What Is the Boundary for the Quaternary Period and Pleistocene Epoch? the Contribution of Turnover Patterns in Large Mammalian C

Total Page:16

File Type:pdf, Size:1020Kb

What Is the Boundary for the Quaternary Period and Pleistocene Epoch? the Contribution of Turnover Patterns in Large Mammalian C Quaternaire, 18, (1), 2007, p. 35-53 WHAT IS THE BOUNDARY FOR THE QUATERNARY PERIOD AND PLEISTOCENE EPOCH? THE CONTRIBUTION OF TURNOVER PATTERNS IN LARGE MAMMALIAN COMPLEXES FROM NORTH-WESTERN MEDITERRANEAN TO THE DEBATE Ⅲ Maria Rita PALOMBO* ABSTRACT Assuming that the Quaternary has to be recognized as a formal chronostratigraphic/geochronological unit (having a Sub-Erathem/Sub-Era rank, as recommended by the International Commission on Stratigraphy (ICS), or better a System/ Period rank, as suggested by several scientists), what boundary should be chosen? Should the lower boundary of the Quaternary coincide with the base of the Gelasian Stage (2.6 Ma) as proposed by the ICS? If so, should the Quaternary and Pleistocene lower boundaries be the same or should be different? To contribute to the debate, the Villafranchian large mammal fossil record from the North-Western Mediterranean region have been revised in order to correlate the diversity and structural dynamics of reconstructed faunal complexes with the changes in environmental conditions occur- ring from the Middle Pliocene to the Early Pleistocene. According to the results obtained, two major faunal renewals are detectable at the transition from the early to middle Villafranchian [~2.7-2.5 Ma, about at the time of the transition from the Middle (Zanclean Stage) to the Late Pliocene (Gelasian Stage)], and from the middle to late Villafranchian (~2.0-~1.9 Ma, shortly before the official Plio-Pleistocene boundary). The faunal renewal from the early (V1) to the middle (V2) Villafranchian faunal complexes (that means from the MN16a “zone”/Triversa FU to MN16b “zone”/Montopoli FU) is linked to the Middle Plio- cene climate worsening, in turn related to the onset of bipolar glaciations followed by glacial-interglacial cycles of moderate amplitude (orbital pe- riodicity of 41 ka). The resulting increase in aridity and more intense seasonality caused the disappearance of several forest-dwelling taxa, especially small carnivores and arboreal-scansorial taxa, whereas new large grazers, mixed feeders or even browsers appeared. This renewal (al- ready called the “Equus-elephant event”) can be regarded as a true turnover phase, due to the high percentage of last and new appearances, and to the important ecological structural changes in faunal complexes, involving mainly the herbivore guild. These faunal changes indicate that forests or woodlands gradually gave way to more open environments (including Artemisia steppe) alternating with warm-temperate deciduous forests. More- over, this event can be considered as the starting point for a dispersal phase leading to a progressive standing richness increase during the following Pliocene (middle Villafranchian, V3). Around 2.0-1.8 Ma (late Villafranchian, V4), despite the extinction of some small browsing and grazing ruminants, diversity notably increased due to the progressive appearance of a number of carnivores. Indeed, the so-called “wolf-event” involved several large and small Carnivora, such as the powerful scavenger Pachycrocuta brevirostris, the jaguar-like Panthera gombazsoegensis,andcoo- perative foraging canids. On the other hand, minor phyletic adjustments and some new appearances (especially grazers) affected herbivore guild. This relatively long dispersal phase, and correlated moderate turnover pulses, seems to be less important than the early/middle Villafranchian renewal phase, especially as far as France and the Italian peninsula are concerned. As a result, taking into account the importance of faunal renewal at the Middle to Late Pliocene transition, it seems more reasonable to extend the base of the Pleistocene downwards from 1.81 Ma (official Plio/Pleistocene boundary) to 2.6 Ma (base of Pliocene Gelasian Stage). Accordingly, the base of the Gelasian seems to be the most appropriate lower boundary for both the Quaternary Period and Pleistocene Epoch. Key-words: Quaternary, Pleistocene, Large mammals, North Western Mediterranean. VERSION FRANÇAISE ABRÉGÉE QUELLE LIMITE POUR LE QUATERNAIRE ET LE PLÉISTOCÈNE ? L’APPORT DE L’ÉTUDE DU RENOUVELLEMENT DES FAUNES À GRANDS MAMMIFÈRES DE LA MÉDITERRANÉE NORD OCCIDENTALE DURANT LE PLIOCÈNE MOYEN ET SUPÉRIEUR ET LE PLÉISTOCÈNE INFÉRIEUR INTRODUCTION La plupart des chercheurs conviennent que le Quaternaire devrait être reconnu comme une unité chronostratigraphique/géochronologique formalisée, Sub-Erathème/Sub-Ere, comme cela a été recommandé par la Commission Internationale pour la Stratigraphie (ICS) (cf. Clague, 2005, 2006) ou mieux Système / Période, comme suggéré par plusieurs chercheurs. Mais, il n’existe pas encore d’accord au sujet de cette unité. La limite inférieure du Quaternaire devrait-elle coïncider avec la base de l’étage Gélasien (2.6 Ma), comme cela a été proposé par l’ICS ? Si oui, les limites in- férieures du Quaternaire et du Pléistocène devraient-elles coïncider ou bien devraient-elles être différentes ? * Dipartimento di Scienze della Terra, Università “La Sapienza”, CNR – Istituto di Geologia Ambientale e Geoingegneria, Piazzale A. Moro, 5 – 00185 ROMA, Italy. E-mail : [email protected] Manuscrit reçu le 08/07/2006, accepté le 09/10/2006 36 Pour contribuer au débat et en rappelant que le « Pléistocène » et le Quaternaire ont été créés en s’appuyant sur des donnés soit paléontologi- ques, soit climatiques (ex. Desnoyers, 1829 ; Lyell, 1833, 1839 ; Reboul, 1833 ; Agassiz, 1840 ; Forbes, 1846), les faunes à grands mammifères de la région méditerranéenne nord-occidentale ont été révisées dans le but d’envisager quels ont été les changements les plus importants des complexes fauniques (fluctuations de la diversité et changement de la structure) qui se sont produits durant le Pliocène moyen et supérieur et le Pléistocène in- férieur, lorsque d’importants changements climatiques ont modifié l’environnement. Le renouvellement des faunes et de la structure des paléocommunautés et leurs rapports avec les changements globaux du climat ont été considérés. En particulier, la dynamique des deux plus importants « turnovers » du Villafranchien, l’“elephant-Equus event” (Lindsay et al.,1980) (qui s’est déroulé grosso modo entre la fin du Zancléen et le début du Gélasien), et le « wolf event » (Azzaroli, 1983 ; Palmqvist, 1999 ; Sardella & Palombo, 2007), auparavant placé au début du Pléistocène, a été analysée dans le but d’envisager lequel des deux était le plus remarquable, en préci- sant si et de quelle façon le climat et les changements de l’environnement avaient entraîné le renouvellement des faunes. En effet, écologistes et également évolutionnistes ont débattu depuis longtemps du rôle que les changements du climat ont et ont eu sur l’évo- lution de la faune, et il semble que nous n’ayons pas encore trouvé d’accord. Les modèles les plus importants – tel que le « Stationary model »(Ro- senzweig, 1975) et les théories qui privilégient le rôle de l’environnent (Vrba, 1992, 1995 ; Brett & Baird, 1995), ou par contre les modèles et les théories qui regardent comme plus important la compétition intra- et inter-spécifique (Red Queen Hypothesis, Van Vallen, 1973 ; Bell, 1982 ; Pro- thero 2004) ; ou, enfin les hypothèses dont la vision est un peu plus complexe (“Coevolutionary disequilibrium Model”, Graham & Lundelius, 1984) ou stochastique (Court Jester Hypothesis, Barnosky 2001) – semblent être à la fois confirmés ou réfutés par les donnés paléontologiques. D’autre part, si le climat et les changements de l’environnement ont causé le renouvellement des faunes, soit par migration, soit par apparition et ex- tinction, les variations dans la structure des paléocommunautés devraient être en accord avec ces changements du climat. Dans ce but, nous avons analysé les turnovers et les variations en richesse, diversité et structure écologique, des complexes faunistiques à grands mammifères du Pliocène moyen et supérieur et du Pléistocène inférieur de la zone méditerranéenne nord occidentale. MATÉRIAUX ET MÉTHODE Les listes fauniques de 112 faunes locales (LFAs) d’Espagne, de France et d’Italie, les plus riches ou les plus irréfutables au point de vue chronologique, ont été révisées aussi bien que la taxonomie et la distribution chronologique des espèces (fig. 1, tab. 1 et 2). Des complexes faunisti- ques proches des « paléocommunautés » ont été déterminés également à l’aide d’analyses multivariées (analyses de cluster), permettant de recon- naître des complexes fauniques (FCs) cohérents au point de vue chronologique et écologique (biochrones). Ces complexes peuvent être regardés comme des « block of coordinated stasis »(sensu Brett & Baird 1995 ; Bret et al., 1996), puisqu’on assume que, pendant le temps qu’ils renferment, aucun turnover ne se produisit (cf. Palombo, 2005, sous presse et références bibliographiques citées). Les méthodes de Harper (1975) et Foote (2000) ont été utilisées pour calculer la richesse standardisée et la diversité, celles de Torre et al. (1999) et Foote (2000) pour calculer l’index de turnover entre deux FCs successives et les taux d’apparition et d’extinction dans chaque FC respectivement. RÉSULTATS L’analyse de similitude montre l’évidence d’une séparation plus importante entre le LFAs du Villafranchien inférieur et moyen qu’entre celles du Villafranchien moyen et supérieur. Les valeurs des indices de turnover calculés à la transition entre deux FCs successives confirment le caractère progressif du renouvellement qui se développe durant le Pliocène supérieur. Les taux d’apparition et d’extinction soulignent d’un côté ce turnover, et de l’autre
Recommended publications
  • Climatic Events During the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil Joseh C
    Quaternary International 72 (2000) 73}85 Climatic events during the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil JoseH C. Stevaux* Universidade Federal do Rio Grande do Sul - Instituto de GeocieL ncias - CECO, Universidade Estadual de Maringa& - Geography Department, 87020-900 Maringa& ,PR} Brazil Abstract Most Quaternary studies in Brazil are restricted to the Atlantic Coast and are mainly based on coastal morphology and sea level changes, whereas research on inland areas is largely unexplored. The study area lies along the ParanaH River, state of ParanaH , Brazil, at 223 43S latitude and 533 10W longitude, where the river is as yet undammed. Paleoclimatological data were obtained from 10 vibro cores and 15 motor auger holes. Sedimentological and pollen analyses plus TL and C dating were used to establish the following evolutionary history of Late Pleistocene and Holocene climates: First drier episode ?40,000}8000 BP First wetter episode 8000}3500 BP Second drier episode 3500}1500 BP Second (present) wet episode 1500 BP}Present Climatic intervals are in agreement with prior studies made in southern Brazil and in northeastern Argentina. ( 2000 Elsevier Science Ltd and INQUA. All rights reserved. 1. Introduction the excavation of Sete Quedas Falls on the ParanaH River (today the site of the Itaipu dam). Barthelness (1960, Geomorphological and paleoclimatological studies of 1961) de"ned a regional surface in the Guaira area de- the Upper ParanaH River Basin are scarce and regional in veloped at the end of the Pleistocene (Guaira Surface) nature. King (1956, pp. 157}159) de"ned "ve geomor- and correlated it with the Velhas Cycle.
    [Show full text]
  • Szentesi Et Al.Indd
    FRAGMENTA PALAEONTOLOGICA HUNGARICA Volume 32 Budapest, 2015 pp. 49–66 Albanerpetontidae from the late Pliocene (MN 16A) Csarnóta 3 locality (Villány Hills, South Hungary) in the collection of the Hungarian Natural History Museum Zoltán Szentesi1, Piroska Pazonyi2 & Lukács Mészáros3 1Department of Palaeontology and Geology, Hungarian Natural History Museum, H-1083 Budapest, Ludovika tér 2, Hungary. E-mail: [email protected] 2MTA–MTM–ELTE Research Group for Palaeontology H-1083 Budapest, Ludovika tér 2, Hungary. E-mail: [email protected] 3Department of Palaeontology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary. E-mail: [email protected] Abstract – Based on cranial and jaw elements, the presence of Albanerpeton pannonicum species (Allocaudata: Albanerpetontidae) was noticed from the late Pliocene Csarnóta 3 locality (Villány Hills). Since it is considered a poor fossil site, it had not been suffi ciently studied. Th ese fossils represent the geologically youngest record of the species from Hungary. Th ough, the Csarnóta 3 albanerpetontid assemblage is small the bones are well preserved, and all are informative on spe- cies or at least on genus level. Th e red coloured bone-bearing deposits and the preservation quality of bones are very similar to the uppermost strata (4–1) of the Csarnóta 2 palaeovertebrate locality. Th e study of small mammal fauna also suggests this correlation, as well as explains the age of the site. Th e studied vertebrate fauna forms a transition between the woodland and steppe wildlife. With 17 fi gures and 3 tables. Key words – Albanerpeton, Albanerpetontidae, late Pliocene, small mam mals, taphonomy, Vil- lány Hills INTRODUCTION Albanerpetontidae are a Middle Jurassic – late Pliocene clade of salaman- der-like lissamphibians that are closely related to anurans and salamanders (e.g.
    [Show full text]
  • Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation
    land Article Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation Antonio Martínez-Graña 1,* , Paulo Legoinha 2 , José Luis Goy 1, José Angel González-Delgado 1, Ildefonso Armenteros 1, Cristino Dabrio 3 and Caridad Zazo 4 1 Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain; [email protected] (J.L.G.); [email protected] (J.A.G.-D.); [email protected] (I.A.) 2 GeoBioTec, Department of Earth Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516 Almada, Portugal; [email protected] 3 Department of Stratigraphy, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] 4 Department of Geology, Museo Nacional de Ciencias Naturales, 28006 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923294496 Abstract: A 3D virtual geological route on Digital Earth of the geological-geomorphological and paleontological heritage in the Algarve (Portugal) is presented, assessing the geological heritage of nine representative geosites. Eighteen quantitative parameters are used, weighing the scientific, didactic and cultural tourist interest of each site. A virtual route has been created in Google Earth, with overlaid georeferenced cartographies, as a field guide for students to participate and improve their learning. This free application allows loading thematic georeferenced information that has Citation: Martínez-Graña, A.; previously been evaluated by means of a series of parameters for identifying the importance and Legoinha, P.; Goy, J.L.; interest of a geosite (scientific, educational and/or tourist). The virtual route allows travelling from González-Delgado, J.A.; Armenteros, one geosite to another, interacting in real time from portable devices (e.g., smartphone and tablets), I.; Dabrio, C.; Zazo, C.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • New Pliocene Localities with Micromammals from the Czech Republic: a Preliminary Report
    Fossil Record 10(1) (2007), 60–68 / DOI 10.1002/mmng.200600019 New Pliocene localities with micromammals from the Czech Republic: a preliminary report Stanislav Cˇ erma´k*,1, Jan Wagner **,2, Oldrˇich Fejfar***,1 & Ivan Hora´cˇek****,3 1 Charles University, Faculty of Science, Department of Geology and Paleontology, Albertov 6, 128 43 Prague, Czech Republic 2 Charles University, Faculty of Science, Department of Philosophy and History of Natural Science, Czech Republic, Vinicˇna´ 7, 128 44 Prague, Czech Republic 3 Charles University, Faculty of Science, Department of Zoology, Czech Republic, Vinicˇna´ 7, 128 44 Prague, Czech Republic Received 21 June 2006, accepted 28 July 2006 Published online 30 January 2007 With 5 figures and 2 tables Key words: micromammals, Pliocene, Ruscinian, Villanyian, Czech Republic. Abstract The first well defined Pliocene mammalian faunas in the Czech Republic –– found at localities Meˇnˇ any 3 and Vitosˇov –– are reported herein. Pilot samples from the localities have yielded an assemblage of at least 23 taxa of small mammals (Lipotyph- la, Chiroptera, Lagomorpha, and Rodentia). The key taxa Mimomys hassiacus, M.cf.gracilis (an advanced form), Baranomys, and Germanomys in the assemblage suggest age of the fauna is Pliocene, possibly near the Ruscinian –– Villanyian (MN15b –– MN16a) boundary. Schlu¨ sselwo¨ rter: Kleinsa¨ugetiere, Plioza¨n, Ruscinium, Villanyium, Tschechische Republik. Zusammenfassung Die ersten gut definierten Sa¨ugetierfaunen des Plioza¨ns –– aus Meˇnˇ any 3 und Vitosˇov –– werden hier zum erstenmal untersucht. Die ersten Proben lieferten eine Fauna von 23 Sa¨ugetiertaxa der Ordnungen Lipotyphla, Chiroptera, Lagomorpha und Rodentia. Die biochronologisch wichtigen Formen Mimomys hassiacus, M.cf.gracilis (eine fortschrittliche Form), Baranomys und Germa- nomys unterstu¨ tzen die Alterseinstufung der Fauna an der Grenze des Ruscinium –– Villanyium (MN15b –– MN16a).
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Making a Timeline Rope
    Making a Timeline Rope Background: Your timeline rope invites students to focus on recent periods of geologic time. This rope demonstrates four periods and seven epochs, beginning with the Jurassic Period in the Mesozoic Era, in the Phanerozoic Eon, and ending at the present time, in the Holocene Epoch, in the Quaternary Period of the Cenozoic Era, in the Phanerozoic Eon. Standards: SC.D.1.2.3 SC.D.1.2.5 SC.D.1.3.1 SC.D.1.3.2 SC.D.1.3.3 MA.1.G.5.1 MA.1.G.5.2 MA.2.G.3.4 MA.2.G.3.1 MA.3.G.5.2 MA.4.G.3.3 MA.6.A.5.1 MA.8.A.1.3 SC.912.E.5.3 SC.912.E.6.4 SC.912.E.6.5 SC.912.N.3.1 SC.912.N.3.5 Objectives: − Analyze how specific geological processes and features are expressed in Florida and elsewhere − Describe the geological development of the present day oceans and identify commonly found features − Understand the function of models in science, and identify the wide range of models used. − Compare, contrast, and convert units of measure Vocabulary: Geologists and paleontologists give names to spans of many years. Spans are approximate; they relate more to fossil age ranges than to absolute years. Experts use a common vocabulary. Eon: Largest division of geologic time. Each eon contains several periods and can last for hundreds of millions to billions of years. Some experts identify four eons. (Example: Life on earth has been abundant during the Phanerozoic Eon, as well- preserved fossils prove.) Era: Shorter than an eon.
    [Show full text]
  • Science Journals
    Early human impacts and ecosystem reorganization in southern-central Africa Item Type Article; text Authors Thompson, J.C.; Wright, D.K.; Ivory, S.J.; Choi, J.-H.; Nightingale, S.; Mackay, A.; Schilt, F.; Otárola-Castillo, E.; Mercader, J.; Forman, S.L.; Pietsch, T.; Cohen, A.S.; Arrowsmith, J.R.; Welling, M.; Davis, J.; Schiery, B.; Kaliba, P.; Malijani, O.; Blome, M.W.; O'Driscoll, C.A.; Mentzer, S.M.; Miller, C.; Heo, S.; Choi, J.; Tembo, J.; Mapemba, F.; Simengwa, D.; Gomani-Chindebvu, E. Citation Thompson, J. C., Wright, D. K., Ivory, S. J., Choi, J.-H., Nightingale, S., Mackay, A., Schilt, F., Otárola-Castillo, E., Mercader, J., Forman, S. L., Pietsch, T., Cohen, A. S., Arrowsmith, J. R., Welling, M., Davis, J., Schiery, B., Kaliba, P., Malijani, O., Blome, M. W., … Gomani-Chindebvu, E. (2021). Early human impacts and ecosystem reorganization in southern-central Africa. Science Advances, 7(19). DOI 10.1126/sciadv.abf9776 Publisher American Association for the Advancement of Science Journal Science Advances Rights Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Download date 01/10/2021 20:13:45 Item License https://creativecommons.org/licenses/by-nc/4.0/ Version Final published version Link to Item http://hdl.handle.net/10150/660624 SCIENCE ADVANCES | RESEARCH ARTICLE ANTHROPOLOGY Copyright © 2021 The Authors, some rights reserved; Early human impacts and ecosystem reorganization exclusive licensee American Association in southern-central Africa for the Advancement Jessica C.
    [Show full text]
  • Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia Emily Simpson East Tennessee State University
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2019 Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia Emily Simpson East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Paleontology Commons Recommended Citation Simpson, Emily, "Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia" (2019). Electronic Theses and Dissertations. Paper 3590. https://dc.etsu.edu/etd/3590 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia ________________________________ A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences with a concentration in Paleontology _______________________________ by Emily Michelle Bruff Simpson May 2019 ________________________________ Dr. Chris Widga, Chair Dr. Blaine W. Schubert Dr. Andrew Joyner Key Words: Paleoecology, land-use, grassy balds, stable isotope ecology, Whitetop Mountain ABSTRACT Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia by Emily Michelle Bruff Simpson Land-use, feeding habits, and response to seasonality by Quaternary megaherbivores in Saltville, Virginia, is poorly understood. Stable isotope analyses of serially sampled Bootherium and Equus enamel from Saltville were used to explore seasonally calibrated (δ18O) patterns in megaherbivore diet (δ13C) and land-use (87Sr/86Sr).
    [Show full text]
  • New Dinoflagellate Cyst and Acritarch Taxa from the Pliocene and Pleistocene of the Eastern North Atlantic (DSDP Site 610)
    Journal of Systematic Palaeontology 6 (1): 101–117 Issued 22 February 2008 doi:10.1017/S1477201907002167 Printed in the United Kingdom C The Natural History Museum New dinoflagellate cyst and acritarch taxa from the Pliocene and Pleistocene of the eastern North Atlantic (DSDP Site 610) Stijn De Schepper∗ Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom Martin J. Head† Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada SYNOPSIS A palynological study of Pliocene and Pleistocene deposits from DSDP Hole 610A in the eastern North Atlantic has revealed the presence of several new organic-walled dinoflagellate cyst taxa. Impagidinium cantabrigiense sp. nov. first appeared in the latest Pliocene, within an inter- val characterised by a paucity of new dinoflagellate cyst species. Operculodinium? eirikianum var. crebrum var. nov. is mostly restricted to a narrow interval near the Mammoth Subchron within the Plio- cene (Piacenzian Stage) and may be a morphological adaptation to the changing climate at that time. An unusual morphotype of Melitasphaeridium choanophorum (Deflandre & Cookson, 1955) Harland & Hill, 1979 characterised by a perforated cyst wall is also documented. In addition, the stratigraphic utility of small acritarchs in the late Cenozoic of the northern North Atlantic region is emphasised and three stratigraphically restricted acritarchs Cymatiosphaera latisepta sp. nov., Lavradosphaera crista gen. et sp. nov.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]