hydroids and Hydromedusae of the USSR. Cat. No. 5108 (1969), Israel Prog. Sci. Translations, Jerusalem, 660 pp.

Nutting, C. C. 1904. American hydroids. Part II. The Sertularidae Smithsonian Inst. , U. S. Nat. Mus . Spec. Bull., 4(2): 1-325-

Rees, W. J. 1957' Evolutionary trends in the classification of capitate hydroids and medusae. Bull. British Mus. (Nat. Hist.) Zool., 4:455-534.

Vervoort , W. 1946. Hydrozoa. A. Hydropolypen. Fauna van Nederland, Leiden, 14:1-336. '

Vervoort, W. 1968. Report on a collection of Hydroida from the Caribbean region, including an annotated checklist of __ Caribbean hydroids. Zool. Verh. , 92:1-124.

Vervoort, W. 1972. Hydroids from the Theta, Vema and Yelcho cruises of the Lamont-Dffiherty Geological Observatory. Zool. Verh. , 120:1-247.

Publications from Gape Cod Bay Identifications

Calder, D. R. 1975- Biotic Census of Cape Cod Bay:Hydroids . Biol. Bull., 149:287-315-

134 Group: Anthozoa Systematist: Dr. Larry Harris Zoology Department University of New Hampshire Durham, New Hampshire 0382^

Phylum: CnicLaria Class: Anthozoa Subclass: Alcyonaria Order: Alcyonacea Alcyonium digitatum Subclass: Zoantharia Order: Ceriantharia Family: Cerianthidae Ceriantheopsis americanus Cerianthus borealis Orderi Actinaria Family: Actinostolodae Paranthus rapiformis Family: Edwardsiidae Edwardsia elegans E. lineata E. sipunculoides Family: Halcampidae Halcampa duodecimcirrata Family: Halcampoididae Halcampoides sp. Family: Haloclavidae Haloclava producta Family: Metridiidae Metridium senile" Family: Sagartidae Sagartia modesta

References

Carlgren, 0. 1912. Ceriantharia. Dan. Ingolf-Exped. 5a(3)s 1-78.

_. 19^9. A survey of the Ptychodctiaria, corallimorpharia and actinaria. K. Svenska Veten-Akad. Handl0 1(1):1-121. . 1950. A revision of some Actinaria described by A. E. Verrill. J. Wash. Acad. Sci. ^0(l):22-28.

Deichmann, E. 1936. The Alcyonaria of the western part of the Atlantic Ocean. Mem. Mus. Comp0 Zool. Harvard. 53:1-317.

135 Field, L0 R. 19*1-9. Sea anemones and corals of Beaufort, North Carolina. Duke Univ. Mar. Sta. Bull. 5'1-39. Hand, C. 196*1-. Phylum Cnidaria, Class Anthozoa. In Keys to marine invertebrates of the Woods Hole region. R. Smith ed. Contrib. II, Systematics Ecology Program, Mar. Biol. Lab. Woods Hole. pp. 25-28.

Miner, R. W0 1950. Field book of seashore life. G. P. Putnam's Sons, New York.

Stephenson, T. A, 1928, 1935- The British Sea Anemones. Ray Society, London, Vol. 1 and Vol. 2.

136 Groupi Platyhelminthes Systematist: Dr. Louise Bush Drew University Madison, New Jersey 079^0

Phylum: Platyhelminthes Class: Tur"bellaria Order: Polycladida Family: Plehniidae Plehnia ellipsoides Family: Leptaplanidae Notoplana atomata

Reference Hyman, L.H. 1952. Further Notes on the Turbellarian Fauna of the Atlantic Coast of the United States. Biol. Bull., 103(2)il95.

137 ARTHROPODS

138 Group: Amphipoda Systematist: Dr. Allan D. Michael TAXON, Inc. 50 Grove Street Salem, Massachusetts 01970

Phylum: Arthropoda Class: Crustacea Order: Amphipoda Family: Ampithoidae Ampithoe rubricata Family: Ampeliscidae Ampelisca macrocephala Liljebbrg 1852 A. vadorum Mills 1963 A. verrilli Mills 196? Byblis gaimardi Kroyer 184-6 Haploops tubicola Liljeborg 1856 Haploops sp. Liljeborg 1856 Family Aoridae Lembos websteri Bate 1857 Leptocheirus pinguis (Stimpson) 1853 Microdeutopus anomalus (Rathke) Unciola irrorata Say 1818 Pseudunciola obliquua Unciola dissimilis Shoemaker 19*1-2 Family Argissidae Argissa hamatipes (Norman) 1869 Family Calliopiidae Calliopius laeviusculus (Kroyer) 1838 Family Corophiidae Corophium acutum C. bonelli (M. -E) 1830 C_. crassicorne Bruzelius 1859 C. tuberculatum Shoemaker 193^ Ericthonius brasiliensis (Dana) 1853 Family; Eusiridae Rhachotropis oculata (Hansen) 188? Family Haustoridae Acanthohaustorius intermedius Bousfield 1965 A. millsi Bousfield 1965 A. shoemakeri Bousfield Bathyporeia quoddyensis Shoemaker 19^-9 Parahaustorius lon^imerus Bousfield 1965 Protohaustorius deichmannae Bousfield 1965 P. wi^leyi Bousfield 1965 Family Pschyroceridae Pschyrocerus anguipes Kroyer 1838 Jassa falcata (Montagu) 1818

139 Family: Lysianassidae An onyx li'lljeborgi Boeck 18?1 A. sarsi Steele and Brunei 1968 ' Hippomedon propinguus Sars H. serratus Holmes 1905 Lysianopsis alba Holmes 1905 Orchomenella minuta Kroyer 18^6 Psammonyx nobilis (Stimpson) 1853 Family: Melitidae Casco bigelowi (Blake) 1929 Elasmopus levis Smith 1873 Maera danae Stimpson 1853 M. loveni Brozelius Melita dentata (Kroyer) 1842 Melita N. sp. Family: Oedicerotidae Bathymedon spp. Sars 1895 Monoculodes edwardsi Holmes 1905 - M. tesselatus Schneider Monoculodes spp. Stimpson 1853 Westwoodilla brevicalcar Bate Family: Photidae Microprotopus raynei Wigley 1966 Photis macrocoxa Shoemaker P. reinhardi Kroyer 1842 Family: Phoxocephalidae Harpinia propingua Sars H. cabotensis Shoemaker Paraphoxus epistomus (Shoemaker) P. spinosus Holmes 1905 Phoxocephalus holbolli Kroyer 1842 Family: Pleustidae Pleusymtes glaber (Boeck) 1861 Stenopleustes inermis Shoemaker 1949 Pleustes panoplus Kroyer Family: Podoceridae Dulichia monocantha Metzger Family: Pontogeneiidae Pontogeneia inermis (Kroyer) 1842 Family: Stenothoidae Metopella angusta Shoemaker 1949 Stenothoe minuta Holmes 1905 Stenothoe sp. Dana 1852 Family: Tironidae Syrrhoe crenulata (Goes)

140 Group: Anomura

Systematist: Dr. Austin Williams U. S. National Museum Smithsonian Institution Washington, D.C. 20560

Phylum: Arthropoda Glass t Crustacea Subclass: Malacostraca Superorder: Eucarida Order; Decapoda Suborder: Reptantia Section: Anomura Pagurus acadianus Pagurus arcuatus Pagurus longicarpus Pagurus pollicaris

141 Group; Brachyura Systematist: Mr. Henry B. Roberts U. S. National Museum Smithsonian Institution Washington, B.C. 20560

Phylum: Arthropoda Class: Crustacea Subclass: Malacostraca Superorder: Eucarida Suborder: Reptantia Section: Brachyura Cancer borealis Cancer irroratus

Hyas coarctatus coarctatus

Libinia emarginata

Pinnixa sp.

Ovalipes ocellatus Neopanope sayi

142 Groupi Caprellidea Systematist: Dr. John C. McCain Environmental Department Hawaiian Electric Company, Inc Honolulu, Hawaii 96803

Phylum: Arthropoda Class: Crustacea Order: Amphipoda Suborder: Caprellidea Family: AeginellLtlae Subfamily: Aeginellinae Aeginina longicornis Subfamily: Protellinae Mayerella limicola Family: Caprellidae Caprella linearis Caprella penantis Caprella septentrionalis Caprella unica Caprella sp. Paracaprella tenuis

References

McCain, J. C. 1968. The Caprellidae (Crustacea:Amphipoda) of the Western North Atlantic. U.S. Nat. Mus. Bull. 2?8, - pp. vi + 1*1-7. Additional References of Interest

Laubitz, D. R. 1972. The Caprellidae (Crustacea: Amphipoda) of Atlantic and Arctic Canada. Nat. Mus. Nat. Sci., Nat. Mus. Canada, Publ. Biol. Ocean., No. k, 82 pp.

Classification Presented Based On; McCain, J. C. 1970. Familial Taxa within the Caprellidea (Crustacea:Amphipoda). Proceedings of the Biological . Society of Washington. Vol. 82, No. 65, pp. 837-8^2.

143 Gallardo, V. A., and J. C. Castillo. 1969. Quantitative Benthic Survey of the Infauna of Chile Bay (Greenwich I., South Shetland Is.). Gayana, 16:17, 3 figures.

Hartmann, Gerd. 1965. Ostracoden des Sublitorals. Part III in Hartmann-Schroder and Hartmann, Zur Kenntnis des Sublitorals der chilenischen Kust unter besonderer BerucKsichtigung der Polychaeten und Ostracoden. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 62:307-380, 131 figures.

Jones, M. E. 195*K See California, State of, Department of health. 1958a. Sarsiella tricostata, a new Ostracod from San Francisco Bay (Myodocopa:Cyprinidae). Journal of the Washington Academy of Sciences, 48(2)i %8-52'> figures 1,2.

1958b. Further Notes "on Sarsiella tricostata. Journal of the Washington Academy of Sciences, 4-8(7) : 238, figures 1-3.

1961. A quantitative Evaluation of the Benthic Fauna off Point Richmond, California. University of California Publications in Zoology, 67(3):219-320 , 30 figures.

Kornicker, L. S. 1967. A Study of Three Species of Sarsiella (Ostracoda:Myodocopa). Proceedings of the United States National Museum, 122(359^): 4-6 pages, 19 figures, 4- plates.

1971. Benthic Ostracoda (Myodocopina: Cyprinacea) from the South Shetland Islands and the Palmer Archipelago, Antartica. Biology of the Antarctic Seas IV, Antarctic Research Series, 1?: 167-216, 32 figures.

197^. Spread of Ostracodes to Exotic Environs on Transplanted Oysters in Swain, Kornicker, and Lundin, editors, Biology and Paleobiology of Ostracoda. Bulletins of American Paleontology, 65(282):129-139. In press. Antarctic Ostracoda (Myodocopina). Smithsonian Contributions to Zoology, 163, ^32 figures, 9 plates.

Kornicker, L. S. and C. D. Wise. I960. Some Environmental Boundaries of a Marine Ostracod. Micropaleontology, 393-398, figures 1-8. 1962. Sarsiella (Ostracoda) in Texas Bays and Lagoons. Crustaceana, 4(1):57-7^> figures 1-10. Group: Caridea

Systematist: Mr. Richard Dowds University of North Carolina Institute of Marine Sciences Morehead City, North Carolina

Phylum: Arthropoda Classi Crustacea Subclass: Malacostraca Superorder: Eucarida Order: Decapoda Suborder: Natantia Section: Caridea Family: Axiidae Axius serratus Family: Crangonidae Crangon septemspinosa Family: Pandalidae Dichelopandalus leptoceras Family: Hippolytidae Eualus fabricii E. gaimardii E. pusiolus Hippolyte zostericola Lebbeus groenlandicus

145 Group: Cirripedia Systematist: Dr. Victor A.- Zullo Department of Geology California Academy of Sciences Golden Gate Park San Francisco, California 9^118

Phylum: Arthropoda Class: Crustacea Subclass: Cirripedia Order: Thoracica Suborder: Balanomorpha Balanus balanoides B. balanus B. venustus niveus ?

146 Group: Cumac ea Systematist: Dr. William Gnewuch Department of Biology Sacred Heart University Bridgeport, Connecticut

Phylum: Arthropoda Class: Crustacea Subclass: Malacostraca Superorder: peracarida Order: Cumacea Family: Bodotriidae Leptocuma minor Caiman 1912 Iphinoe trispinosa Goodsir 1843 Cyclaspis varians Caiman 1912

Family Leuconidae Eudorella emarginata Kroyer 1846 Eudorella hispida G. 0. Sars 18?1 Eudorella pusilia G, 0. Sars 18?1 Eudorella truncatula Bate 1856 Eudorella sp.

Family: Nannastacidae Campylaspis rubincunda Lilljeborg 1855

Family; Lampropidae Lamprops quadriplicata S. I. Smith 18?9

Family; Pseudocumatidae Petroparsia declivis G. 0. Sars 1864

Family Diastylidae Brachydiastylis resima Kroyer 1846 Diastylis abbreviata G. 0. Sars 18?1 Diastylis polita S. I. Smith 18?9 Diastylis quadrispinosa G. 0. Sars 18?1 Diastylis sculpta G. 0. Sars 18?1 Leptostylis longimana G. 0. Sars 1865 Oxyurostylis smithi Caiman 1912 Diastylis sp.

References (Original Descriptions) Caiman, W. T. 1912. Proceedings of the U. S. National Museum. 4l:603-6?6.

147 Bate, S. 1856. The Annals and Magazine of Natural History. Serial 2. 17:^99-565- Goodsir, H. 18^3* The Edinburgh New Philisophical Journal. 3^:119-180. Kroyer, H. 18^6. Naturhistorisk Tidsskrift. 2(2):123-211. Lilljeborg, W. 1855- Ofversigt at Kongl. Vetenskap-Akademiens Forhandlingar. 12:117-138.

Sars, G. 0. 18^6. Forhandlinger i Videnska"bs~Selskabet i Christiana. 12:128-208. 1871. Kongliga Svenska Vetenskaps, Akadamiens Handlinger. 9U3):l-57. Smith, S. I. 1879- Transactions of the Connecticut Academy of Arts and Sciences. 5:28-138.

148 Group: . Mysidacea Systematist: Dr. Roland L. Wigley National Marine Fisheries Service Biological Laboratory Woods Hole, Massachusetts 025^3

Phylum s Arthropoda Class: Crustacea Subclass: Malacostraca Superorder: Peracarida Order: Mysidacea Suborder: Mysida Family: Mysidae Subfamily: Mysinae Tribe: Erythropini Erythrops erythropthalma Tribe: Mysini Mysis mixta " - Mysis stenolepis _Praunus flexuosus Neomysis americana Tribe: Heteromysini Heterpmysis formosa

References

Banner, A. H. 195^- A supplement to W. M. Tattersall's review of the Mysidacea of the United States National Museum. Proc. U. S. Natl. Mus. 103: 575-583.

Tattersall, W. M. 1951. A review of the Mysidacea of the United States National Museum. U. S. Natl. Mus. Bull 201: 1-292.

Wigley, R. L. and B. R. Burns. 1971. Distribution and Biology of Mysids (Crustacea, Mysidacea) From the Atlantic Coast of the United States in the NMFS Woods Hole Collection. Fishery Bulletin. 69W: 717-7^6. ' i

149 Group: Ostracoda Systematist: Dr. Louis S. Kornicker _;, Department of Invertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, D.C. 20560

Phylum: Arthropoda Class: Crustacea Subclass: Ostracoda Order: Myodocopa Suborder: Myodocopina Sarsiella zostericola Synasterope cushmani, new species

References Blake, C. 1933. Ostracoda. In Biological Survey .of the Mount Desert Region Conducted by William Procter, 5:229-2^1, figures 39,^0. California, State of, Department of Health. 195^..Richmond Shoreline Investigation (Prepared for Regional Water Pollution Control Board No. 2): Project No. 5*4—2-3. I: Department of Fish and Game Report (by M. L. Jones), pages 1-8*4-, figures 1-5- II s Bureau of Sanitary Engineering Report, tables 1-^, 2 figures. Cannon, H. G. 1933- On the Feeding Mechanism of Certain Marine Ostracods. Transactions of the Royal Society of Edinburgh, 57(3)30:739-76^, 11 figures. Cushman, J. A. 1906. Marine Ostracoda of Vineyard Sound and Adjacent Waters. Boston Society of Natural History, Proceedings, 32(10):359-385, plates 27-38. Darby, D. G. 1965- Ecology and Taxonomy of Ostracoda in the Vicinity of Sapelo Island, Georgia. Report No. 2 in Four Reports of Ostracod Investigations, 77 pages, 11 figures, 33 plates. Ann Arbor, Mich.: University of Michigan. (Offset report). Fish, C. D. 1925. Seasonal Distribution of the Plankton of the Woods Hole Area Region. Bulletin of the United States Bureau of Fisheries, ^5:91-179-

150 Poulsen, E. M. 1965- Ostracoda-Myodocopa, 2: Cypridiniformes- Rutidermatidae, Sarsiellidae and Asteropidae. In Dana Report, 65 '• ^84 pages, 156 figures. Copenhagen: Carlsberg Foundation. Rhoads, D. C. and D. K. Young. 1971- Animal-Sediment Relations in Cape Cod Bay, Massachusetts, II: Reworking by Molpadia oolitica (Holothuroidea). Marine Biology, 11:255-261, figures 1-6.

Williams, L. W. 190?. A List of the Rhode Island Copepoda, Phyllopoda, and Ostracoda with New Species of Copepoda. In Thirty-seventh Annual Report of the Commissioners of Inland Fisheries, Made to the General Assembly at Its January Session, 1907*1-79. 3 plates. Young, D. K. and D. C. Rhoads. 1971. Animal- Sediment Relations in Cape Cod Bay, Massachusetts, I: A Transect Study. Marine Biology, 111 2*4-2-251*, figures 1-8.

Publications from Cape Cod Bay Identifications Kornicker, L.S. 197^. Ostracoda (Myodocopina) of Cape Cod Bay, Massachusetts. Smithsonian Contribution to Zoology, Number 173: 20 pages, figures 1-11.

151 Group: Pycnogonida Systematist: Dr. Lawrence McCloskey Department of Biology Walla Walla College College Place, Washington 99324

Phylum: Arthropoda Class: Pycnogonida Achelia sca'bra Achelia spinosa Callipallene "brevirostris Nymphon grossipes Nymphon longitorse Phoxichilidium femoratum

152 Group: Stomatopoda Systematisti Dr. Raymond B. Manning ' ' Department of Invertebrate Zoology Smithsonian Institution U. S. National Museum Washington, D.C. 20560

Phylumi Arthropoda Class: Crustacea Subclass: Malacostraca Order: Stomatopoda Family: Lysiosquillidae Nannosquilla grayi

References

Manning, R. B. 1969- Stomatopod Crustacea of the Western Atlantic Studies in Tropical Oceanography, No. 8. Institute of Marine Sciences, University of Miami, Florida, p. 78.

153 Group: Isopoda Systematist: Margaret A. Mills (Michael) 12 Fuller Street Magnolia, Massachusetts 01930

Phylum: Arthropoda Class: Crustacea Subclass: Malacostraca Superorder: Peracarida Order: Isopoda Suborder: Anthuridea . Ptilanthura tenuis Suborder: Valvif era Chiridotea caeca Chiridotea tuftsii Chiridotea arenicola Edotea triloba Idotea baltica Idotea phosphorea

References Menzies, R. J. and D. Frankenberg. 1966, Handbook on the Common Isopod Crustacea of Georgia. Univ. Georgia Press, pp. viii-93- Richardson, H. 1905- A monograph on the Isopods of North America Bull. U. S. Nat. Mus., No. 5^: l-?27.

Schultz ( G. A. 1969. How to Know the Marine Isopod Crustaceans. Wm. C. Brown Company Publishers, Dubuque, Iowa.

154 ECHINODERMATA

155 Group: Asteroidea Systematist: Frank O'Brien Department of Biology Southeastern Massachusetts University North Dartmouth, Mass.

Phylum: Echinodermata Class: Asteroidea Subclass: Euasteroida Order: Phanerozonia Ctenodiscus crispatus Order: Spinulosa Henricia s anguinelenta Solaster endeca Order: Forcipulata Asterias forhesi A. vulgaris Leptasterias tenera

156 Group: Echinoidea Systematist; Mr. Julian Fell Department of Marine Invertebrates Museum of Comparative Zoology Harvard University Cambridge, Mass. 02138

Phylum: Echinodermata Class: Echinoidea Subclass: Euechinoidea Superorder: Echinacea Order: Echinoida Family: Strongylocentrotidae Strongylocentrotus drobachiensis Superorder: Gnathostomata Order: Clypeasteroida Family: Scutellidae Echinarachnius parma

157 Group: Holothuroidea Systematist: Dr. David L. Pawson Division of Echirroderms National Museum of Natural History Smithsonian Institution Washington, D. C. 20560

Phylum: Echinodermata Class: Holothuroidea Order: Molpadonia Family: Molpadiidae Molpadia oolitica

158 Group: Ophiuroidea Systematist: Dr. John H. Dearborn University of Maine Orono, Maine

Phylum: Echinodermata Class: Ophiuroidea Order: Ophiurae Amphipholis squamata Ophiopholis aculeata Ophiura robusta 0_. sarsi 0. sp. Order: Euryalae Gor^onocephalus sp.

159 MOLLUSCA

160 Group: Aplacophora Systematist: Mrs. A. Scheltema Woods Hole Oceanographic Institution Woods Hole, Massachusetts 025^3

Phylum: Mollusca Class: Amphineura Subclass: Aplacophora Chaetoderma nitidulum canadense Nierstrasz. 1902

161 Group: Gastropoda Systematist: Miss Johanna Reinhart MCC P. 0. Box 1501 Makati Metro Manila, Philippines

Phylum: Mollusca Class: Gastropoda Subclass: Prosobranchia Order: Archaeogastropoda Family: Acmaeidae Acmaea testudinalis Family: Trochidae Margarites helicina Molleria costulata Solariella obscura Order: Mesogastropoda Family: Epitoniidae Epitoneum greenlandicum E. novangliae Family: Crepidulidae Grepidula convexa C. fornicata C. piana Family: Naticidae Lunatia heros L. immaculata L. triseriata Natica pusilla Polinices duplicatus Family: Rissoidae Alvania areolata A. castanea A. carinata A. harpa Hydrobia minuta H. totteni Family: Cerithiidae Bittium alternatum Family:. Lacunidae Lacuna vincta Family: Lamellaridae Velutina laevigata V. undata Family: Trichotropidae Trichotrp-psis borealis

162 Family Pyramidellidae Couthouyella striatula Eulimella polita Odostomia eburnea 2.- C). seminuda 0. sulcosa Turbonilla nivea T urbonilla sp. A Family Calyptraeidae Crucibulum striatum Family: Alorrhaidae Aporrhais occidentalis Family: • Skenea planorbis (Skeneopsis ?) Order : Neogastropoda Family: Columbellidae Anachis avara A. translirata Mitrella lunata Family: Buccinidae Buccinum undatum Colus pygmaeus C_. stimpsoni Neptunea decemcostata Family : Neptuneidae Busycon canaliculatum Family: Nassariidae Nassarius trivittatus Family: Turridae Lora concinnula L. incisula L. pleurotomaria L. turricola Lora sp. #2 Man^elia cerina Subclass : Opisto"branchia Order : Tectibranchia Family: Akeridae Haminea solitaria Family: Acteocinidae Retusa canaliculatum R. obtusa Family : Scaphandridae Gylichna alba Diaphana minuta Family : Philinidae Philine lima P. quadrata

163 Group: Pelecypoda Systematist: Miss Johanna Reinhart MGG P. 0, Box 1501 Makati Metro Manila, Philippines

Phylum: Mollusca Class: Pelecypoda Aequipecten irradians (Lamarck) Alvania carinata(Mighels and Adams) Anadara ovalis (Bruguiere) A. transversa (Say) Anomia aculeata Muller A» simplex d'Orbigny Arctica islandica (Linnaeus) Astarte castanea (Say) A. undata Gould Astarte sp. Cerastoderma pinnulatum (Conrad) Clinocardium islandicum (Linnaeus) Crenella glandula(Totten) Cyrtodaria siliqua Spengler Ensis directus(Conrad) Gemma gemma(Totten) Hiatella arctica (Linnaeus) Laevicardium mortoni Conrad Lyonsia hyalina Conrad Macoma fralthica (Linnaeus) / Mercenaria roercenaria (Linnaeus) Mesodesma arctataTConrad) Modiolus modiolus (Linnaeus) Muscul-qs discors (Linnaeus) M. ni^er (Gray) Mya arenaria Linnaeus Mysella planulata Stimpson Mytilus edulis Linnaeus Nucula annulata Hampson N. delphinodonta Mighels and Adams N. proxima Say N.' tenuis Montagu Nuculana tenuisulcata (Couthouy) Pandora gouldiana Dall Periploma leanurn Conrad P. papyratia^ Ts"ay) Petricola pholadiformis Lamarck Pitar morrhuana Linsley Placopecten magellanicus (Gmelin)

164 Siliqua costata (Say) Solemya velum Say Spisula solidissima (Dillwyn) Tellina agilis Stimpson Thracia conradi Couthouy Thyasira gouldi (Phillip!) Velutina undata Brown Venericardia frorealis (Conrad) Yoldia limatula(Say) Y. sapotilla[Gould) Y. thraeciformis (Storer) Zirfaea crispata (Linnaeus)

165 Group: Polyplacophora Systematist: Allyn Smith Associate Curator California Academy of Sciences Golden Gate Park San Francisco, California

Phylum: Mollusca Class: Amphineura Subclass: Polyplacophora Chaetopleura a-piculata (Say,1858) Ischnochiton ruber(Tinne, 176?) Tonicella rubra("Linne ,1758)

References Balch, F. N. 1906. Remarks on certain New England chitons with descriptions of a new variety. Nautilus, 20(5): 62-68

166 OLIGOCHAETA

167 Group: Knchytraeidae Systematist: Dr. Pierre Laserre Institut de Biologie Marine Universite de Bordeaux Arcachon, (Gironde) France

Phylum: Annelida Glass: Oligochaeta Family: Enchytraeidae HemiCrania postclitellochaeta (Knollner, 1935) Lumfrricillus codensis Laserre, 1971 Marionina welchi Laserrel 1971

Reference Nielsen, C. 0. amd B. Christensen. 1959- The Enchytraeidae; critical revision and taxonomy of European species. Nat. Jutlandica 8-9:7-160.

Publications from Cape Cod Bay Identifications

Cook, D. G. and R. 0. Brinkhurst. 1973- Marine Flora and Fauna of the Northeastern United States. Annelida: Oligochaeta. NOAA Technical Report NMFS CIRC-37^.

168 POLYCHAETA

169 Group: Ampharetidae Systematist: Dr. Robert Zottoli Fitchburg State College Fitchburg, Massachusetts 01^20

Phylum: Annelida Class: Polychaeta Family: Ampharetidae Ampharete acutifrons (Grube) I860 Ampharete arctica Malmgren 1866 Anobothrus gracilis (Malmgren) 1867 Asabellides oculata (Webster) 18?9 Melinna cristata (Sars) 1851 Melinna elisabethae Mclntosh 1922

170 Group: Aphroditidae Systematist: Charlene D. Long 69 Windsor Street Arlington, Massachusetts

Phylumi Annelida Class: Polychaeta Family: Aphroditidae Aphrodita hastata Moore 1905

References Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, I, Aphroditidae through TrochQ.chaetidae, USNM Smithsonian Inst. Bulletin 22?, Part 1, p. 13-

171 Group: Apistobranchidae Systematist: Margaret A. Mills (Michael) 12 Puller Street Magnolia, Mass. 01930

Phylum: Annelida Class: Polychaeta Family: Apistobranchidae Apistobranchus tullbergi

Reference Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 227- pp. 295-299

172 Group: Arabellidae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria,. British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Arabellidae Arabella iricolor Drilonereis longa D. magna Notocirrus spiniferus

Reference Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 22?. pp. 268-2?6

173 Group: Archiannelida

Systematist: Miss Claude Jouin Universite de Paris Faculte des Sciences Laboratoire de Zoologie 9 Quai Saint-Bernard, Paris Ve France

Phylum: Annelida Class: Archiannelida Polygordius lacteus (?) Schneider 1868 Polygordius triestinus Woltereck, Hempelmann 1906 Protodriloides chaetifer (Remane) 1926 Protodrilus adhaerens Jajersten 1952 Protodrilus sp,

References Hempelmann, F. , 1906. Zur Morphologie von Polygordius lacteus Schn. und Polygordius triestinus Woltereck, nov.spec. Zeisch. Wissensch. Zool. 84-:52?-6l3.

Jagersten, G., 1952. Studies on the morphology, larval development and biology of Protodrilus. Zool. Bidr. Uppsala 29:^25-512.

Jouin, C. 1966. Morphologie et anatomie comparee de Protodrilus chaetifer Remane et P. symbioticus Giard; creation du nouveau genre Protodriloides (Archiannelides) Cah. Biol. Mar. 711:139-155-

Schneider, A. 1868. Ueber bau und entwickelung von Polygordius. Arch, fur Anat. Physiol und Wissensch. medicin: 51-60. Remane, A. 1926. Protodrilidae aus Ost- und Nordsee. Zool. Anz. 67:119-125.

174 Group: Capitellidae Systematist: Margaret A. Mills (Michael) 12 Fuller Street Magnolia, Mass. 01930

Phylum: Annelida Class: Polychaeta Family: Capitellidae Capitella capitata Heteromastus filiformis Mediomastus ambiseta Notomastus latericius N. luridus

References

175 Group: Chaetognatha Systematist: Dr. Harding B. Owre University of Miami Rosensteil School of Marine-and Atmospheric Sciences Miami, Florida 331^9

Phylum: Chaetognatha Sagitta elegans Verrill 18?3

176 Group: Cirratulidae Systematist: Mr. Peter Jumars P. 0. Box 1529 Scripps Institute of Oceanography La Jolla, California

Phylum: Annelida Class; Polychaeta Family: Cirratulidae Caulleriella fragilis (Leidy, 1855) Chaetoaone setosa Malmgren, 1867 Cirratulus grandis Verrill, 1873 (Cirratulus A) C. cirratus (Muller, 1??6) (Cirratulus B) Dodecaceria coralii (Leidy, 1855) Tharyx A Tharyx D Tharyx E Tharyx X

177 Group: Dorvilleidae Systematist: Mrs. Katharine D. Hobson • British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Dorvilleidae Dorvillea sp. A Ophryotrocha sp. A- Protodorvillea gaspeensis P. kefersteini Stauronereis caecus

Reference

Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus. , 22?. pp. 230-23^

178 Group: Eunicidae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Eunicidae Marphysa sanguinea

Reference Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus. , 22?. pp.

179 Group: Flabelligeridae Systematist: Charlene D. Long 69 Windsor Street Arlington, Massachusetts

Phylum: Annelida Class: Polychaeta Family: Flabelligeridae Diplocirrus longisetosus (Marenzeller 1890)

Brada granosa Stimpson Brada villosa (Rathke

Pherusa affinis (Leidy 1855)

Flabelligera affinis Sars 1829

References Pettibone, M., undated, MS, Check-list of Polychaeta of New England Region, 32 pages plus illustrations, mimeographed.

Pettibone, M., 195^• Marine Polychaete Worms from Point Barrow, Alaska, with Additional Records from the North Atlantic and North Pacific, Proceedings of the United States National Museum 103:203-356, figs. 26-39. (Pages 288-293)- Smith, R., editor, 196*4-. Keys to Marine Invertebrates of the Woods Hole Region, Systematics-Ecology Program, Marine Biological Laboratory, Woods Hole, Massachusetts, Contribution #11, p.6?. Stop-Bowitz, C., 19^8. Les Flabelligeriens Norvegiens, Bergens Museums Arbok 19*4-6-19^?, Nr. 2, pp. 1-59. 13 figs., 12 maps.

180 Group: Glyceridae Systematist: Mrs, Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum; Annelida Class: Polychaeta Family: Glyceridae Glycera capitata G. dibranchiata G. robusta

References Pettib.one, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 22?. pp. 209-218

181 Group: Goniadidae Systematist: Mrs. Katarine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Goniadidae Goniada maculata Goniadella

Reference

Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part-1; Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus. , 22?. pp.". 218-228

182 Group: Lumbrinereidae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Lumbrinereidae Lumbrineris acuta L. fragilis L. tenuis Ninoe nigripes

Reference Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 227. pp.256-268

183 Group: Maldanidae Systematise: Charlene D. Long1 69 Windsor Street Arlington, Massachusetts

Phylum: Annelida Class: Polychaeta Family: Maldanidae Species A, Praxillella sp. Species B. C, D, Rhodine sp. Species E Maldane sp. Species F Petaloproctus sp. Species G Clymenella sp. Species I see Species G Species J Unidentified Species K, cf Lumbriclymene sp

Reference Day, J. H. 196?. A Monograph of the Polychaeta of Southern Africa, Part 2, Sedentaria, pp. 6l?-6l8.

184 Group: Nephtydae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Nephtydae Aglaophamus circlnata Nephtys bucera N. caeca N. ciliata N. incisa N. longosetosa N_. paradoxa N. picta N. sp_.

Reference

Pettibone, M. H. 1963- Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 22?. pp. 186-205

185 Group: Nereidae Systematist: Charlene D, Long 69 Windsor Street Arlington,' Massachusetts

Phylum: Annelida Class: Polychaeta Family: Nereidae Nereis (Nereis) grayi Pettibone 1956 Platynereis dumerilii (Audouin & Milne-Edwards 1833) Nereis (Neanthes) arenaceodonta Moore 1903 Nereis (Neanthes) virens Sars 1835 Nereis (NereisT~pelagica Linne 1?58 Nereis (Nereis) zonata Malmgren 1867

References Pettitone, M. H. 1963. Marine Polychaete Worms of the New England Region, I, Aphroditidae through Trochochaetidae, USNM Smithsonian Inst. Bulletin 227, Part 1.

186 Phylum Annelida Class Polychaeta Family Nereidae

Nereidae Nereis (Neanthes) arenaceodonta Nereis (Neanthes) grayi Nereis (Nereis r~pelagica Nereis (Neanthes) virens Nereis (Nereisr"zonata Nereis sp. Platynereis dumerilii Platynereis sp.

Reference Pett^bone, M.H. 1963- Marine Polychaete Worms of the New England Region, I, Aphroditidae through Trocrfaetidae, USNM Smithsonian Inst. Bulletin 22?, part 1. A

187 Group: Onuphidae Systematist: Mrs. Katharein D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Onuphidae Diopatra cuprea

Reference Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 22?. pp. 2^3-256

188 Group: Opheliidae

Systematist: Dr. C. Raymond Gilmore Nasson College Springvale, Maine 0^083

Phylum: Annelida Class: Polychaeta Family: Opheliidae Ammotrypane aulogaster Rathke 18^3 Ophelia sp. Travisia carnea Verrill 1873

189 Group: Drbiniidae Systematist: Charlene D. Long 69 Windsor Street Arlington, Massachusetts

Phylum -. Annelida Class: Polychaeta Family: Orbiniidae Nainerls quadricuspida (Fabricius 1780) Orbinia (Orbiniaj swani Pettibone 1957 Scoloplos (Scoloplos) acutus (Verrill 18?3) Scoloplos (Scoloplos) armiger (Yerrill 18?3) Scolo-plos (Scoloplos) frasilis (0. P. Muller 1??6) Scoloplos (Scoloplos) robustus (Verrill 1873)

Reference Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, 1, Aphroditidae through Trochochaetidae, Bull. U. S. Nat. Mus., 22?. pp. 276-29^.

190 G-roup • Owenildae Systematist: Mrs. Carol Q. Schwamb 76 Sippewissett Koad Falmouth, Massachusetts 025^0

Phylum: Annelida Class: Polychaeta Family: Oweniidae Myriochele heeri, with eyes Myriochele h e er i , without eyes Owenia fusiformis

191 Group: Paraonidae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Paraonidae Aricidea belgicae ? A_' Jeffreys!! A_- quadrilobata A. wassi Paraonis fulgens P. gracilis P. lyra P. pygoenigmatica

References Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 22?. pp. 298-30?

192 Group: Paraonis n. sp. Systematist: Dr. Meredith Jones National Museum of Natural History Smithsonian Institution Washington, D.C. 20560

Phylum: Annelida Class: Polychaeta Family: Paraonidae Paraonis pygoenigmatica

Publications from Cape Cod Bay Identifications Jones, M. 1968. Paraonis pygoenigmatica, a new annelid from Massachusetts (Polychaeta: Pharanonidae). Proc. Biol. Soc. Washington 81:323-333-

193 Group: Pectinariidae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Pectinariidae pectinaria gouldii P. granulata

194 Group: Phyllodocidae Systematist: Mrs. Pamela Polloni Woods Hole Oceanographic Institution faoods Hole, Mass 025^3

Phylum: Annelida Class: Polychaeta Family: Phyllodocidae Eteone flava E. lactea E. longa E. trilineata • Eulalia oilineata E. vir'idis Eumida sanguinea Mystides borealis Paranaitis kosterlensis P. speciosa P. sp. Phyllodoce arenae P. ^roenlandica P. maculata P. mucosa

195 Group: Polynoidae Systematisti Dr. Lennart Almkvist Department of Invertebrate Zoology Swedish Museum of Natural History Stockholm, Sweden

Phylum: Annelida Class: Polychaeta Family: Polynoidae Antinoella sp. Arcteobia anticostiensis Enipo sp. Eunoe sp. Gattyana amondseni G. cirrosa Harmothoe extenuata H. imbricata H. sp. Hartmania moorei Lepidonotus squamatus L. sublevis

References Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, I, Aphroditidae through Trochochaetidae, USNM Smithsonian Inst. Bulletin 22?, Part 1, pp. 15-^5

196 Group: Psammodrilidae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Psammodrilidae Psammodrilus balanoglossides

197 Group: Questidae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Questidae Novaquesta trifurcata

Publications from Cape Cod Bay Identifications

Hobson,K.D. 1969- Novaquesta trifurcata, a new and species of the family Questidae (Annelida, Polychaeta) from Cape Cod Bay, Massachusetts. Proc. Biol. Soc., Wash. 83:191-19&.

198 Group: Sabellidae Systernatisti Mrs. Katharine D. Ho"bson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Sabellidae Chone duneri Euchone elegans E. incolor Laonome kroyeri Potamilla reniformis Sabella crassicornis §.• rnicropthalma

199 Group: Sabellaridae Systematist: Mrs. Katharine D. Hobson British Columbia Provincial Museum Victoria, British Columbia Canada

Phylum: Annelida Class: Polychaeta Family: Sabellaridae Sabellaria vulgaris

200 Group: Euchone (Sabellidae) Systematist: Dr. Karl Banse Department of Oceanography University of Washington Seattle, Washington 98105

Phylum: Annelida Class: Polychaeta Family: Sabellidae Euchone elegans verrill 1873 E. incolor Hartman 1965

Publications from Cape God Bay Identifications

Banse, K. 1970. The small species of Euchone Malmgren (Sabellidae, Polychaeta). Proc. Biol. Soc. , Wash. 83:387-^08

201 Group: Scalibregmidae Systematist: Margaret A, Mills (Michael) 12 Fuller Street Magnolia, Mass. 01930

Phylum: Annelida Class: Polychaeta Family: Scalibregmidae Scalibregma inflatum

Reference

Hartraan, 0. 1965- Deepwater Polychaetous Annelids off New England to Bermuda and other North Atlantic Areas. Allan Hancock Foundation Pub., Occ. Paper No. 28, pp. 181-187-

202 Group: Sigalionidae Systematist: Charlene D. Long 69 Windsor Street Arlington, Massachusetts

Phylum: Annelida Class: Polychaeta Family: Sigalionidae Pholoe minuta (Fabricius 1780) Sthenelais "boa (Johnston 1833) Sigalion arenicloa Verrill 1879

References

Pettibone, M. H. 1963. Marine Polychaete Worms of the New England Region, I, Aphroditidae through Trochochaetidae, USNM Smithsonian Inst. Bulletin 227, Part I, pp. ^6-51.

203 Group: Sphaerodoridae Systematist: Dr. Nathan W. Riser Northeastern University East Point, Nahant, Mass. 01908

Phylum: Annelida Class: Polychaeta Family: Sphaerodoridae Sphaerodoridiiam -minutum Sphaeradoropsis sp.

Reference

Pettibone, M. H. 19&3. Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U..S. Nat. Mus., 22?. pp. 205-208

204 Group: Spionidae (Polydora) Systematist: Dr. James A. Blake The Marine Laboratory University of Maine Walpole, Maine 0^-573

Phylum; Annelida Class: Eolychaeta . Family: Spionidae Boccardia hamata Polydora anoculata P. caulleryi P. commensalis P. concharum P. ligni P. quadrilobata P. socialis P. websteri P. sp.

205 Group: Spionidae Systematist: Dr. Nancy Foster Chairman, Department of Biology Dunbarton College Washington, D.C. 20008

Phylum: Annelida Class: Polychaeta Family: Spionidae Apoprionospio_ sp. Dispio uncinata Laonice cirrata Laonice sp. Minuspio cirrifera Paraprionospio pinnata Prionospio fallax P. P. streenstrupi P. n. sp. P. sp. Pygospio elegans Scolelepides viridis Scolelepis squamata Spio (Spio) limicola Spio (Spio) setosa Spio (Microspio) sp. 1 (n. sp.)' Spio sp. Spiophanes bombyx S_. wigleyi S- sp.

206 Groupi Sternaspidae Systeraatist: Margaret A. Mills (Michael) 12 Fuller Street Magnolia, Massachusetts

Phylum: Annelida Class: Polycgaeta Family: Sternaspidae Sternaspis scutata

References

Hartman, 0. 1965- Deepwater Polychaetous Annelids off New England to Bermuda and other North Atlantic Areas. Allan Hancock Foundation Pub. Occ. Paper No. 28, p. 192.

207 Group: Terebellidae Systematist: Charlene D. Long 69 Windsor Street Arlington, Massachusetts

Phylum: Annelida Class: Polychaeta Family: Terebellidae Trichobranchinae Terebellides stroemi Sars 1835 Trichobranchus sp.[not glacialis Malmgren 1865) Polycirrinae Polycirrus medusa Grube 1855 Polycirrus sp. indeter. Polycirrus eximius (Leidy 1855) Lysilla loveni Malmgren 1869 cf Leaena sp. Thelepinae Thelepus cincinnatus (Fabricius 1780) Terebellinae Terebella lapidaria (Linnaeus 1?6?) Nicolea venustula (Montague 1818) Pista maculata [balyell 1853) Pista cristata (0. F. Muller 1776) Pista palmata (Verrill 1873) Amphitrite .iohnstoni Malmgren 1866 Amphitrite affinis Malmgren 1866

References Pettibone, M., 195^« Marine Polychaete worms from Point Barrow, Alaska, with additional Records from the North Atlantic and North Pacific, Proceedings of the United States National Museum 103:203-356, figs, 26-39. Smith, R., editor, 196^. Keys to Marine Invertebrates of the Woods Hole Region, Systematics-Ecology Program, Marine Biological Laboratory, Woods Hole, Mass., Contribution No. 11, pp. 81-83. Day, J. , 1967. A Monograph on the Polychaeta of Southern Africa, Part 2, Sedentaria, The British Museum (Natural History), London, Publication No. 656, pp. 706-750.

208 Phylum Annelida Class Polychaeta Family Terebellidae

Family Terebellidae Family Subdivisions Trichobranchinae Terebellides stroemi Trichobranchus sp. (not glacialis Malmgren 1865)

Polycirrinae Polycirrus medusa Polycirrus sp. indeter Polycirrus eximus Lysilla loveni cf Leaena sp.

Thelepinae Thelepus cincinnatus

Terebellinae Terebella lapidaria Nicolea venustula Pista maculata Pista cristata Amphitrite johnstoni Amphitrite affinis

References

Day, J. 1967. A Monograph on the Polychaeta of Southern Africa, Part 2, Sedentaria, The British Museum (Natural History), London, Publication No. 656, pp. 706-750. Pettibone, M. 195^- Marine Polychaete worms from Point Barrow, Alaska, with additional Records from the North Atlantic and North Pacific, Proceedings of the United States National Museum 103s 203-356, figs. 26-39. Smith, R., editor, 196*1, Keys to Marine Invertebrates of the Woods Hole Region, Systematics-Ecology Program, Marine Biological Laboratory, Woods Hole, Mass, Contribution No. 11, pp. 81-83.

209 '. Group: Trochochaetidae Systematist; Margaret A. Mills (Michael) 12 Fuller Street Magnolia, Mass. 01930

Phylum: Annelida Class: Polychaeta Family: Trochochaetidae Trochochaeta multisetosa

Reference Pettibone, M. H. 1963- Marine Polychaete Worms of the New England Region, Part 1, Families Aphroditidae through Trochochaetidae. Bull. U. S. Nat. Mus., 22?. pp.308-316

210 Phylum Bryozoa Ctenostomata Alcyoniddiidae Alcyonidium parasiticum Alcyonidium polyoum Flustrellidae Flustrellida hispida Vesiculariidae Amathia vidovici Bowerbankia gracilis Valkeriidae Aeverrillia armata Aeverrillia setigera

Cyclostomata Crisiidae Crisea cribraria Crisia eburnea Tubuliporidae Tubulipora atlantica Tubulipora flabellaris Tubulipora lileacea Lichenoporidae Lichenopora verrucaria

Cheilostoraata Anasca Aeteidae Aetea recta Aetea truncata Scrupariidae Eucratea loricata Haplota clavata Membraniporidae Gonopeum reticulum (now C. tenuissimum) Electridae Electra crustulenta Electra hastingsae Electra pilosa

Calloporidae Arnphiblestrum fleming;ii Callopora aurita Gallopora craticula Callopora lineata 211 Calloporidae cond't. Tegella armifera Tegella unicornis Bugulidae Bugula Bugula turrit a Dendrobeania murrayana Scrupocellaridae Caberia ellisii Scru-pocellaria scabra Tricellaria gracilis

Cribrilinidae Cribrilina annulata Cribrilina punctata

Ascophora Hippothoidae Hippothoa hyalina

Gigantoporidae Cylindroporella tubulosa Schizoporellidae Schizoporella biaperta Schizoporella errata ' Hippoporina porosa Hippoporina reticulato-punctata Hippoporina verrilli Microporellidae Microporella ciliata Mucronellidae Parasmittina nitida Parasmittina (morphotype B) Porella aeutxrostris Porella proboscidea Porella propinqua Rhamphostomella bilaminata Rhamphostomella costata Rhamphostomella ovata Cheiloporinidae Cryptosula pallasiana

Phylum Entoprocta

Pedicellinidae Barentsia laxa 212 References (Bryozoa and Entoprocta)

Marcus, Ernst. 19^0. Danmarks Fauna, Mosdyr. G. E. C. Gads For lag - - Kobenhaun. ^01 pp. Marcus, Ernst. 1950. Systematical Remarks on the Bryozoan Fauna of Denmark. (Vidensk. Medd. fra Dansk naturh. Foren. Bd. 112). Maturo, Frank J. S. 1966. Bryozoa of the Southeast Coast of the United States i Bugulidae and Beaniidae (Cheilostomatai Anasca) Bull, of Marine Sci. Vol. 16 , No. 3, Sept. 1966. pp. 556-583. Maturo, Frank J. S., and Schopf, T. J. M. 1968. Ectoproct And Entoproct Type Material. Postilla-Peabody Museum of Natural History. Yale University No. 120. 95pp. Osburn, Raymond C. 1992. The Bryozoa of the Woods Hole Region. Bulletin U. S. Bureau of Fisheries (1910) Vol. 30. pp. 205- 266. PI. 18-31. Osburn, Raymond C. 1933. Bryozoa of the Mount Desert Region. Biological Survey of the Mount Desert Region. Pub. by the Wistar Institute of Anatomy and Biology. Philadelphia. 97 pp. 16 pi. Rogick, Mary Dora and Croasdale, Hanna. 19^9. Studies on Marine Bryozoa, III. Woods Hole Region Bryozoa associated with Algae . Biological Bulletin ,26. pp . 32-69 . Rogick, Mary Dora. 196^. Phylum Entoprocta, pp. 165-166. Phylum Ectoprocta, pp. 176-18?. PI. 23-26. In: Keys to Marine Invertebrates of the Woods Hole Region. ed . Ralph I. Smith. Publ. Woods Hole Marine laboratory by SEP. Ryland, J. S. 1960. The British Species of Bugula (Polyzoa) . Proceedings of the Zoological Society of London. Vol. (1) pp. 65-105.

Additional References Dudley, J. E. 1973- A Note on the Taxonomy of Three Membrani- porine Ectoprocts from Chesapeake Bav. Chesapeake Science. 282-285. Maturo, Frank J. S. 1957- A Study of the Bryozoa of Beaufort, North Carolina, and vicinity. Journal of the Elisha Mitchell Scientific Society. 73(1): 11-68.

213 Os"burn, Raymond C. 1953- Bryozoa of the Pacific Coast of America. Parts 1,2, and 3. Allan Hancock Pacific Expeditions Vol. 1^. Rogick, Mary Dora. 19^5- Studies on Marine Bryozoa. I. Aeverrilli setigera (Hincks) 188?. Biol. Bull. 89(3): 201-21*K Rigick, Mary Dora. 19^8. Studies on Marine Bryozoa II. Barentsia laxa Kirkpactrick 1890. Biol. Bull. 9^(2): 128-1^2.

214 Group: Ascidacea Systematist: Dr. Harold H. Plough Amherst College Amherst, Mass 01002

Phylum: Chordata Subphylum: Urochordata Class: Ascidacea Amaroucium constellatum Bostrichobranchus pilularis Botryllus schlosseri Cnemidocarpa mollis Dendrodoa carnea Didemnum candidum Heterostigma sinfulare Molgula citrina M. complanata M- siphonalis Styela partita

215 Group: Fish Systematist; Dr. Sanford A. Moss Department of Biology Southeastern Massachusetts University North Dartmouth, Mass. 027^7

Class: Chondrichthyes Family: Rajidae Raia erinacea

Class: Osteichthyes Family: Clupeidae Clupea harengus . Family: Congridae Conger oceanica Family: Gadidae Enchelyopus cimbrius Pollachius virens Urophycis regius Family: Sygnathidae Sygnathus fuscus Family: La~bridae Tautogalabrus adspersus T. onitus T. sp. Family: Lumpenidae Lumpenus lumpretaeformis Family: Pholidae pholis gunrielis Family: Zoarcidae Macrozoarces americanus Family: Agonidae Aspidophoroides monoptery^ius Family: Cottidae Myoxocephalus aenaeus M. octodecems-pinosus Family: Liparidae Liparis atlanticus L. liparis

216 MISCELLANEOUS

217 Group: Naididae and Tubificidae Systematist: Dr. David Cook Great Lakes Biolimnology Laboratory Fisheries and Marine Service Canada Centre for Inland Waters 86? Lakeshore Road, P. 0. Box 5050 Burlington, Ontario Canada

Phylum i Annelida Class : Oligochaeta Family: Naididae Par ana is litoralis (Muller, 178*0 Family: Tubificidae Adelodrilus anisosetosus Cook, Limnodriloides medioporus Cook, Peloscolex apectinatus Brinkhurst, P. benedeni (Udekem, 1855) P. intermedius Cook, 19§9 P. nerthoides Brinkhurst, 19&5 Phallodrilus coeloprostatus Cook, 1969 P. obscurus Cook, 1969 P. parviatriatus Cook, 1971 Tubif ex longipenis Brinkhurst ,

References Brinkhurst, R. 0. 1963- Taxonomical studies on the Tubificidae (Annelida, Oligochaeta) ; Int. Rev. Gesamten Hydrobiol. Syst. Beih. 2:1-89- Brinkhurst, R. 0. and B. G. M. Jamieson. 1971- Aquatic Oligochaeta of the World. Oliver &-Boyd, Edinburgh, 860 p. Sperber, C. 19^8. A taxonomical study of the Naididae. Zool. Bidr. Upps. 28: 1-296.

Publications from Cape Cod Bay Identifications Cook, D. G. and R. 0. Brinkhurst. 1973- Marine Flora and Fauna of the Northeastern United States. Annelida: Oligochaeta. . NOAA Technical Report NMFS

213 Group: Ectoprocta and Entoprocta Systematistt Ms. Ruth Swanson Geology Department Wayne State University Detroit, Michigan

Phylum : Entoprocta Family: Pedicellinidae Barentsia laxa Kirkpatrick, 1890 Phylum : Ectoprocta Order : Ctenostomata Family: Alcyonidiidae Alcyonidium parasiticum (Fleming, 1828) A. polyoum (Hassall, 184-1) Family: Flustrellidae Flustrellida hispida (Fabricius , 1780) Family: Vesiculariidae Amathia vidovici (Heller , 186? ) Bowerbankia gracilis Ieidy,l855 Family : Valkeriidae Aeverrillia armata (Verrill, 1873) A. setigera (Hin"efcs±1887) Order : Cyclostomata Family: Crisiidae Crisea cribraria Stimpson, 1853 (}. eburnea ( Linnaeus , 1758 ) Family : Tubuliporidae Tubulipora atlantica (Johnston, 184-7 ) T. flabellaris (Fabricius , 1780) T- lileaceaTPallas , 1?66 ) Family: Lichenoporidae Li chen op or a verrucaria (Fabricius , 1780) Order : Cheilostomata Anasca Family: Aeteidae Hincks,l86l A. truncata Landsborough , 1852 Family : Scrupariidae Eucratea loricata (Linnaeus , 1758 ) Family : Membraniporidae Conopeum reticulum (Linnaeua, 1767 ) G_* t enu i s s imum ( Ganu , 1908 ) Family: Electridae Electra hastingsae Marcus, 1938 E. pilosa (Linnaeus , 1767) Family: Hincksinidae Cauloramphus cymbaeformis (Hincks , 1877)

219 Family Calloporidae Amphiblestrum flemingii (Busk, Gallopora auriTa(Hincks,1877) C. craticula[Alder,1857) C0 lineata (Linnaeus,1767) Tegella armifera (Hincks,1880) T. unicornis["Fleming, 1828) Family Bugulidae Buffula B. turrita (Desor,18^8) Dendrobeania murrayana (Johnston,18^7) Family Scrupocellaridae Caberia ellisii (Fleming,1818) Scrupocellaria scabra (Van Beneden, Tricellaria gracilis (Smitt,186?) Family: Cribrilinidae Cribrilina annulata (Fabricius , 1780) C. punctata (Hassall, 18^1) Ascophora Family : Hippothoidae Hippothoa hyalina (Linnaeus ,1767) Family: Gigantoporidae Cylindroporella tubulosa (Norman, 1868) Family : Schizopor ellidae Schizoporella biaperta (Michelin, S0 errata (=S. unicornis (Johnston , Hippoporina porosa ("Verr ill ,1879) H • reticulato -punctata (Hincks , 1877 ) H- verrilli Mature and Schopf,1968 Family: Microporellidae Microporella ciliata (Pallas , 1766) . Family: Mucronellidae Parasmittina nitida (Verrill , 1875) FI (morphotype B) Mature, in press Porella aeutirostris Smitt ,1867 P. proboscidea Hincks , 1888 P. propinqua (Smitt,l867) Rhamphostomella bilamirtata (Hincks , 1877) R. costata Lorenz ,1886 Smitt, 1868 Family : Cheilopor inidae Cryptosula pallasiana (Moll, 1803)

220 References Dudley, J. E. 1973. A Note on the Taxonomy of Three Membrani- porine Ectoprocts from Chesapeake Bay. Chesapeake Science. : 282-285.

Marcus, E0 19^0. Danmarks Fauna, Mosdyr. GB E. CD Gads Forlag — Kobenhaun0 *K)1 pp0 _ o 1950. Systematical Remarks on the Bryozoan Fauna of Denmark. (Vidensk. MeddD fra Dansk naturhn Foren0 Bd. 112) 3^ PP°

Mature, F. J. SD 1957° A Study of the Bryozoa of Beaufort, North Carolina and vicinity. Journal of the Elisha Mitchell Scientific Society. 73(1): 11-68. _ . 1966. Bryozoa of the Southeast coast of the United States: Bugulidae and Beabiidae (Cheilostomata: Anasca) Bull, of Marine Sci. Vol0 16 , No. 3, Sept0 1966. pp0 556-583-

_ and Schopf, T. J. M0 1968 „ Ectoproct and Entoproct Type Material. Postilla-Peabody Museum of Natural History. Yale University. No. 120, 95 pp.

Osburn, R. C0 1912D The Bryozoa of the Woods Hole Region0 Bulletin Un S. Bureau of Fisheries (1910) Vol0 30, pp. 205-266. 1933° Bryozoa of the Mount Desert Region. Biological Survey of the Mount Desert Region,, Pub0 by the Wistar Institute of Anatomy and Biology, Philadelphia. 97 pp. _ . 1953* Bryozoa of the Pacific Coast of America. Parts 1,2 and 3. Allan Hancock Pacific Expeditions Vol. 1^.

Rogick, M.D0 19^5. Studies on Marine Bryozoa, I. Aeverillia setigera (Hincks , 1887) . Biol. Bull, 89(3): 201-215"

_ . 19^8D Studies on Marine Bryozoa, II. Barents! a laxa Kirkpatrick 1890. Biol. Bull. 9^(2): and H. Croasdale, 19^9- Studies on Marine Bryozoa, III. Woods Hole Region Bryozoa associated with algae. Biol. Bull. 96: 32-69.

. 196*1- . Phylum Entoprocta, pp0 165-166. Phylum Ectoprocta, pp. 16?-18?0 PI. 23-26. In: Keys to Marine Invertebrates of the Woods Hole Region0 ed. Ralph I. Smith. Publ. Woods Hole Marine Laboratory, SEP.

221 References cond't0

Ryland, J0 S. I960. The British Specoes of Bugula (Polyzoa) Proceedings of the Zoological Society of London. Vol. (1): 65-105.

222 Predicted Temperature Ranges for Stations Min. Max. Temp. Temp. Temp. Range 5143 0.0 21.1 21.1 5181 1.5 6.2 4.7 5182 1.5 . 6.2 4.7 5183 1.5 6.2 4.7 5184 1.5 6.2 4.7 5185 1.5 6.2 4.7 6121 0.0 22.7 22.7 6122 0.0 22.7 22.7 6123 0.5 . 19.0 18.5 6124 0.5 18.0 17.5 6125 0.0 19.0 19.0 6161 0.0 21.6 21.6 6164 1.5 7.5 6.0 6165 0.0 21.6 21.6 6201 1.5 6.2 4.7 6202 1.5 6.2 4.7 6203 1.5 6.2 4.7 6204 1.5 6.2 4.7 6205 1.5 6.2 4.7 7104 0.0 23.0 23.0 7143 0.5 12.0 11.5 7144 1.0 8.0 7.0 7181 1.5 6.2 4.7 7182 1.5 6.2 4.7 7183 1.5 6.2 4.7 7184 1.5 6.2 4.7 7185 1.5 6.2 4.7 7221 1.5 6.2 4.7 7222 1.5 6.2 4.7 7223 1.5 6.2 4.7 7224 1.5 6.2 4.7 7225 1.5 6.2 4.7 8121 0.5 15.4 14.9 8122 0.5 17.0 16.5 8123 0.5 17.0 16.5 8124 0.5 15.4 14.9 8125 0.5 15.4 14.9 8161 1.0 8.0 7.0 8162 1.0 8.0 7.0 8163 1.0 8.0 7.0 8164 1.0 8.0 7.0 8165 1.0 8.0 7.0 8201 1.5 6.2 4.7 8202 1.5 6.2 4.7 8203 1.5 6.2 4.7 8204 1.5 6.2 4.7 8205 1.5 6.2 4.7 8241 1.5 6.5 5.0 8242 - 1.5 6.5 5.0

223 8243 1.5 6.5 5.0 8244 1.5 6.5 5.0 8245 1.5 6.5 5.0 9101 0.0 22.7 22.7 9104 0.0 20.0 20.0 9105 0.0 20.0 20.0 9141 0.0 10.0 10.0 9142 0.0 10.0 10.0 9143 0.0 10.0 10.0 9144 0.0 10.0 10.0 9145 0.0 10.0 10.0 9181 1.0 8.0 7.0 9182 1.0 8.0 7.0 9183 1.0 8.0 7.0 9184 1.0 8.0 7.0 9185 1.0 8.0 7.0 9221 1.5 6.5 5.0 9222 1.5 6.5 ' 5.0 9223 1.5 6.5 5.0 9224 1.5 6.5 - 5.0 9225 1.5 6.5 5.0 9261 1.0 7.0 6.0 9262 1.0 7.0 6.0 9263 1.0 7.0 6.0 9264 1.0 7.0 6.0 9265 1.0 7.0 6.0 10121 0.5 17.0 16.5 10122 0.5 17.0 ' 16.5 10123 0.5 17.0 16.5 10124 0.5 17.0 16.5 10125 0.5 17.0 16.5 10161 1.0 8.0 ' 7.0 10162 1.0 8.0 7.0 10163 1.0 8.0 7.0 10164 1.0 8.0 7.0 10165 1.0 8.0 7.0 10201 1.0 7.5 6.5 10202 1.0 7.5 6.5 10203 1.0 7.5 6.5 10204 1.0 - 7.5 6.5 10205 1.0 7.5 6.5 10241 1.0 8.0 7.0 10242 1.0 8.0 7.0 10243 1.0 8.0 7.0 10244 1.0 8,0 7.0 10245 1.0 8.0 7.0 10281 1.0 9.0 8.0 10282 1.0 9.0 8.0 10283 1.0 9.0 8.0 10284 1.0 9.0 8.0 10285 1.0 9.0 8.0 11101 0.0 23.0 23.0 11104 0.0 23.0 23.0

224 11105 0.0 23.0 23.0 11141 0.5 10.0 9.5 11142 0.5 10.0 9.5 11143 0.5 12.0 11.5 11144 0.5 10.0 9.5 11145 0.5 10.0 9.5 11181 1.0 . 8.0 ' 7.0 11182 1.0 8.0 7.0 11183 1.0 8.0 7.0 11184 1.0 8.0 7.0 11221 1.0 8.0 7.0 11222 1,0 8.0 7.0 11223 1.0 8.0 7.0 11224 1.0 8.0 7.0 11225 1.0 8.0 7.0 11261 1.0 9.0 8.0 11262 1.0 9.0 8.0 11263 - 1.0 9.0 8.0 11264 1.0 9.0 8.0 11265 1,0 9.0 8.0 11301 0.5 12.5 12.0 11302 1.0 10.0 9.0 11303 0.5 12.5 12.0 11304 0.5 15.0 14.5 11305 0.5 12.5 12.0 12121 0.5 17.0 16.5 12122 0.5 19.0 18.5 12123 0.5 19.0 18.5 12124 0.5 17.0 16.5 12125 0.5 18.0 17.5 12161 1.0 9.0 8.0 12162 1.0 9.0 8.0 12163 1.0 9.0 8.0 12164 1.0 9.0 8.0 12165 1.0 9.0 8.0 12201 1.0 " 7.0 6.0 12202 1.0 7.0 6.0 12203 1.0 7.0 6.0 12204 1.0 7.0 6.0 12205 1.0 7.0 6.0 12241 1.0 9.0 8.0 12242 1.0 9.0 8.0 12243 1.0 9.0 8.0 12244 1.0 9.0 8.0 12245 1.0 9.0 8.0 12281 0.5 10.0 9.5 12282 0.5 10.0 9.5 12283 0.5 10.0 9.5 12284 0.5 10.0 9.5 12285 1.0 10.0 9.0 12322 0.0 22.0 22.0 13101 0.0 23.0 23.0 13102 0.0 23.0 23.0

225 13103 0.0 23.0 23.0 13104 0.0 23.0 23.0 13105 0.0 23.0 23.0 13141 0.5 14.0 13.5 13142 0.5 14.0 13.5 13143 0.5 14.0 13.5 13144 0.5 14.0 13.5 13145 0.5* 14.0 13.5 13181 1.0 8.0 . 7.0 13182 1.0 8.0 7.0 13183 1.0 8.0 7.0 13184 1.0 8.0 7.0 13185 1.0 8.0 7.0 13221 1.0 9.0 8.0 13222 1.0 9.0 8.0 13223 1.0 9.0 8.0 13224 1.0 9.0 8.0 13225 1.0 9.0 8.0 13261 1.0 9.0 8.0 13262 1.0 9.0 8.0 13263 1.0 9.0 8.0 13264 1.0 10.0 9.0 13265 1.0 9.0 8.0 13301 0.0 22.0 22.0 13302 0.5 15.0 14.5 13303 0.0 20.0 20.0 13305 0.0 20.0 20.0 14121 0.0 19.0 19.0 14122 0.0 20.0 20.0 14123 0.0 20.0 20.0 14124 0.0 19.0 19.0 14125 0.0 20.0 20.0 14161 0.5 10.0 9.5 14162 0.5 . 10.0 9.5 14163 0.5 10.0 9.5 14164 0.5 10.0 9.5 14165 1.0 - 10.0 9.0 14201 1.0 9.0 8.0 14202 1.0 9.0 8.0 14203 1.0 9.0 8.0 14204 1.0 9.0 8.0 14205 1.0 9.0 8 0 14241 1.0 9.5 8 5 14242 1.0 9.5 8.5 14234 1.0 9.5 8.5 14244 1.0 9.5 8.5 14245 1.0 9.5 8.5 14281 0.5 15.0 14.5 14282 0.5 15.0 14 5 14283 0.5 15.0 14*5 14284 0.5 15.0 14.5 14285 0.5 15.0 14.5 15101 0.0 23.0 23 0

226 15104 0.0 23.0 23.0 15105 0.0 23.0 23.0 15141 0.5 17.0 .16.5 15142 0.5 . 17.0 16.5 15143 0.5 19.0 18.5 15144 0.5 17.0 16.5 15145 0.5 17.0 ' 16.5 15181 0.5 10.0 9.5 15182 0.5 10.0 9.5 15183 0.5 10.0 9.5 15184 0.5 10.0 9.5 15185 0.5 10.0 9.5 15221 1.0 10.0 9.0 15222 1.0 10.0 9.0 15223 1.0 10.0 9.0 15224 1.0 10.0 9 0 15225 1.0 - 10.0 9^0 15261 1.0 ' 10.0 9.0 15262 1.0 10.0 9.0 15263 0.5 10.0 9.5 15264 -0.5 10.0 9.5 15265 0.5 10.0 9 5 15302 0.0 22.0 22.0 15303 0.0 22.0 22.0 16081 0.0 23.5 23.5 16082 0.0 23.5 23 5 16083 0.0 23.5 23*5 16084 0.0 23.5 23.*5 16085 0.0 23.5 23.5 16121 0.5 20.0 19 5 16122 0.5 20.0 19 5 16123 0.5 ' 20.0 19*5 16124 0.5 20.0 19 5 16125 0.5 20.0 19 5 16161 0.5 14.0 13*5 16162 0.5 14.0 13 5 16163 0.5 14.0 13 5 16164 0.5 14.0 13*5 16165 0.5 14.0 13 5 16201 0.5 10.0 95 16202 0.5 10.0 9*5 16203 0.5 12.0 11*5 16204 0.5 12.0 - ll"5 16205 0.5 11.0 10*5 16241 0.5 10.0 9*5 16242 0.5 10.0 9*5 16243 0.5 12.0 11*5 16244 0.5 12.0 11 5 16245 0.5 ll.Q 10*5 16281 0.5 16.0 15 5 16282 0.5 15.0 J4.5 I62g3 0.5 16.0 15 5 16284 0.5 18.0 17^5

227 16285 0.5 16.0 15.5 17101 0.0 23.0 23.0 17103 0.0 23.0 23.0 17104 0.0 23.0 23.0 17105 0.0 23.0 23.0 17141 0.0 19.0 19.0 17142 0.0 19.0 19.0 17143 0,0 19.0 19.0 17144 0.0 19.0 19,0 17145 0.5 19.0 18.5 17181 0.5 13.5 13.0 17182 0.5 13.5 13.0 17183 0.5 13.5 13.0 17184 0.5 13.5 13.0 17185 0.5 13.5 13.0 17221 0.5 13.0 12.5 17222 0.5 13.0 . 12.5 17223 0.5 13.0 12.5 17224 0.5 13.0 12.5 17225 0.5 13.0 12.5 17261 0.5 14.0 13.5 17262 0.5 14.0 13.5 17263 0.5 15.0 14.5 17264 0.5 14.0 13.5 17265 0.5 14.0 13.5 17302 0.0 22.0 22.0 17303 0.0 22.0 22.0 18081 0.0 23.5 23.5 18082 0.0 23.5 23.5 18083 0.0 23.5 23.5 18085 0.0 23.5 23.5 18121 0.5 21.0 20.5 18122 0.5 21.0 20.5 18123 0.5 21.0 20.5 18124 0.5 21.0 20.5 18125 0.5 21.0 20.5 18161 0.5 18.0 17.5 18162 0.5 18.0 17.5 18163 0.5 19.0 18.5 18164 0.5 18.0 17.5 18165 0.5 18.0 17.5 18201 0.5 14.0 13.5 18202 0.5 14.0 13.5 18203 0.5 14.0 13.5 18204 0.5 14.0 13.5 18205 0.5 14.0 13.5 18241 0.5 15.0 14.5 18242 0.5 15.0 14.5 18243 0.5 15.0 14.5 18244 0.5 15.0 14.5 18245 0.5 15.0 14.5 18281 0,5 17.0 16.5 18282 0.5 16.0 15.5 18283 0.5 16.0 15.5

228 18284 0.5 20.0 19.5 18285 0.5 20.0 19.5 19101 0.0 22.0 22.0 19102 0.0 22.0 22.0 19103 0.0 22.0 22.0 19104 0.0 22.0 22.0 19105 0.0 22.0 22.0 19141 0.5 20.0 19.5 19142 0.5 20.0 19.5 19143 0.5 20.0 19.5 19144 0.5 20.0 19.5 19145 0.5 20.0 19.5 19181 0.5 15.0 14.5 19182 0.5 15.0 14.5 19183 0.5 15.0 14.5 19184 0.5 15.0 14.5 19185 0.5 15.0 14.5 19221 - 0.5 14.0 13.5 19222 0.5 14.0 13.5 19223 0.5 14.0 13.5 19224 0.5 14.0 13.5 19225 0.5 14.0 13.5 19261 0.5 17.0 16.5 19262 0.5 17.0 16.5 19263 0.5 17.0 16.5 19264 0.5 17.0 16.5 19265 0.5 17.0 16.5 19301 0.0 22.0 22.0 19302 0.0 22.0 22.0 19303 0.0 20.0 20.0 20081 0.0 23.5 23.5 20082 f 0.0 23.5 23 5 20083 0.0 23.5 23.5 20084 0.0 23.5 23.5 20085 0.0 23.5 23.5 20121 0.0 21.0 21.0 20122 0.0 21.0 21.0 2B123 0.0 21.0 21.0 20124 0.0 21.0 21.0 20125 0.0 21.0 21.0 20161 0.5 19.0 18.5 20162 0.5 19.0 18.5 20163 0.5 19.0 18.5 20164 0.5 19.0 18.5 20165 0.5 19.0 18.5 20201 0.5 16.0 15.5 20202 0.5 16.0 15.5 20203 0.5 16.0 15.5 20204 0.5 16.0 15.5 20205 0.5 16.0 15.5 20241 0.5 17.0 16.5 20242 0.5 17.0 16.5 20243 0.5 17.0 16.5 20244 0.5 17.0 16.5 20245 0.5 17.0 16.5

229 20281 0.5 19.0 18.5 20282 0.5 18.0 17.5 20283 0.5 18.0 17 5 20284 0.5 20.0 19*5 20285 0.5 19.0 18.5 21101 0.0 23.5 23 5 2H02 0.0 23.5 23]5 2H04 0.0 23.5 23 5 2H05 0.0 23.5 23 5 21141 0.0 23.0 23.0 2H42 0.0 23.0 23 0 21143 0.0 23.0 23^0 21144 0.5 13.0 12.5 21145 0.5 13.0 12 5 2H81 0.5 18.0 17 5 2H82 0.5 18.0 17 5 21183 0.5 19.0 18;5 21184 0.5 19.0 18.5 21185 0.5 19.0 18.5 21221 0.5 18.0 17 5 21222 0.5 18.0 17 5 21223 0.5 18.0 17 " 5 21224 0.5 18.0 17*5 21225 0.5 18.0 £75 21261 0.5 18.0 ul 21262 0.5 18.0 17*5 21263 0.5 18.0 17*5 21264 0.5 19.0 18"5 21265 0.5 18.0 17*5 21302 0.0 22.0 ' 22 0 min2212i1 0.««0 ^--L.21 5J ^J.of'. cb 22122 0.0 23.5 23 5 22123 0.0 23.5 235 llll22124l 0.2-°0 n 2l23.-5 5 ":23*• 5 20 20 22163 0.'0 21' °0 0-10 n 22164 0-0 200 lo n 22165 0.0 20!0 H'l 22201 2 0.5 i8 o °'° 2220999H2O 0.n r5- 18.' 0 1-L7 / s. 5 22203 0.5 19 0 Ifil *99-)n/220'*l n0. r5 J-a.19 0 U IRCIB. ;5 2224222051 0.55 i!;Is 0 S ^-^'ff 22242 0.5 ia o 17^ 22243 0.5 iaio "I 22244 0.5 19 0 }l ' ! 997/1 1; n c- 10 . 5 22245 °-5 18.0 17 •; 22282 0.0 22 0 ?9n 22285 0.0 220 II « 23141 0.0 235 ll'l 23.1 35

230 23145 0.0 21.5 21.5 23181 0.5 22.0 21.5 23182 0.5 22.0 21.5 23183 0.5 22.0 21 5 23184 0.5 22.0 21.5 23185 0.5 22.0 21.5 23221 0.5 18.0 17 5 23222 0.5 18.0 17*5 23223 0.0 22.0 22.*0 23224 0.0 22.0 22.0 23225 0.0 22.0 22.0 23261 0.0 22.0 22 0 23262 0.0 15.0 15.0 23265 0.0 20.0 20,0 24161 0.0 23.5 23 5 24162 0.0 23 5 ?\*l 241*5 0.0 23.1 23*5 24201 0.0 23 5 23*5 24202 0.0 23 5 ?\*l 24205 0.0 22;5 22 5 24242 0.0 23.5 "

231 C4P5 COD STATIONS FIRST DO FACTOR

+ + 4- + + + 4- + i- + + + + 4- + '+ + + 4- *• + 4- + 4 + + + + 4- 4- + +-* + +'+ + + + + + + + 12 4- 4- 62

15 26 +-*•++-*• 11 10

+*--*•* 39 28 •I- + 4- + -f 11 t- 4- 56 17 25 * 4- 4- * 4-

+ + + 13 47 22 15 47 + + + 23 10 .32 72 ro + + 92 22 29 35 20 t + + UJ IB + + .+ + 19 15 16 15 12 19 40 , + + + + + '• + + + 21 + + 19 64 27 14 61 62 41 + 88 + + 4- 13 -11 26 35 25 + + -*• 4- 19 + 5fl 28 26 50 * 19 + + 4- 23 21 38 49 4- 61 + + 4- 19 + + 4- 10 18 ZQ 4- + + + •4- 4- + + 14 20 + + + + + * 4- 4- 4- 4- + 4- 4- 4- 4- 4- 4- 4- 4- 4- *• 4- + + 4- 4- 4- + 4 + + + + 4- 4- t- * + * 4- 4-4-4- 4-4- 4- * + 4r -* 4-4-4-4- CAPE COD STATIONS SECOND DO FACTOR

4- 4- 4- 4- 4- + 4- 4- 4- 4- *• + ++ + *+ + + ++ + + 4- + > + + + 4- + 4-+ + + +4- + + + + 4- + + + + 4-^*•^+ + + + 4• 4- + + 4-4-4-++4- + +-. + + 4-4- + *• 4- *- + + +++++ + + + + + 4- + + + *• + *••»- + + 4- + + ++ + +++4- + + + * •*•

+ + + + + 4- 4-

+ + + + +

4- + + +

38 + + + 00 + + 4- K) 4- + UJ

+ 4- + + + + -*• , _ +

+ + *• + + + 4- + +

+ + + 4-

+ + +

+ *• + + + + + + + + + + + + + + + + + +++ + *• + 4- 4- _+_J*_* + + * * + 4- + + 4- 4- 4- t + + + 4- 4- 4- 4- 4- 4-

4-4-4-4-4-4-4- CAPE COD STATIONS THIRD DQ FACTOR

* + **+* + * + ++t+** + .«.*.(..4. + +* + + + + + + + + «-++++.|.-f.4..f + * + + 10 ***** * * 10 14 + * .+ +'******** + + ***** ******* ************** ************ i_4 31 * * * * + ******** * * 12 ******** * + + * *** 88 + + * * * * * * * 93 * * * 11 33 10 ***** * * + 18 38 00 * * * 50 1 - * * * 70 33 * * * * * * * * 39 31 ***** NJ OJ * + * * -£> * * * K 0 13 64 *

- + + + * * * * * + * +

* * * * ; 17 \ ... 10 28 * * * 25 24 69 + * + * M " 33 ***** 14 *****

i ********* 16 11 18 ******* * * * * ******

********* ** + * *+* ********** CAPE COO STATIONS FOURTH DQ FACTOR

+ + + + -*-++ + *-***-»*- + +-*- + *+-l- + + + *• + *•»•*•*• + + *• + *• + *• •*••*•+ + + +++• + + -*-.+ +-*•+••*-*•»••*•+• + ** + + *••*•*+ 4- + ++ + 4- + -*--*- + + + + .f + *--f +• •+• + -*--t-* + -i--t- + t + + + +-l--*-t- + •*• + •*••*• + + 4- + •*• 4- •*- +• + * + *-+ + *•***• + + + +'*• *•**•*•+.*•+ + *•*•*• + +•++•+• + *••*•*•++•* + 18 27 39 14 * + * * *-• + +•»-+-»•+•*•+• + +••»•+•+ + *• + + * *• + + *•* + +*• 26 14 15 * +• ' 16 61 46 11 26 20 17 . + * * + *-

. * * + 21 23 . 13 J * «• * 48 .10 + > + * * 25 *- + + 13 00 12 18 12 . . " *• 64 + * + L J 14 14 + *• * *• + + + * L 12 16 29 19 M *• + * 36 +

+ + * 12 ' 11 11 ' 19 * + 20 19 61 39 37 14 + 4- *• * t 11 27 10 11

+ 12 29 67 14 * H^ -*- + CAPE COO STATIONS FIFTH DO FACTOR

****-•-* *- + + + + + + *-*• + ******* ******* + * 91 ***** * + '•*-*-*-** * *• * * *• + +- + **-+*-* + + + + *• «•-*-•*-*• * + +

* * *

* *• + +

22 56 10 17 21

30 23 39 K 11 23 48

10 67 39

14 22 25

00 18 40 18 00 16 19 + + 37 17

***** * ^ * *• * * + + •*+•* + +

****** COD STATIONS SIXTH DO FACTOR

51

56 10 25 21 91 • •*• *- * 61 * + 34 23 58 27 I 32 10 12 11 42 30 56 60 29 66 21 10 11 33 33 37 i 49 t 55 15 12 17 15 20 12 18 11 10

24 11 20 26 16 26 11 •f •*• 16 27 11 24 40 19 20 20 13 + + •*• + + 10 14 ho W K 18 15 17 12 11 16 -j 44 69 20 10 11 10 21 39 *• * 10 10 + 50 11 - 42 18

10 21

25 37

•*• .* 22 17 31 * -t- i- 10 13 * * 57 15 *•*+ + + + •*• -i- + «- + •»•!•»•»•*•»«•______CAPE COD STATIONS SEVENTH 00 FACTOR

00 + V *•*•*•*

• + + *••*•*••*•*• 78

+ + + *• +

+ + + •*• +

11 + *•

37 58 + * 12 * * 23 71 00 67 + + + + + 00 00 64 21 55

15 25 12 20 + 1-t 15

21 11 + •*- •«-++**- 21 + +*-*•»-*•+ + 11 * * •*• •«• » *• •*• + + * + + 38 CAPE COD STATIONS EIGHTH DO FACTOR

•*• + •*•* *--f-*- + + -»-+-*- + + + ++ + + -f + + * + + + -t- t- 13 * + + 12

23 *»***-*• 00 •*• + + **+•* -*- + + •*- **•**-* * * 4-* +

NM + + + *•

S 18 + -t-

EE HH * + + * ho UJ 13 J KK * + * 4- *•

DD J

11 00 30 + 13 56

J K 19 10 GG

+ + -H *• *

+ * * + + *• + *- + CAPE COD STATIONS NINTH DO FACTOR

•*•*•* +

**•*• •*• *• •*• + ***- + + *-«•* + MM **«••*• + + + + ****<-+ ++*•

•ft'***-*** 10 *-*-*•

23 lift. 11 15 10 2S 17 12 19

10 35 35 00 32 21 9'fi <*5 17 11 14 K P •*-+**• 19 •*-**- 93 35 48

25 33 23 11 00 11 21 31 + «-•*•#+* 14 **•**•+» 17 16 * *• «•+*+***• * *• CAPE CQD STATIONS TENTH DO FACTOR

+ .*•*••*-**+• •*•+- + *•*• *•*-*--*-*-

00 *-*** *-*•**• «- + •*•*•

•*-••-•*• + «• *• +• 39 * + +• + *

47 10 00 * + '

28 t + +• •''*.'.- - . -

* * + ' 55 LL + *••*- 4. 4. *• +• + *

+ + *• 12 * *- 18

55

16 13 19

20 11 00 17 60 12

39 43

27 59 21 ' + + + *• + TABLE Species Associated With. Various Factors Species Factor ' Angle

Euchone Tricolor 1 7 Prionospio Sp. 1 13 Mayerella Limicola 1 15 Stenopleustes Inermi — 1 15 Polydora Ligni 1 16 Spiophanes Sp. 1 17 Photis Reinhardi 1 18 Lafoea Dumosa 1 18 Melita Dentata 1 20 Chaetopleura Apiculata 1 20 Nephtys Paradoxa 1 21 D-Orvillea Sp. A 1 21 Potamilla Reniformis 1 21 Peloscolex Intermedius 1 23 Dulichia Monocantha 1 24 Species J 1 24 Bathymedon Spp. - 1 25 Myriochele Herriw/oeyes 1 26 Photis Macrocoxa 1 27 Lora Concinnula 1 27 Mystides Borealis 1 27 Leptostylis Longimana 1 28 Limnodriloides Medioporus 1 29 Apistobranchus Tulbergi 1 30 Caprella Septentrionis 2 0 Onckidoris Muricata 2 0 Leucosolenia Cancellata 2 0 Eudendrium Insigne 2 - 0 Obelia Geniculata 2 0 Aeverrillia Armata 2 0 Tubulipora Lilaecea 2 0 Electra Pilosa 2 0 Cribrilina Annulata 2 0 Hippothoa Hyalina 2 0 Cylindroporella Tubulosa 2 0 Asterias Forbesi 2 0 Henricia Sanguinolenta 2 0 Acanthodoris Pilosa 2 2 Alcyonidium Polyoum 2 2 Crisia Eburnea 2 2 Lichenopora Verrucaria 2 2 Cribrilina Punctata 2 2 Naineris Quadricuspis 2 2 Cirratulus B 22 Caprella Linearis 2 3 Tubilipora Sp. 23 Callopora Aurita 2 3 Bowerbankia Gracilis 2 6 Achelia Spinosa 2 6 Ampithoe Rubricate 2 7 Eulalia Viridis 2 7 242 -J Bugula Cuculifera 2 9 Callopora Craticulata 2 10 Gonothyraea Loveni 2 12 Nicolea Venustula 2 16 Asterias Sp. 2 16 Corophium Bonelli 2 19 Haplota Clavata 2 22 Pleusymtes Glaber 2 28 Dispio Uncinata 3 7 Halcampa Duodecimcir 3 8 Microprotopus Raneyi 3 9 Caprella Sp. 3 10 Crepidula Spp. 3 10 Aricidea Jeffreysii 3 12 Callipallene Brevirostris 3 12 Epitonium Novangliae 3 13 Musculus Discors 3 13 Diopatra Cuprea 3 13 Pista Palmata 3 13 Pista Sp. 3 13 Ampithoe Longimana 3 14 Paranais Litoralis 3 14 Libinia Emarginata 3 17 Pagurus Longicarpus 3 17 Hiatella Arctica 3 18 Liparis Atlanticus 3 19 Haploops Tubicola 3 19 Dendronotus Frondosus 3 19 Macrozoarces Americanus 3 20 Molgula Siphonalis ' 3 22 Haliclona Oculata 3 22 Cirratulus A. / 3 22 Ericthonius Brasiliensis 3 23 Cerapus Tubularis 3 23 Edwardsia Elegans 3 23 Diastylis Sp. 3 24 Dexamine Thea 3 24 Paracaprella Tenuis 3 25 Prosuberites Epiphytum 3 25 Amathia Vidovici 3 25 Aeverrillia Setigera 3 25 Microporella Ciliata 3 25 Protodorvillea Gaspeensis 3 25 Tmetonyx Nobilis 3 27 Electra Hastingsae 3 27 Brada Villosa 4 11 Sargartia Modesta 4 15 Halcampoides Sp. 4 16 Mediomastus Ambiseta 4 17 Harpinia Propinqua 4 19 Casco Bigelowi 4 24 Aricidea Belgicae 4 26 Brada Granosa 4 27 Nucula Proxima 4 28 Asabellides Oculata 5 11 Cliona Celata 5 12 Margaritas Helicina 5 13 Prionospio Heterobra 243 ^ -^ Ischyrocerus Anguipes 5 22 Placopecten Magellanicus 5 25 Yoldia Thraciaeformis 6 11 Ctenodiscus Crispatus 6 11 Lumpenus Lumpretaeformis 6 14 Maera Loveni 6 14 Nuculana Tenuisulcatus 6 14 Spio Limicola 6 14 Haploops Sp. 6 15 Porella Sp. 6 16 Trichobranchus Spp. 6 16 Species K. 6 17 Eudorella Truncatula 6 18 Odostomia Eburnea 6 18 Ampharete Acutifrons 6 18 Melita N. Sp. 6 20 Crisia Cribaria 6 20 Crisea Sp. 6 20 Sybils Gaimardi 6 21 Lysilla Loveni 6 22 Voldia Sapotilla 6 23 Neomysis Americana 6 24 Scolecolepides Viridis 6 24 Scalibregma Inflatum 6 25 Sternapsis Scutata 6 26 Trochochaeta Multisetosa 6 26 Macoma Tenta 6 27 Eudorella Hispida 6 29 Pagurus Acadianus 7 4 Venericardia Sp, 7 4 Marphysa Sanguinea 7 4 Buccinum Undatum 7 5 Peloscolex Benedeni 7 5 Ovalipes Ocellatus 7 6 Crenella Glandula 7 6 Molleria Costulata 7 8 Philine Lima 7 8 Amphitrite Johnston! 7 8 Phallodrilus Paruiatriatus 7 8 Achelia Scabra 7 8 Mysis Stenolepis 7 9 Alvania Areolata 7 9 Pinnixa Chaetopterana 7 10 Polygordius Lacteus 7 10 Unciola Irrorata 7 11 Protodorvillea Kefersteini 7 11 Anachis Avara 7 12 Cyrtodaria Siligua 7 13 Polydora Quadrilobata 7 13 Caulleriella Sp. 1 7 13 Strongylocentrotus 7 13 Ensis Directus 7 14 Lumbrineris Acuta 7 16 Marionina Welchi 7 17 Lembos Smith! 7 20 Eulalia Sp. 7 21 Drilonereis Longa 7 21 Scolelepis Sguamata 7 21 Sabellaria Vulgaris 244 7 21 Sabellaria Vulgaris 7 21 Protodrilus Sp. 7 22 Peloscolex Nerthoidees 7 22 Lora Spp. 7 24 Novaquesta Trifurcata 7 26 Phallodrtlus Coeloprostatus 7 26 Goniadella Gracilis 7 27 Prionospio N. Sp. 7 28 Nannosquilla Gray! 8 8 Ovalipes Spp. 8 8 Scypha Ciliata 8 14 Heterostigma Singula 8 15 Hydrallmania Falcata 8 15 Polydora Sp. 8 15 Cyclaspis Varians 8 16 Eumida Sanguinea 8 16 Arabella Tricolor 8 16 Sabella Micropthalma 8 - 17 Anachis Translirata 8 18 Clytia Gracilis 8 18 Boccardia Hamata 8 18 Paraphoxus Spinosus 8 19 Laevicardium Mortoni 8 19 Lysianopsis Alba 8 20 Schizoporella Sp. 8 20 Hippoporina Verrilli 8 20 Rhamphostomella Costata 8 21 Bittium Alternation 8 22 Crepidula Convexa 8 22 Anadara Transversa 8 22 Aequipecten Irradians 8 22 Notocirrus Spiniferus 8 / 22 31599999999 8 23 Notomastus Luridus 8. 23 Parasmittina (Morphotype-B) 8 24 Ampharete Spp. 8 24 Family Trochidae 8 26 Polygordius Triestinus 8 26 Crepidula Fornicata 8 27 Periploma Leanum 8 28 Epitonium Sp. 8 29 Polycirrus Eximius 8 30 Alvania Spp. ' 9 11 Paraonis Gracilis 9 16 Sertularia Argentea 9 17 Sertularia Latiuscula 9 18 Dulichia Falcata 9 19 Eudorella Sp. 9 22 Porella Acutirostris 9 22 Rhamphostomella 9 25 Eucratea Loricata 9 26 Nassarius Trivittatus 9 29 Ammotrypane Sp. 9 30 Corophium Crassicorne 10 3 Crangonidae 10 5 Balanus Balanus 10 6 Ericthonius Rubricornis 10 6 Doto Coronata 10 6 Molgula Citrina 245 10 6 Aetea Truncata 10 6 Amphiblestrum 10 6 Eulalia Bilineata 10 6 Dodecaceria Sp. 1 10 6 Acmaea Testudinalis 10 7 Ophiura Robusta 10 -8 Pagurus Arcuatus 10 9 Couthouyella 10 9 Aporrhais Occidental 10 9 Venericardia Borealis 10 9 lophon Proximum 10 9 Polymastia Robusta 10 9 Phyllodoce Groenlandica 10 9 Ptilanthura Tenuis 10 10 Haliclona Sp. 10 10 Bostrichobranchus 10 12 Diastylis Sculpta 10 13 Sertularia Similis 10 13 Travista Carnea 10 13 Travista Sp. 10 13 Euchone Elegans 10 13 Hippomedon Serratus 10 14 Echinarachnius Parma 10 14 Lunatia Immaculata 10 18 Nephtys Caeca 10 18 Praxillella Sp. 10 18 Leptasterias Tenera 10 18 Lamprops Quadriplicata 10 20 Lora Turricula 10 21 Alcyonidium Parasiti 10 21 Pygospio Elegans 10 22 Odostomia Sulcosa 10 23 Phyllodoce Maculata 10 23 Anonyx Sarsi 10 24 Syrrhoe Crenulata 10 24 Clymenella Sp. 10 25 Amphipholis Squamata 10 25 Diaphana Minuta 10 26 Cyllchna Alba 10 28 Phyllodoce Mucosa 10 28

246