Preferensi Habitat Spesies Kerang Laut (Moluska: Bivalvia) Di Ekosistem Intertidal Tanjung Bilik Taman Nasional Baluran

Total Page:16

File Type:pdf, Size:1020Kb

Preferensi Habitat Spesies Kerang Laut (Moluska: Bivalvia) Di Ekosistem Intertidal Tanjung Bilik Taman Nasional Baluran Volume 08, Nomor 03: 165 — 170 Desember 2019 DOI: xx.xxxxx/xxxx.xxxxx Preferensi Habitat Spesies Kerang Laut (Moluska: Bivalvia) di Ekosistem Intertidal Tanjung Bilik Taman Nasional Baluran (Habitat Preference of Sea Shell Species (Moluska: Bivalvia) in the Intertidal Ecosystem of Tanjung Bilik Baluran National Park) 1 1 1 1 Rendy Setiawan* , Sudarmadji , Budi Putra Mulyadi , Revika Hilda Hamdani 1Jurusan Biologi, Fakultas MIPA Universitas Jember Jl. Kalimantan 37 Sumbersari, Jember 68121, Jawa Timur, Indonesia Keywords: Sea shell, Habitats, Abstract Baluran national park Shellfish are mollusks that live in the substrate of some aquatic ecosystems. Seashells are an important component of the food chain due to their nutrient recycling function through deposit and suspension feeding. Some species are also able to bioaccumulate heavy metals. In Baluran National Park of East Java, Indonesia, seashells are often used by the local community as foodstuffs and their shells are sold as room decorations, jewelry, and household appliances. Due to overexploitation, it has been suspected that the population density and species diversity of seashells has decreased. This study was carried out in October 2019 at Bilik Beach in Baluran National Park in order to determine the species composition and habitat preferences of seashell species. Random sampling was used to measure the seashell species composition in the study area. Results revealed the presence of 6 orders, 8 families, 11 genera, and 14 species. The calculated species diversity value (H ') was found to be 2.109, which indicates medium-level species diversity. The calculated value for species evenness was found to be 0.79, which indicates low species evenness. Habitat consisted mainly of chunks of dead coral overgrown with algae. Mollusks were often found co-occuring with corals of the Faviidae family, particularly those of the genus Porites. Keywords: Kerang Laut, Abstrak Habitat, TN Baluran Kerang merupakan komponen penting yang berperan sebagai pemakan sisa organik yang berada di perairan (deposit feeder) dan pemakan suspensi (suspension feeder) dalam rantai makanan. Beberapa spesies kerang juga dapat berperan dalam mengakumulasi (bioakumulator) logam berat. Di Taman Nasional Baluran, Jawa Timur, Indonesia, kerang sering digunakan oleh masyarakat setempat sebagai bahan dasar makanan dan cangkangnya dijual sebagai dekorasi kamar, perhiasan, dan peralatan rumah tangga. Akibat terjadinya eksploitasi terhadap kerang secara berlebihan, telah diduga bahwa kepadatan populasi dan keanekaragaman spesies kerang telah menurun. Penelitian ini dilakukan pada Oktober 2019 di Pantai Bilik di Taman Nasional Baluran untuk menentukan komposisi spesies dan preferensi habitat spesies kerang. Pengambilan sampel acak digunakan untuk mengukur komposisi spesies kerang di daerah penelitian. Hasil analisis menunjukkan bahwa terdapat adanya 6 ordo, 8 famili, 11 genera, dan 14 spesies. Nilai keanekaragaman spesies yang dihitung menggunakan indeks keanekaragaman jenis (H'). Hasil yang diperoleh menunjukkan telah ditemukan 165 Natural Science: Journal of Science and Technology Vol. 8 No. 3: 165—170 (2019) 2,109, yang menunjukkan keanekaragaman spesies tingkat sedang. Analisis kemerataan spesies menunjukkan nilai sebesar 0,79, yang berarti kemerataan *Coresponding Author : spesies rendah. Habitat kerang di Pantai Bilik lebih terfokus pada bongkahan [email protected] karang mati yang ditumbuhi alga. Moluska sering ditemukan bersama dengan (Phone: 085236636334) karang dari keluarga Faviidae, terutama yang berasal dari genus Porites. Latar Belakang Substrat merupakan permukaan atau media tempat Moluska merupakan hewan bertubuh lunak yang makhluk hidup melekat dan tumbuh. Setiap tipe dilindungi oleh cangkang, namun pada beberapa jenis substrat memiliki kandungan bahan organik yang tidak bercangkang (Brusca & Brusca, 2003). Salah berbeda-beda, sehingga substrat berpengaruh satu kelas yang termasuk ke dalam filum Moluska terhadap preferensi habitat, penyebaran dan komposisi adalah Bivalvia (Radiopoetro, 1996; Gosling, 2003). spesies hewan bentik seperti kerang laut (Akhrianti et. Bivalvia (kerang) memiliki ciri khas berupa dua bagian al., 2014). Beberapa macam substrat yang ada di cangkang yang simetris. Kedua cangkang tersebut Tanjung Bilik yaitu pasir, pasir berlumpur, batu karang, disatukan oleh suatu sendi elastis yang disebut dan karang mati. Diversitas habitat dan substrat yang ligament pada permukaan bagian dorsal (Rusyana, terdapat di Tanjung Bilik diduga menjadi tempat hidup 2011). Kerang dapat ditemukan hidup di perairan laut, bagi beberapa jenis kerang laut. Selama ini informasi payau, dan tawar. tentang preferensi habitat spesies kerang laut di Kerang dalam ekosistem perairan berperan sebagai Tanjung Bilik belum tersedia. Berdasarkan informasi pemakan sisa organik (deposit feeder) dan pemakan tersebut, maka perlu dilakukan penelitian tentang suspensi (suspension feeder) dalam rantai makanan. preferensi habitat spesies kerang laut di Tanjung Bilik Beberapa jenis Bivalvia misalnya kerang hijau (Perna Taman Nasional Baluran, Kabupaten Situbondo. viridis) juga berfungsi sebagai bioakumulator logam berat di perairan (Tjokrokusumo, 2006). Selain sebagai Bahan dan Metode bioakumulator, kerang dapat dimanfaatkan sebagai Penelitian dilakukan pada bulan Oktober 2019. bahan pangan karena memiliki kandungan protein Pengambilan sampel dan pengumpulan data dilakukan yang tinggi (Ningsih, 2009). Oleh karena itu, kerang di ekosistem intertidal Tanjung Bilik Taman Nasional memiliki manfaat ekonomi bagi masyarakat sekitar Baluran Kabupaten Situbondo dengan koordinat garis maupun manfaat ekologi bagi ekosistem dan pantai antara 7°45'6.96" S dan 114°22'26.36" E sampai organisme di ekosistem intertidal. Menurut Goltenboth 7°45'0.26" S dan 114°22'8.87" E. Identifikasi spesies, et al. (2012), ekosistem intertidal merupakan area deskripsi, dan analisis data kerang dilakukan di pasang surut yang memiliki keanekaragaman Laboratorium Ekologi Jurusan Biologi Fakultas organisme yang tinggi dan diversitas ekosistem yang Matematika dan Ilmu Pengetahuan Alam Universitas bervariasi dibandingkan dengan ekosistem laut lainnya. Jember. Untuk sampel yang belum diketahui jenisnya Kerang laut banyak ditemukan di ekosistem intertidal, dilakukan identifikasi lanjutan di laboratorium salah satunya di ekosistem intertidal Tanjung Bilik Malakologi LIPI Cibinong. Taman Nasional Baluran. Metode yang digunakan adalah Purposive Sampling Tanjung Bilik memiliki zona intertidal dengan dengan meletakkan plot berukuran 1x1 m2 secara acak habitat dan substrat yang bervariasi (Siddiq et al. di seluruh ekosistem intertidal bergantung pada 2016). yang berperan penting bagi kelangsungan keberadaan koloni kerang yang ditemukan. Kerang hidup biota perairan (Heide et al. 2014) yaitu yang berada pada permukaan substrat diambil dengan sebagai tempat hidup, habitat berperan sebagai cara langsung, sedangkan kerang yang berada di tempat berkembang biak dan penyedia makanan. dalam substrat diambil dengan menggunakan bantuan Kerang laut cenderung memilih habitat yang berbeda sekop sampai kedalaman maksimal sekitar 25 cm. Hal sesuai dengan karakteristik morfologi, mikrohabitat, ini dilakukan karena beberapa spesies kerang dan perbedaan perilaku tiap spesies. Oleh karena mempunyai kemampuan untuk membenamkan diri ke itu, kerang laut memiliki preferensi habitat yang dalam substrat dasar sekitar 5-25 cm (Riniatsih dan berbeda dalam menempati lokasi di ekosistem Widianingsih, 2007). intertidal. Selain habitat, hal yang juga penting Pengambilan sampel diawali dengan menyusuri pantai bagi kelangsungan hidup biota perairan yaitu dari batas tubir hingga mencapai garis pantai. substrat perairan intertidal. Penyusuran ini dilakukan hingga mencakup seluruh 166 Natural Science: Journal of Science and Technology Vol. 8 No. 3: 165—170 (2019) wilayah Pantai Bilik pada saat air laut surut. Tujuannya berupa pasir, dan R (Roots) untuk substrat agar tidak mengulang penghitungan terhadap individu berupa akar mangrove. yang sama serta mengetahui distribusi setiap spesies kerang yang ditemukan (Setiawan et al., 2018). Hasil dan Pembahasan Menurut Carpenter dan Niem (1998), identifikasi Berdasarkan hasil identifikasi diketahui bahwa kerang kerang dilakukan sampai tingkat spesies dengan Laut yang terdapat di Tanjung Bilik Taman Nasional memperhatikan morfologi cangkang pada masing- Baluran terdiri atas 6 ordo, 8 famili, 11 genus, dan 14 masing spesies. Morfologi tersebut meliputi bentuk spesies (Tabel 1) yang tersebar di sepanjang cangkang, warna, ribs radial, dan umbo. Selain itu ekosistem intertidal dalam 220 plot. Komposisi spesies bagian internal cangkang yang perlu diamati adalah kerang laut di ekosistem intertidal Tanjung Bilik hinge dan palial line. Penentuan jenis Bivalvia Taman Nasional Baluran didominasi oleh jenis menggunakan buku acuan Dharma (1992), Dharma Spondylus squamosus dengan jumlah 361 individu (1988) dan Carpenter dan Niem (1998). Data (Tabel 1). Kondisi lokasi yang didominasi oleh kemudian dianalisis menggunakan indeks habitat karang mati sangat cocok untuk mendukung keanekaragaman spesies Shannon Wiener dan kehidupan S. squamosus. Hal ini terkait indeks kemerataan spesies (Odum, 1998). Selain kemampuannya yang melekat sangat kuat pada jumlah jenis kerang, kondisi habitat tempat karang mati dibandingkan dengan spesies kerang ditemukannya juga dicatat. Kondisi habitat lainnya sehingga dapat bertahan terhadap arus digunakan untuk mengetahui preferensi habitat ombak
Recommended publications
  • Review of Selected Species Subject to Long- Standing Import Suspensions
    UNEP-WCMC technical report Review of selected species subject to long- standing import suspensions Part II: Asia and Oceania (Version edited for public release) Review of selected species subject to long-standing import suspensions. Part II: Asia and Oceania Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements, Brussels, Belgium Prepared February 2016 Copyright European Commission 2016 Citation UNEP-WCMC. 2016. Review of selected species subject to long-standing import suspensions. Part II: Asia and Oceania. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision- makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners
    [Show full text]
  • ENCORE: the Eаect of Nutrient Enrichment on Coral Reefs
    Marine Pollution Bulletin Vol. 42, No. 2, pp. 91±120, 2001 Ó 2001 Published by Elsevier Science Ltd. Printed in Great Britain PII: S0025-326X$00)00181-8 0025-326X/01 $ - see front matter ENCORE: The Eect of Nutrient Enrichment on Coral Reefs. Synthesis of Results and Conclusions K. KOOP *,1, D. BOOTHà, A. BROADBENT§,2, J. BRODIE , D. BUCHERàà, D. CAPONE ,3, J. COLL§§,4, W. DENNISON , M. ERDMANNààà, P. HARRISONàà, O. HOEGH-GULDBERG ,5, P. HUTCHINGS§§§, G. B. JONES§, A. W. D. LARKUM , J. O'NEIL ,5, A. STEVEN ,6, E. TENTORI§§, S. WARDàà,5, J. WILLIAMSON ,7 and D. YELLOWLEESàààà School of Biological Sciences, The University of Sydney, Sydney NSW 2006, Australia àDepartment Environmental Sciences, University of Technology, Sydney NSW 2065 Australia §Department of Chemistry, James Cook University, Townsville, Qld 4810, Australia Great Barrier Reef Marine Park Authority, P.O. Box 1379, Townsville, Qld 4810, Australia ààCentre for Coastal Management, Southern Cross University, P.O. Box 157, Lismore NSW 2480, Australia §§Department of Biology, Central Queensland University, Rockhampton, Qld 4702, Australia Department of Botany, University of Queensland, Brisbane, Qld 4072, Australia àààP.O. Box 1020, Manado, Sulawesi, Indonesia §§§The Australian Museum, 6, College Street, Sydney, NSW 2010, Australia Chesapeake Biological Laboratory, University of Maryland, Box 38, Solomons, MA 20688-0038, USA ààààBiochemistry and Molecular Biology, James Cook University, Townsville, Qld 4811 Australia Coral reef degradation resulting from nutrient enrichment assessed a variety of factors focusing on nutrient dynamics of coastal waters is of increasing global concern. Although and biotic responses. A controlled and replicated experi- eects of nutrients on coral reef organisms have been ment was conducted over two years using twelve small demonstrated in the laboratory,there is little direct evi- patch reefs ponded at low tide by a coral rim.
    [Show full text]
  • Systematics and Paleoenvironment of Quaternary Corals and Ostracods in Dallol Carbonates, North Afar
    ADDIS ABABA UNIVERSITY SCHOOL OF EARTH SCIENCES SYSTEMATICS AND PALEOENVIRONMENT OF QUATERNARY CORALS AND OSTRACODS IN DALLOL CARBONATES, NORTH AFAR ADDIS HAILU ENDESHAW NOV., 2017 ADDIS ABABA, ETHIOPIA i Systematics and Paleoenvironments of Quaternary Corals and Ostracods in Dallol Carbonates; North Afar Addis Hailu Endeshaw Advisor – Dr. Balemwal Atnafu A Thesis Submitted to School of Earth Sciences Presented in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Earth Sciences (Paleontology and Paleoenvironment) Addis Ababa University Addis Ababa, Ethiopia Nov., 2017 ii iii ABSTRACT Systematics and Paleoenvironment of Quaternary Corals and Ostracods in Dallol Carbonates, North Afar Addis Hailu Endeshaw Addis Ababa University, 2017 There are reef structures developed in Dallol during the Quaternary Period as a result of flooding of the area by the Red Sea at least two times. Dallol area is situated in the northern most part of the Eastern African Rift system. The studied coral outcrops are aligned along the northwestern margin of the Afar rift. This research focused on the investigation of systematics of corals and associated fossils of mollusca, echinoidea, ostracoda and foraminifera together with the reconstruction of past environmental conditions. Different scientific methods were followed in order to achieve the objectives of the study. These are detailed insitu morphological descriptions; field observations and measurements; laboratory preparations and microscopic examinations; comparison of the described specimens with type specimens; and paleoecological calculations using PAST-3 software. Total of 164 fossil and 9 sediment samples are collected from the field and examined. The Dallol corals are classified into 12 Families, 29 Genera and 60 Species.
    [Show full text]
  • Tridacna Maxima (Reding), and Hippopus Hippopus (Linnaeus)!
    Pacific Science (1976), Vol. 30, No.3, p. 219-233 Printed in Great Britain Early Life History of the Giant Clams Tridacna crocea Lamarck, Tridacna maxima (Reding), and Hippopus hippopus (Linnaeus)! STEPHEN C. JAMESON2 ABST RACT: Giant clams may be stimulated to spawn by the addition of macer­ ated gonads to the water.Individuals of Tridacna maxima collected at Anae Island, Guam, spawned from N ovember to March. On Palau, Hippopus hippopus spawned in June and Tridacna crocea, in July. Tridacna crocea, T. maxima, and H. hippopus displayed a stereotype d develop ment pattern in morphogenesis and rate of development . Fertilized eggs of T. crocea, T . maxima, and H. hippopus had mean diameters of 93.1, 104.5, and 130.0 psx», respectively . The day-2 straight-hinge veligers of T . crocea, T . maxima, and H. hippopus had mean shell lengths of 155.0, 168.0, and 174.4 pm, respec tively. Settlement occurred 12, 11, and 9 days after fertili zation at a mean shell length of 168.0, 195.0, and 202.0 pm for T . crocea,T . max ima, and H. bippopss, respectively. Metamorphosis was basically complete about 1 day after settlement. Juveniles of T . crocea, T. max ima, and H. hippopus first acqui re zooxanthellae after 19, 21, and 25 days, respectively. Growth rates increase sharply after the acquisition of zoo ­ xanthellae. Juvenile shells show first signs of becoming opaque after 47 days for T . maxima and after 50 days for H. hippopus. G rANT CLAMS are protandric fun ctional herma­ formation, and initial organogenesis. The larval phrodites (Wada 1942, 1952).
    [Show full text]
  • Biology and Status of Aquaculture for Giant Clams (Tridacnidae) in the Ryukyu Islands, Southern Japan
    Biology and status of aquaculture for giant clams (Tridacnidae) in the Ryukyu Islands, southern Japan Item Type book_section Authors Iwai, Kenji; Kiso, Katsuhiro; Kubo, Hirofumi Publisher Aquaculture Department, Southeast Asian Fisheries Development Center Download date 27/09/2021 20:53:51 Link to Item http://hdl.handle.net/1834/40477 Biology and status of aquaculture for giant clams (Tridacnidae) in the Ryukyu Islands, southern Japan Iwai, Kenji; Kiso, Katsuhiro & Kubo, Hirofumi Date published: 2006 To cite this document : Iwai, K., Kiso, K., & Kubo, H. (2006). Biology and status of aquaculture for giant clams (Tridacnidae) in the Ryukyu Islands, southern Japan. In J. H. Primavera, E. T. Quinitio, & M. R. R. Eguia (Eds.), Proceedings of the Regional Technical Consultation on Stock Enhancement for Threatened Species of International Concern, Iloilo City, Philippines, 13-15 July 2005 (pp. 27-38). Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center. To link to this document : http://hdl.handle.net/10862/2931 Share on : PLEASE SCROLL DOWN TO SEE THE FULL TEXT This content was downloaded from SEAFDEC/AQD Institutional Repository (SAIR) - the official digital repository of scholarly and research information of the department Downloaded by: [Anonymous] On: January 29, 2019 at 11:01 PM CST Follow us on: Facebook | Twitter | Google Plus | Instagram Library & Data Banking Services Section | Training & Information Division Aquaculture Department | Southeast Asian Fisheries Development Center (SEAFDEC) Tigbauan, Iloilo 5021 Philippines | Tel: (63-33) 330 7088, (63-33) 330 7000 loc 1340 | Fax: (63-33) 330 7088 Website: www.seafdec.org.ph | Email: [email protected] Copyright © 2011-2015 SEAFDEC Aquaculture Department.
    [Show full text]
  • Prolonged Lag in Population Outbreak of an Invasive Mussel: a Shifting-Habitat Model
    Biological Invasions 6: 347–364, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Prolonged lag in population outbreak of an invasive mussel: a shifting-habitat model Gil Rilov1,3,∗, Yehuda Benayahu2 & Avital Gasith1 1Institute for Nature Conservation Research, 2Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; 3Current Address: School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 1, New Zealand; ∗Author for correspondence (e-mail: [email protected]; fax: +64-3-3642024) Received 28 May 2002; accepted in revised form 9 December 2003 Key words: bioinvasions, Brachidontes pharaonis, Israel, lag-time, Lessepsian migration, Mediterranean Sea, mussel, rocky shore Abstract Biological invasions pose a great threat to the integrity of natural communities. Some invasive species demonstrate a population explosion shortly after arrival while in other cases a prolonged lag between arrival and population outbreak is evident. This paper describes a case of a prolonged lag and explores the possible mechanism for this lag. The Red Sea mussel Brachidontes pharaonis, a Lessepsian migrant, was first recorded in the Mediterranean seven years after the opening of the Suez Canal in 1869. Since then it spread along the Israeli coast and as far northwest as Sicily. Studies conducted in the late 1970s, when B. pharaonis was still rare, predicted that it would not establish dense populations along the Israeli coast and would not outcompete the indigenous mussel Mytilaster minimus, although it has strong negative effects on survival and growth of the native species. It was attributed to the invader’s low intrinsic rate of increase relative to that of the native species, and to strong density-independent mortality generated by exposure to high wave action and sedimentation.
    [Show full text]
  • Genetic Variability in the Indonesian Giant Clam (Tridacna Crocea and Tridacna Maxima) Populations: Implication for Mariculture and Restocking Program
    Genetic Variability in the Indonesian Giant Clam (Tridacna crocea and Tridacna maxima) Populations: Implication for Mariculture and Restocking Program Agus Nuryanto1, Dedy Duryadi2, Dedi Soedharma3, Dietmar Blohm4 1 Faculty of Biology, Jenderal Soedirman University, Purwokerto 2 Department of Biology, Faculty of Mathematics and Life Sciences, Bogor Agriculture University 3 Faculty of Fisheries and Marine Sciences, Bogor Agriculture University 4 Department of Biotechnology and Molecular Genetics, FB2-UFT, University of Bremen Abstract Tridacna crocea and T. maxima are relatively abundant in the Indonesian coral reef. These two species are, however, under high presure due to exploitation for food, industry, and aquarium trade. It is, therefore, necessary to understand their biology, such as genetic variability within and between populations, before utilizing them for strain improvement and restocking, prior to the extinction of the populations of T. crocea and T. maxima. Here we amplified a length of 456 bp of the mitochondrial DNA cytochrome c oxidase I gene from Tridacna crocea and of 484 bp from T. maxima to asses the genetic variability within and between populations of both species. The results showed that both species have high genetic diversity and polymorphism within each local population. This provides a sufficient basis for selection of improved strain of T. crocea and T. maxima for mariculture. However, if the genetic variation led to genetic differentiation among populations due to the result of evolutionary adaptation, mixing genetically different populations may result in the break up of co-adaptation gene complexes. This might result in the loss of the physiological capacities of the parental populations. Key words: genetic variability, cytochrome c oxidase I gene, Tridacna crocea, Tridacna maxima Introduction The family of tridacnidae, also known as giant clam, is conspicuous bivalve that inhabits coral reef across the Indo-Pacific region (Lucas, 1988).
    [Show full text]
  • Alien Species in the Mediterranean Sea by 2010
    Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • The Ecological Significance of Giant Clams in Coral Reef Ecosystems
    Biological Conservation 181 (2015) 111–123 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review The ecological significance of giant clams in coral reef ecosystems ⇑ Mei Lin Neo a,b, William Eckman a, Kareen Vicentuan a,b, Serena L.-M. Teo b, Peter A. Todd a, a Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore b Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore article info abstract Article history: Giant clams (Hippopus and Tridacna species) are thought to play various ecological roles in coral reef Received 14 May 2014 ecosystems, but most of these have not previously been quantified. Using data from the literature and Received in revised form 29 October 2014 our own studies we elucidate the ecological functions of giant clams. We show how their tissues are food Accepted 2 November 2014 for a wide array of predators and scavengers, while their discharges of live zooxanthellae, faeces, and Available online 5 December 2014 gametes are eaten by opportunistic feeders. The shells of giant clams provide substrate for colonization by epibionts, while commensal and ectoparasitic organisms live within their mantle cavities. Giant clams Keywords: increase the topographic heterogeneity of the reef, act as reservoirs of zooxanthellae (Symbiodinium spp.), Carbonate budgets and also potentially counteract eutrophication via water filtering. Finally, dense populations of giant Conservation Epibiota clams produce large quantities of calcium carbonate shell material that are eventually incorporated into Eutrophication the reef framework. Unfortunately, giant clams are under great pressure from overfishing and extirpa- Giant clams tions are likely to be detrimental to coral reefs.
    [Show full text]
  • Taxonomy of Indonesian Giant Clams (Cardiidae, Tridacninae)
    BIODIVERSITAS ISSN: 1412-033X Volume 13, Number 3, July 2012 E-ISSN: 2085-4722 Pages: 118-123 DOI: 10.13057/biodiv/d130303 Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae) UDHI EKO HERNAWAN♥ Biotic Conservation Area of Tual Sea, Research Center for Oceanography, Indonesian Institute of Sciences. Jl. Merdeka, Katdek Tual, Southeast Maluku 97611. Tel. +92-916-23839, Fax. +62-916-23873, ♥email: [email protected] Manuscript received: 20 December 2010. Revision accepted: 20 June 2011. ABSTRACT Hernawan E. 2012. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae). Biodiversitas 13: 118-123. A taxonomic study was conducted on the giant clam’s specimens deposited in Museum Zoologicum Bogoriense (MZB), Cibinong Indonesia. Taxonomic overviews of the examined specimens are given with diagnostic characters, remarks, habitat and distribution. Discussion is focused on specific characters distinguishing each species. From seven species known to distribute in Indonesian waters, there are six species, Tridacna squamosa Lamarck, 1819; T. gigas Linnaeus, 1758; T. derasa Roding, 1798; T. crocea Lamarck, 1819; T. maxima Roding,1798; and Hippopus hippopus Linnaeus, 1758. This study suggests the need for collecting specimen of H. porcellanus Rosewater, 1982. Important characters to distinguish species among Tridacninae are interlocking teeth on byssal orifice, life habits, presence of scales and inhalant siphon tentacles. Key words: Tridacninae, taxonomy, Museum Zoologicum Bogoriense INTRODUCTION family (Tridacnidae) or revised to be subfamily Tridacninae, included in family Cardiidae. Recently, based Giant clams, the largest bivalve in the world, occur on sperm ultrastructure and molecular phylogenetic studies, naturally in association with coral reefs throughout the the clams are belonging to family Cardiidae, subfamily tropical and subtropical waters of the Indo-Pacific region.
    [Show full text]
  • SPONDYLUS (BIVALVIA: SPONDYLIDAE) Oleh Muhammad Masrur Islami"
    Oseana, Volume XXXVI, Nomor 3, Tahun 2011: 39-46 ISSN 0216-1877 SEKILAS TENTANG SPONDYLUS (BIVALVIA: SPONDYLIDAE) Oleh Muhammad Masrur Islami" ABSTRACT A GLANCE ABOUT SPONDYLUS (BIVALVIA: SPONDILYDAE). Spondylus also known as "spiny oyster", is a macroinvertebrate of the Family Spondylidae. It is characterized by a large muscular scar, posterior to tile center of shell, usually inequivalve and cemented to substrate by the right (lower) valve. As an epifaunal and sedentary animal, suspension filter-feeder, it lives mainly in relatively shallow waters in coralline areas to 50 m. The shell is composed with two minerals, calcite and aragonite layers. Thepossible functions of spines are as (I) supportsfor sensory mantle tissue, (ii) serve a camouflaged function, (iii) discourage epibionts, (iv) act as defense mechanisms,(v) aid in attachment to the substrate, and (vi) stabilize the shell. The predators of Spondylus are the gastropoda Fasciolaria tulipa. the spiny lobster Panulirus ~ ray Aetobatis narinari and Dasyatis americanus, the porcupine fish Diodon hystrix. and an unidentified stomatopod. The distribution area ofSpondylus particularly in the Indo-Pacific regionfrom India.Japan, Indonesia, Philippines, southern of Australia and America, Mexico, Brazil and Mediteranian. PENDABULUAN kelimpahannya di perairan laut maupun tawar, dari habitat yang dingin hingga ke daerah tropis, Bivalvia atau istilah umumnya disebut dari perairan yang dangkal bingga ke zona kerang, merupakan kelas terbesar kedua dalam abyssal yang dalam, bivalvia tergolong biota Filum Moluska setelah Gastropoda. Kelompok yang berhasil dalam adaptasinya,. bewan ini mempunyai sejarah panjang berkaitan Salah satu contobjenis bivalvia adalah dengan temuan fosilnya. Menurut LAMPREL Spondylus. Sejauh ini, informasi mengenai & WHITEHEAD (1992), spesies bivalvia tertua Spondylus atau dalam istilah lain dikenal dengan yang ditemukan tercatat berasal dari zaman kerang berduri (spiny oyster) masih sangat Cambrian, lebib dari 500 juta tahun yang lalu.
    [Show full text]
  • A Study on Assemblage of Invertebrates Inhabiting Rocky Shores Within the Port-Limit of Port-Louis, Mauritius
    Journal of Coastal Development ISSN : 1410-5217 Volume 14, Number 2, February 2011 : 159 - 167 Accredited : 83/Dikti/Kep/2009 Original Paper A STUDY ON ASSEMBLAGE OF INVERTEBRATES INHABITING ROCKY SHORES WITHIN THE PORT- LIMIT OF PORT- LOUIS, MAURITIUS Julia Charles1), Chandani Appadoo2), Asha Poonyth2) 1) Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius, Chapel Lane, L’Escalier, Mauritius 2) Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 3) Mauritius Oceanography Institute, France Centre, Quatre Bornes, Mauritius Received : January, 3, 2011 ; Accepted : January, 31, 2011 ABSTRACT Rocky shores provide an important habitat for marine organisms. This study aimed at providing baseline data on assemblage of organisms on rocky shores within the port-limit of Port-Louis, Mauritius. Four rocky shores, with three at Pointe aux Sables (La Pointe1, La Pointe2, and Petit Verger) and one at Baie du Tombeau were studied from October 2007 to February 2008. On each site three stations, located at intervals of 2m, with an area of 40m2 each were set up. Intertidal organisms were hand-collected within forty-eight, 1m2 quadrat for invertebrates. Observations of 16,061 specimens led to identification of 30 faunal species belonging mostly to phyla Mollusca and Arthropoda. Mean total abundance of invertebrates per 1m2 varied from 729.22±173.07 at la Pointe2 to 143.97±11.43 at Baie du Tombeau. The gastropod, Planaxis sulcatus was the most abundant species at La Pointe1 and Petit Verger with mean abundance of 196.86±179.71 and 168.10±113.44 per 1m2 respectively. The bivalve, Modiolus auriculatus was the dominant species with mean abundance of 673.33±762.04 per 1m2 at La Pointe2 and Nerita punctata was most abundant (39.41±57.35 per 1m2) at Baie du Tombeau.
    [Show full text]