(Plantaginaceae) and an Updated Identification Key
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Pollen Morphology of Plantago Species Native to Poland and Their Taxonomic Implications
Vol. 73, No. 4: 315-325, 2004 ACTA SOCIETATIS BOTANICORUM POLONIAE 315 POLLEN MORPHOLOGY OF PLANTAGO SPECIES NATIVE TO POLAND AND THEIR TAXONOMIC IMPLICATIONS MA£GORZATA KLIMKO1, KRYSTYNA IDZIKOWSKA2, MARIOLA TRUCHAN3, ANNA KREFT3 1 Department of Botany, Agricultural University Wojska Polskiego 71C, 60-625 Poznañ, Poland e-mail: [email protected] 2 Laboratory of Electron Microscopy, Adam Mickiewicz University Grunwaldzka 6, 70-780 Poznañ, Poland 3 Department of Botany and Genetics, Institute of Biology and Environmental Protection, Pomeranian Pedagogical University Arciszewskiego 22B, 76-200 S³upsk, Poland (Received: March 29, 2004. Accepted: May 21, 2004) ABSTRACT Pollen grains of 9 species of the genus Plantago (Plantaginaceae), including 8 taxa native to Poland, were ob- served under a light microscope and a scanning electron microscope. Descriptions of grain sculpture are illustra- ted only SEM micrographs. The studied pollen grains were medium-sized or small, spherical or prolate spheroi- dal. Their sculpture was always verrucate with granulation. In the studied taxa, internal apertures had the form of pores. Their number ranged from (4)5-9(14). The pores were scattered on the surface of pollen grains. Identifica- tion features of individual taxa include: presence or absence of an annulus around each pore, annulus structure, ornamentation of the pollen grain and operculum, type of aperture membrane, number of internal pores, and pore diameter. We suggest that two new pollen grain types, characteristic of P. intermedia and P. arenaria, should be distinguished, and that P. alpina should be assigned to the P. coronopus type. KEY WORDS: Plantaginaceae, Plantago, pollen morphology, SEM. INTRODUCTION the sporophyte, whereas pollen size is determined both by sporophytic and gametophytic genotypes (Bedinger 1992; Pollen grains of the genus Plantago (Plantaginaceae) ha- McCormic 1993; Nepi et al. -
2018 Bioblitz Report
Bioblitz 2018: 942 species recorded. Wow! The Kingston Field Naturalists held their 20th BioBlitz June 15-16th, 2018 on our own property, the Helen Quilliam Sanctuary, at Otter Lake. This 250 hectare nature reserve has a wide variety of habitats providing a good diversity of plant and animal life. The BioBlitz aims to list as many species of living things as possible in 24 hours. This snapshot of the biodiversity provides a baseline for observing future changes caused by global warming, invasive species and loss of endangered species as well as through natural succession. BioBlitzes were held at this site in 2000 and 2002. 4.1 Vertebrates Mammalia Mammals Vespertilionidae Bats Perimyotis subflavus Tricolored bat Sciuridae Squirrels Tamias striatus lysteri Chipmunk Sciurus carolinensis pennsyulvanicus Gray Squirrel Tamiasciurius hudsonicus loquax Red Squirrel Marmota monax rufescens Woodchuck Castoridae Beavers Castor canadensis Beaver Muridae Mice, Rats And Voles Peromyscus leucopus novoboracensis White-footed Mouse Ondatra zibethicus zibethicus Muskrat Erethizontidae Porcupines Erithozon dorsatum dorsatum Porcupine Canidae Dogs Canis latrans thamnos Coyote Mustelidae Weasels Lutra canadensis canadensis O�er Procyonidae Raccoons Procyon lotor lotor Raccoon Cervidae Deer Odocoileus viginianus borealis White-tailed deer Aves Birds Phasianidae Turkeys And Grouse Bonasa umbellus Ruffed Grouse Meleagris gallopavo Wild Turkey continued ... The Blue Bill Volume 65, No. 3 71 Vertebrates continued ... Gaviidae Loons Gavia immer Common Loon Ardeidae -
Fort Ord Natural Reserve Plant List
UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC -
Molecular Aerobiology – Plantago Allergen Pla L 1 in the Atmosphere Zulima González‑Parrado1, Delia Fernández-González1,2, Beatriz Camazón3, Rosa M
Annals of Agricultural and Environmental Medicine 2014, Vol 21, No 2, 282–289 www.aaem.pl ORIGINAL ARTICLE Molecular aerobiology – Plantago allergen Pla l 1 in the atmosphere Zulima González‑Parrado1, Delia Fernández‑González1,2, Beatriz Camazón3, Rosa M. Valencia‑Barrera1, Ana M. Vega‑Maray1, Juan A. Asturias4, Rafael I. Monsalve5, Paolo Mandrioli1,2 1 Department of Biodiversity and Environmental Management, Botany, University of León, Spain 2 ISAC-CNR, Bologna, Italy 3 Allergy Unit, Altollano Clinic, León, Spain 4 R & D Department, Bial-Arístegui, Bilbao, Spain 5 R & D Department, Abelló SA, Madrid, Spain González‑Parrado Z, Fernández‑González D, Camazón B, Valencia‑Barrera RM, Vega‑Maray AM, Asturias JA, Monsalve RI, Mandrioli P. Molecular aero biology – Plantago allergen Pla l 1 in the atmosphere. Ann Agric Environ Med. 2014; 21(2): 282–289. doi: 10.5604/1232‑1966.1108592 Abstract Introduction. Exposure to airborne pollen from certain plants can cause allergic disease, but allergens can also be found in non‑pollen‑bearing fractions of ambient air. This may explain why the allergic response in susceptible patients does not always coincide with the presence and magnitude of airborne pollen counts. Plantago pollen is an important cause of pollinosis in northern Mediterranean countries, but it is difficult to determine its incidence in allergies because Plantago pollen appears in the atmosphere at the same time as grass pollen. Objective. The study aimed to investigate the relationship between the atmospheric concentration of Pla l 1 aeroallergen and Plantago pollen, and its incidence in a population group. Materials and method. Pollen was sampled using a Hirst‑type volumetric trap (Burkard™) and Burkard Cyclone sampler (Burkard™) for Pla l 1 allergen. -
Download Species Dossier
Petalophyllum ralfsii (Wilson) Nees & Gottsche ex Lehm. Petalwort PETALOPHYLLACEAE (or FOSSOMBRONIACEAE) Status Vulnerable (in Europe) BAP Priority Species Schedule 8 Wildlife & Countryside Act (1981) Lead Partner: Plantlife International Bryophyte RDB - Vulnerable (2001) Annex II of EC Habitats Directive Appendix I of the Bern Convention UK Biodiversity Action Plan These are the current BAP targets following the 2001 Targets Review: T1 - Maintain the population size at all extant sites. T2 - Maintain the geographical range. Progress on targets as reported in the UKBAP 2002 reporting round can be viewed by selecting this species and logging in as a guest on the following web page: http://www.ukbap.org.uk/ The full Action Plan for Petalophyllum ralfsii can be viewed on the following web page: http://www.ukbap.org.uk/UKPlans.aspx?ID=509 Contents 1 Morphology, Identification, Taxonomy & Genetics.............................................. 2 1.1 Morphology & Identification ...................................................................... 2 1.2 Taxonomic Considerations........................................................................ 3 1.3 GeneticImplications ................................................................................. 3 2 Distribution & Current Status ......................................................................... 4 2.1 World .................................................................................................... 4 2.2 Europe ................................................................................................. -
Assessment Report on Plantago Lanceolata L., Folium Based on Article 16D(1), Article 16F and Article 16H of Directive 2001/83/EC As Amended (Traditional Use)
22 November 2011 EMA/HMPC/437859/2010 Committee on Herbal Medicinal Products (HMPC) Assessment report on Plantago lanceolata L., folium Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific whole or fragmented, dried leaf and scape of Plantago name of the plant, including plant part) lanceolata L. Herbal preparation(s) Traditional use: a) Herbal substance, comminuted b) Herbal substance, powdered c) Dry extract (DER 3-6:1); extraction solvent: water d) Liquid extract (DER 1:0.8-1.2); extraction solvent: ethanol 20%-40% (V/V) e) Soft extract (DER 1.5-1.7:1); extraction solvent ethanol 20% (m/m) f) Expressed juice (DER 1:0.5-0.9) from the fresh herb g) Syrup according to ÖAB 2009 (formally, the native herbal preparation is a liquid extract (DER 1:11); extraction solvent: water) h) Dry extract (DER 3-5:1); extraction solvent: ethanol 20% (m/m) i) Liquid extract (DER 1:5.8-5.9); extraction solvent: water Pharmaceutical form(s) Traditional use: Comminuted herbal substance as herbal tea for oral use. Powdered herbal substance in a solid dosage form and other herbal preparations in liquid or solid dosage forms for oral and/or oromucosal use. The pharmaceutical form should be described by the European Pharmacopoeia full standard term. Rapporteur(s) Werner Knöss Jacqueline Wiesner Assessor(s) 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2012. -
Evolution of Flower Shape in Plantago Lanceolata
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MURAL - Maynooth University Research Archive Library Plant Mol Biol (2009) 71:241–250 DOI 10.1007/s11103-009-9520-z Evolution of flower shape in Plantago lanceolata Wesley Reardon Æ David A. Fitzpatrick Æ Mario A. Fares Æ Jacqueline M. Nugent Received: 16 December 2008 / Accepted: 25 June 2009 / Published online: 11 July 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Plantago lanceolata produces small actino- Introduction morphic (radially symmetric), wind-pollinated flowers that have evolved from a zygomorphic, biotically pollinated Flowering plants have evolved huge diversity in their floral ancestral state. To understand the developmental mecha- form and in their pollination strategies. One of the most nisms that might underlie this change in flower shape, and variable morphological characters is flower shape. Flowers associated change in pollination syndrome, we analyzed can be classified as zygomorphic (having only one plane of the role of CYC-like genes in P. lanceolata. Related reflectional symmetry or bilaterally symmetric), actino- zygomorphic species have two CYC-like genes that are morphic (having multiple planes of symmetry or radially expressed asymmetrically in the dorsal region of young symmetric) or asymmetric (having no plane of symmetry) floral meristems and in developing flowers, where they (Endress 2001). The gene regulatory network that deter- affect the rate of development of dorsal petals and stamens. mines zygomorphy is best understood in the model plant Plantago has a single CYC-like gene (PlCYC) that is not Antirrhinum majus (Corley et al. -
Plantain (Plantago Lanceolata) – a Potential Pasture Species
Proceedings of the New Zealand Grassland Association 58: 77–86 (1996) 77 Plantain (Plantago lanceolata) – a potential pasture species A.V. STEWART Pyne Gould Guinness Ltd, PO Box 3100, Christchurch Abstract In the last few years, however, the perennial herb chicory (Cichorium intybus L.) has been shown to be highly Plantago lanceolata L. is a herb species with a productive and capable of giving excellent animal broad distribution in grasslands throughout the performance. This has opened up the possibility that temperate world. The leaf is highly palatable to other perennial herbs could also be valuable as pasture grazing animals, providing a mineral- rich forage. components. The species is rapid to establish, grows on a wide The ready acceptance of Plantago lanceolata by range of agricultural soils and is tolerant of drought livestock and its widespread and successful adaptation and of many common diseases and pests. Two to grassland communities throughout the temperate productive upright cultivars of plantain have been world makes it an obvious candidate for further study. bred, Grasslands Lancelot and the more erect winter The development of a productive cultivar of Plantago active Ceres Tonic. Plantain contains a range of lanceolata was recognised by Dr W. Rumball (pers. biologically active compounds, often in large comm.) as a prerequisite to using this species in New quantities. The antimicrobial compounds present Zealand agriculture and Grasslands Lancelot was can inhibit rumen fermentation and change the released. The release of a second cultivars, Ceres Tonic, volatile fatty acid composition of the rumen. These now provides good opportunity to research this species changes have potential to affect bloat, animal and utilise any benefits it can provide. -
The Trouble with Butterflies Author(S): White, R
https://www.biodiversitylibrary.org/ The Journal of research on the lepidoptera. Arcadia, Calif.Lepidoptera Research Foundation https://www.biodiversitylibrary.org/bibliography/129988 v.25 (1986-1987): https://www.biodiversitylibrary.org/item/238256 Article/Chapter Title: The Trouble with Butterflies Author(s): White, R. Page(s): Page 207, Page 208, Page 209, Page 210, Page 211, Page 212 Holding Institution: Harvard University, Museum of Comparative Zoology, Ernst Mayr Library Sponsored by: Harvard University, Museum of Comparative Zoology, Ernst Mayr Library Generated 17 May 2019 2:48 PM https://www.biodiversitylibrary.org/pdf4/093844000238256 This page intentionally left blank. RO-4-129 The following text is generated from uncorrected OCR. [Begin Page: Page 207] Journal of Research on the Lepidoptera 25 ( 3 ): 207 - 212 , 1986 ( 87 ) The Trouble with Butterflies Raymond R. White Biology S-56, City College of San Francisco, San Francisco, CA 94112 The existence in this and other journals documents that of the vast diversity of insects available, the butterflies is a group of animals very frequently studied. Butterflies are disproportionately the subject of notes, articles, and books. Virtually all butterfly books aimed at general audiences, if they say anything to justify themselves, state the case in very modest terms. Authors too numerous to cite mention the captivat¬ ing sight of colorful butterflies on the wing. Many professional biologists doing scientific research with butterflies can refer back to childhood interest in catching and collecting these animals. Research scientists among us, however, often make the claim that butterflies are better suited for scientific research purposes than are most other organisms. -
Plantago Media L.—Explored and Potential Applications of an Underutilized Plant
plants Review Plantago media L.—Explored and Potential Applications of an Underutilized Plant Radu Claudiu Fierascu 1,2, Irina Fierascu 1,3,* , Alina Ortan 3 and Alina Paunescu 4 1 National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; fi[email protected] 2 Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania 3 University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania; [email protected] 4 Department of Natural Sciences, University of Pitesti, 1 Targu din Vale Str., Pitesti, 110040 Arges, Romania; [email protected] * Correspondence: [email protected] Abstract: The search of valuable natural compounds should be directed towards alternative vegetal resources, and to the re-discovery of underutilized plants. Belonging to the Plantaginaceae family, the hoary plantain (Plantago media L.) represents one of the lesser studied species from the Plantago genus. The literature study revealed the under-utilization of the hoary plantain, a surprising aspect, considering its widespread. If the composition of Plantago media L. is rather well established, its applications are not nearly studied as for other Plantago species. The goal of the present paper is to summarize the findings regarding the applications of P. media, and, having as starting point the applications of related species, to propose new emerging areas of research, such as the biomedical applications validation through in vivo assays, and the evaluation of its potential towards indus- trial applications (i.e., development of food or personal care products), pisciculture or zootechny, phytoremediation and other environmental protection applications, or in the nanotechnology area Citation: Fierascu, R.C.; Fierascu, I.; (materials phytosynthesis). -
Identification of Plantago Lanceolata Pollen Allergens Using an Immunoproteomic Approach R Sousa,1 H Osório,2,3 L Duque,1 H Ribeiro,1 a Cruz,4 I Abreu1,5
ORIGINAL ARTICLE Identification of Plantago lanceolata Pollen Allergens Using an Immunoproteomic Approach R Sousa,1 H Osório,2,3 L Duque,1 H Ribeiro,1 A Cruz,4 I Abreu1,5 1Grupo Ambiente do Centro de Geologia da Universidade do Porto, Porto, Portugal 2Instituto de Patologia e Imunologia Molecular da Universidade do Porto, IPATIMUP, Porto, Portugal 3Faculdade de Medicina da Universidade do Porto, Porto, Portugal 4Serviço de Patologia Clínica, Laboratório de Imunologia do Centro Hospitalar, Vila Nova de Gaia, Portugal 5Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Porto, Portugal Abstract Background: Airborne Plantago pollen triggers respiratory allergies in Mediterranean countries. Objectives: We aimed to study sensitization in patients with seasonal respiratory allergy and identify proteins of Plantago lanceolata pollen that could be responsible for hypersensitivity reactions in sensitized patients. We also determined the airborne pollen concentration of Plantago species from 2004 to 2011. Methods: IgE-binding proteins were analyzed and characterized using 1D and 2D gel electrophoresis and immunoblotting with sera from individuals sensitized to P lanceolata pollen extracts, mass spectrometry analysis, and protein data mining. We used aerobiological methods to study airborne pollen. Results: P lanceolata pollen accounts for 3% of the annual pollen spectrum in the air of Porto. Of a total of 372 patients, 115 (31%) showed specific IgE levels to P lanceolata pollen extracts. All sera from P lanceolata–allergic patients recognized 8 prominent groups of IgE-reactive allergens. Separation of proteins using 2D gel electrophoresis followed by identification with mass spectrometry revealed the presence of other IgE-reactive components that could be involved in sensitization.