Environmental Assessment Addressing Proposed Tactical Infrastructure Maintenance and Repair Along The

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Assessment Addressing Proposed Tactical Infrastructure Maintenance and Repair Along The DRAFT ENVIRONMENTAL ASSESSMENT ADDRESSING PROPOSED TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR ALONG THE U.S./MEXICO INTERNATIONAL BORDER IN TEXAS Department of Homeland Security U.S. Customs and Border Protection U.S. Border Patrol APRIL 2014 ABBREVIATIONS AND ACRONYMS μg/m3 microgram per cubic meter ESCP Erosion-and-sediment-control ACHP Advisory Council on Historic plans Preservation ESP Environmental Stewardship ACM asbestos-containing materials Plan AIRFA American Indian Religious ESSR Environmental Stewardship Freedom Act Summary Report ARHA Archeological and Historic FEMA Federal Emergency Preservation Act Management Agency AST aboveground storage tank FIFRA Federal Insecticide, Fungicide, and Rodenticide Act AQCR air quality control region FIRM Flood Insurance Rate Map BMP best management practice FM&E Facilities Management and CAA Clean Air Act Engineering CBP U.S. Customs and Border FONSI Finding of No Significant Protection Impact CEQ Council on Environmental FPPA Farmland Protection Policy Act Quality FR Federal Register CERCLA Comprehensive Environmental Response, Compensation, and FY Fiscal Year Liability Act GHG greenhouse gas CFR Code of Federal Regulations HAP hazardous air pollutant CO carbon monoxide HUC hydrologic unit code CO2 carbon dioxide I Interstate CWA Clean Water Act IIRIRA Illegal Immigration Reform and dBA a-weighted decibel Immigrant Responsibility Act DHS Department of Homeland LBP lead-based paint Security mg/m3 milligrams per cubic meter DOD U.S. Department of Defense mm/year millimeters per year DVD digital video disc mph miles per hour EA Environmental Assessment msl mean sea level EIA Energy Information Agency NAAQS National Ambient Air Quality EIS Environmental Impact Standards Statement NAGPRA Native American Graves EO Executive Order Protection and Repatriation Act ESA Endangered Species Act NEPA National Environmental Policy Act continued on inside of back cover continued from inside of front cover RVSS Remote Video Surveillance System NHPA National Historic Preservation Act SBInet Secure Border Initiative NO2 nitrogen dioxide SHPO State Historic Preservation Officer NOA Notice of Availability SIP State Implementation Plan NOx nitrogen oxides SOP standard operating procedures NPDES National Pollutant Discharge Elimination System SO2 sulfur dioxide NPS U.S. National Park Service SSPP Strategic Sustainability Performance Plan NRCS Natural Resources Conservation Service TCEQ Texas Commission on Environmental Quality NRHP National Register of Historic Places TPWD Texas Parks and Wildlife Department NWR National Wildlife Refuge tpy tons per year O3 Ozone TSCA Toxic Substances Control Act OSHA Occupational Safety and Health Administration TX Texas Highway PA Programmatic Agreement USACE U.S. Army Corps of Engineers Pb lead USBP U.S. Border Patrol PCB polychlorinated biphenyl U.S.C United States Code percent g percent of the force of gravity USEPA U.S. Environmental Protection Agency PM10 particulate matter equal to or less than 10 microns in USGS U.S. Geological Survey diameter USFS U.S. Forest Service PM2.5 particulate matter equal to or USFWS U.S. Fish and Wildlife Service less than 2.5 microns in diameter USIBWC United States Section, International Boundary and PMO Project Management Office Water Commission POE Port of Entry UST underground storage tank ppm part per million VOC volatile organic compound ppb part per billion WMA Wildlife Management Area PSD Prevention of Significant Deterioration RCRA Resource Conservation and Recovery Act ROI region of influence ROW right-of-way COVER SHEET DRAFT ENVIRONMENTAL ASSESSMENT ADDRESSING PROPOSED TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR ALONG THE U.S./MEXICO INTERNATIONAL BORDER IN TEXAS DEPARTMENT OF HOMELAND SECURITY, U.S. CUSTOMS AND BORDER PROTECTION, U.S. BORDER PATROL Responsible Agencies: Department of Homeland Security (DHS), U.S. Customs and Border Protection (CBP), U.S. Border Patrol (USBP). Affected Location: U.S./Mexico international border in Texas. Proposed Action: CBP proposes to maintain and repair existing tactical infrastructure along the U.S./Mexico international border in Texas. The existing tactical infrastructure along the U.S./Mexico international border in Texas is within USBP El Paso, Big Bend, Del Rio, Laredo, and Rio Grande Valley sectors. Report Designation: Draft Environmental Assessment (EA). Abstract: CBP proposes to maintain and repair existing tactical infrastructure along the U.S./Mexico international border in Texas. The existing tactical infrastructure includes fences and gates, roads and bridges/crossovers, drainage structures and grates, boat ramps, lighting and ancillary power systems, and communications and surveillance tower components (including Remote Video Surveillance System [RVSS] or Secure Border Initiative [SBInet] towers [which are henceforth referred to as towers]). The existing tactical infrastructure occurs within the USBP El Paso, Big Bend, Del Rio, Laredo, and Rio Grande Valley sectors in Texas. The EA analyzes and documents potential environmental consequences associated with the Proposed Action. The analyses presented in the EA indicate that implementation of the Proposed Action would not result in significant environmental impacts, and a Finding of No Significant Impact (FONSI) has been prepared. Throughout the National Environmental Policy Act (NEPA) process, the public may obtain information concerning the status and progress of the Proposed Action and the EA via the project Web site at http://www.cbp.gov/about/environmental-cultural-stewardship/nepa- documents/docs-review; by emailing [email protected]; by written request to Texas TIMR EA, c/o Nicolas Frederick at HDR, 3733 National Drive, Suite 207, Raleigh, NC 27612; or by fax to (919) 785-1178. DRAFT ENVIRONMENTAL ASSESSMENT ADDRESSING PROPOSED TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR ALONG THE U.S./MEXICO INTERNATIONAL BORDER IN TEXAS Department of Homeland Security U.S. Customs and Border Protection U.S. Border Patrol APIRL 2014 This document printed on paper that contains at least 30 percent postconsumer fiber. Proposed TIMR Along the U.S./Mexico International Border in Texas EXECUTIVE SUMMARY INTRODUCTION The Department of Homeland Security (DHS) and U.S. Customs and Border Protection (CBP), propose to maintain and repair certain existing tactical infrastructure along the U.S./Mexico international border in the State of Texas. The tactical infrastructure proposed to be maintained and repaired consists of fences and gates, roads and bridges/crossovers, drainage structures and grates, lighting and ancillary power systems, and communications and surveillance tower components (including Remote Video Surveillance System [RVSS] or Secure Border Initiative [SBInet] towers [henceforth referred to as towers]). The existing tactical infrastructure occurs in the following U.S. Border Patrol (USBP) sectors: El Paso, Big Bend, Del Rio, Laredo, and Rio Grande Valley. The tactical infrastructure analyzed in this Environmental Assessment (EA) crosses multiple privately owned land parcels, tribal lands, and public lands managed by the National Park Service (NPS) U.S. Fish and Wildlife Service (USFWS), Texas Parks and Wildlife Department (TPWD), and U.S. Department of Defense (DOD). The CBP Facilities Management and Engineering (FM&E) Office is responsible for construction and maintenance and repair of tactical infrastructure (e.g., fences, roads, lights, towers, and drainage structures) to support CBP border security requirements. This EA addresses the maintenance and repair of existing tactical infrastructure. Tactical infrastructure included in this EA is found in all five USBP sectors along the U.S./Mexico international border in Texas. This EA also addresses maintenance and repair of existing tactical infrastructure on tribal lands in Texas. However, the maintenance and repair of tactical infrastructure assets that are already addressed in previous National Environmental Policy Act (NEPA) documents is not included within the scope of this EA. In addition, tactical infrastructure assets that are covered by a waiver issued by the Secretary of Homeland Security (the Secretary) are also excluded from the scope of this EA. CBP prepared this EA through coordination with Federal; state; and local agencies, and the public, to identify and assess the potential impacts associated with the proposed maintenance and repair of tactical infrastructure. This EA is being prepared to fulfill the requirements of the NEPA. PURPOSE AND NEED The purpose of the Proposed Action is to ensure that the physical integrity of the existing tactical infrastructure and associated supporting elements continue to perform as intended and assist the USBP in securing the U.S./Mexico international border in Texas. In many areas, tactical infrastructure is a critical element of border security, which contributes as a force multiplier for controlling and preventing illegal border intrusion. To achieve effective control of our nation’s borders, CBP is developing a combination of personnel, technology, and infrastructure; mobilizing and rapidly deploying highly trained USBP agents; placing tactical infrastructure strategically; and fostering partnerships with other law enforcement agencies. Draft EA April 2014 ES-1 Proposed TIMR Along the U.S./Mexico International Border in Texas The Proposed Action is needed to maintain the level of border security provided by the existing tactical infrastructure that could otherwise become compromised through acts of
Recommended publications
  • John C. Abbott Section of Integrative Biology 1
    John C. Abbott Section of Integrative Biology (512) 232-5833, office 1 University Station #L7000 (512) 232-1896, lab The University of Texas at Austin (512) 475-6286, fax Austin, Texas 78712 USA [email protected] http://www.sbs.utexas.edu/jcabbott http://www.odonatacentral.org PROFESSIONAL PREPARATION Stroud Water Research Center, Philadelphia Academy of Sciences Postdoc, 1999 University of North Texas Biology/Ecology Ph.D., 1999 University of North Texas Biology/Ecology M.S., 1998 Texas A&M University Zoology/Entomology B.S., 1993 Texas Academy of Mathematics and Science, University of North Texas 1991 APPOINTMENTS 2006-present Curator of Entomology, Texas Natural Science Center 2005-present Senior Lecturer, School of Biological Sciences, UT Austin 1999-2005 Lecturer, School of Biological Sciences, University of Texas at Austin 2004-present Environmental Science Institute, University of Texas 2000-present Research Associate, Texas Memorial Museum, Texas Natural History Collections 1999 Research Scientist, Stroud Water Research Center, Philadelphia Academy of Natural Sciences 1997-1998 Associate Faculty, Collin County Community College (Plano, Texas) 1997-1998 Teaching Fellow, University of North Texas PUBLICATIONS Fleenor, S.B., J.C. Abbott, E. Wang. 2011. Seasonal appearance, diel flight activity, and geographic distribution of male Telegeusis texensis Fleenor and Taber (Coleoptera: Telegeusidae). The Coleopterists Bulletin. 65: 345-349. Abbott, J.C. 2011. The female of Leptobasis melinogaster González-Soriano (Odonata: Coenagrionidae). International Journal of Odonatology. 14: 171-174. Abbott, J.C. and T.D. Hibbitts. 2011. Cordulegaster sarracenia n. sp. (Odonata: Cordulegastridae) from east Texas and western Louisiana, with a key to adult Cordulegastridae of the New World.
    [Show full text]
  • [The Pond\. Odonatoptera (Odonata)]
    Odonatological Abstracts 1987 1993 (15761) SAIKI, M.K. &T.P. LOWE, 1987. Selenium (15763) ARNOLD, A., 1993. Die Libellen (Odonata) in aquatic organisms from subsurface agricultur- der “Papitzer Lehmlachen” im NSG Luppeaue bei al drainagewater, San JoaquinValley, California. Leipzig. Verbff. NaturkMus. Leipzig 11; 27-34. - Archs emir. Contam. Toxicol. 16: 657-670. — (US (Zur schonen Aussicht 25, D-04435 Schkeuditz). Fish & Wildl. Serv., Natn. Fisheries Contaminant The locality is situated 10km NW of the city centre Res. Cent., Field Res, Stn, 6924 Tremont Rd, Dixon, of Leipzig, E Germany (alt, 97 m). An annotated CA 95620, USA). list is presented of 30 spp., evidenced during 1985- Concentrations of total selenium were investigated -1993. in plant and animal samplesfrom Kesterson Reser- voir, receiving agricultural drainage water (Merced (15764) BEKUZIN, A.A., 1993. Otryad Strekozy - — Co.) and, as a reference, from the Volta Wildlife Odonatoptera(Odonata). [OrderDragonflies — km of which Area, ca 10 S Kesterson, has high qual- Odonatoptera(Odonata)].Insectsof Uzbekistan , pp. ity irrigationwater. Overall,selenium concentrations 19-22,Fan, Tashkent, (Russ.). - (Author’s address in samples from Kesterson averaged about 100-fold unknown). than those from Volta. in and A rather 20 of higher Thus, May general text, mentioning (out 76) spp. Aug. 1983, the concentrations (pg/g dry weight) at No locality data, but some notes on their habitats Kesterson in larval had of 160- and vertical in Central Asia. Zygoptera a range occurrence 220 and in Anisoptera 50-160. In Volta,these values were 1.2-2.I and 1.1-2.5, respectively. In compari- (15765) GAO, Zhaoning, 1993.
    [Show full text]
  • The Disastrous Impacts of Trump's Border Wall on Wildlife
    a Wall in the Wild The Disastrous Impacts of Trump’s Border Wall on Wildlife Noah Greenwald, Brian Segee, Tierra Curry and Curt Bradley Center for Biological Diversity, May 2017 Saving Life on Earth Executive Summary rump’s border wall will be a deathblow to already endangered animals on both sides of the U.S.-Mexico border. This report examines the impacts of construction of that wall on threatened and endangered species along the entirety of the nearly 2,000 miles of the border between the United States and Mexico. TThe wall and concurrent border-enforcement activities are a serious human-rights disaster, but the wall will also have severe impacts on wildlife and the environment, leading to direct and indirect habitat destruction. A wall will block movement of many wildlife species, precluding genetic exchange, population rescue and movement of species in response to climate change. This may very well lead to the extinction of the jaguar, ocelot, cactus ferruginous pygmy owl and other species in the United States. To assess the impacts of the wall on imperiled species, we identified all species protected as threatened or endangered under the Endangered Species Act, or under consideration for such protection by the U.S. Fish and Wildlife Service (“candidates”), that have ranges near or crossing the border. We also determined whether any of these species have designated “critical habitat” on the border in the United States. Finally, we reviewed available literature on the impacts of the existing border wall. We found that the border wall will have disastrous impacts on our most vulnerable wildlife, including: 93 threatened, endangered and candidate species would potentially be affected by construction of a wall and related infrastructure spanning the entirety of the border, including jaguars, Mexican gray wolves and Quino checkerspot butterflies.
    [Show full text]
  • Curriculum Vitae
    DANIELLE WALKUP Post-Doctoral Research Associate, Natural Resources Institute, Texas A&M University College Station, TX 77843-2258 Email: [email protected] Education Texas A&M University – College Station, Texas Ph.D. – Wildlife and Fisheries Science – December 2018 Western New Mexico University - Silver City, New Mexico M.A.T. - Secondary Education - May 2010 B.S. - Forestry & Wildlife - May 2008 Research Experience Texas A&M University, College Station, TX Post-doctoral Research Associate Aug 2018 - Present Graduate Research Assistant Aug 2013 – Aug 2015; May 2016 – Dec 2016 Research Assistant Apr – Sept 2011; Apr 2012 – Aug 2013 • 2012-2016 – Led mark-recapture studies with project PIs, organized field operations, maintained equipment and schedules, analyzed data, prepared publications and technical reports, trained and supervised field technicians • 2011-13 - Led pitfall trapping studies with project PIs, conducted mark-recapture studies, supervised project logistics Western New Mexico University, Silver City, NM Assistant to P.I Feb – Dec 2013 • Assisted in designing the post-fire plant survey protocol in comparative survey sites in the Gila National Forest • Collected, identified and preserved vegetation from established survey sites Biological Field Manager Oct 2012 – Apr 2013 • Analyzed data; writing reports and papers on Common Blackhawk data collected from 2010-2012 • Data entry and analysis of Cliff-Gila Valley bird surveys Biology Field Assistant May-Aug 2009; May- Aug 2010; Apr-Dec 2011 • In plots along the Gila River, used a GPS to mark locations of Southwestern Willow Flycatchers, Yellow-Billed Cuckoos, Common Blackhawks, and other birds • Surveyed and identified populations of Southwestern Willow Flycatchers, identifying breeding males and territories • Assisted in writing summary reports of Southwestern Willow Flycatcher and Common Blackhawk monitoring results for distribution to the U.S.
    [Show full text]
  • Full Issue PDF Volume 40, Issue 11
    Fisheries ISSN: 0363-2415 (Print) 1548-8446 (Online) Journal homepage: http://www.tandfonline.com/loi/ufsh20 Full Issue PDF Volume 40, Issue 11 To cite this article: (2015) Full Issue PDF Volume 40, Issue 11, Fisheries, 40:11, 525-572, DOI: 10.1080/03632415.2015.1115707 To link to this article: http://dx.doi.org/10.1080/03632415.2015.1115707 Published online: 05 Nov 2015. Submit your article to this journal Article views: 147 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ufsh20 Download by: [Department Of Fisheries] Date: 13 March 2016, At: 23:47 FisheriesVol. 40 • No. 11 • November 2015 Downloaded by [Department Of Fisheries] at 23:47 13 March 2016 How to Thrive in Grad School Are Hermaphroditic Fish More Vulnerable to Fishing? Introduced Populations Help Preclude ESA Listing “I was amazed at how eective these gloves were and how easy they made handling of large-sized fishes.” – Alan Temple* “We were some of the first people to field-test [the gloves]. We used them last spring in our hatcheries to spawn muskies and walleye, and in the field to implant transmitters in muskies, walleyes and trout for telemetry studies. They worked great. We were really impressed.” – Je Hansbarger** · Portable, waterproof, and lightweight · Measuring and tagging made simple · Chemical free handling · Fish can be lawfully released immediately Downloaded by [Department Of Fisheries] at 23:47 13 March 2016 · Rubber gloves Safely immobilize live fish with Smith-Root’s new insulate user FISH HANDLING GLOVE SYSTEM.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
    Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil.
    [Show full text]
  • The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
    The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D.
    [Show full text]
  • Courtship and Oviposition Patterns of Two Agathymus (Megathymidae)
    Journal of the Lepidopterists' Society 39(3). 1985. 171-176 COURTSHIP AND OVIPOSITION PATTERNS OF TWO AGATHYMUS (MEGATHYMIDAE) DON B. STALLINGS AND VIOLA N. T. STALLINGS P.O. Box 106, 616 W. Central, Caldwell, Kansas 67022 AND J. R. TURNER AND BEULAH R. TURNER 2 South Boyd, Caldwell, Kansas 67022 ABSTRACT. Males of Agathymus estelleae take courtship sentry positions near ten­ eral virgin females long before the females are ready to mate. Males of Agathymus mariae are territorial and pursue virgin females that approach their territories. Ovipo­ sition patterns of the two species are very similar. Females alight on or near the plants to oviposit and do not drop ova in flight. Few detailed observations of the courtship and oviposition of the skipper butterflies in natural environments have been published. For the family Megathymidae Freeman (1951), Roever (1965) (and see Toliver, 1968) described mating and oviposition of some Southwestern U.S. Agathymus, and over a hundred years ago (1876) Riley published an excellent paper on the life history of Megathymus yuccae (Bois­ duval & LeConte) which included data on oviposition of the female; otherwise, only the scantiest comments have been made. C. L. Rem­ ington (pers. comm.) and others tell us that there is a significant pos­ sibility that the Hesperioidea are less closely related to the true but­ terflies (Papilionoidea) than to certain other Lepidoptera and even that the Megathymidae may not be phylogenetically linked to the Hesper­ iidae. For several years we have been making on-the-scene studies of these two aspects of megathymid behavior, both for their interest in understanding the whole ecology of these insects and for their possible reflection on higher relationships.
    [Show full text]
  • Spot-Tailed Earless Lizard Update: January 2017
    Spot-Tailed Earless Lizard Update: January 2017 Travis LaDuc Roel Lopez UT Austin Texas A&M Brad Wolaver Wade Ryberg UT Austin Texas A&M Mike Duran Toby Hibbitts The Nature Conservancy Texas A&M Ben Labay Matt Fujita UT Austin UT Arlington Jon Paul Pierre Corey Roelke UT Austin UT Arlington Ian Wright UT Austin Gautam Surya UT Austin Cody Shank UT Austin Photo by Mike Duran Thursday, January 26, 2017 Goals and Agenda Update of scien7fic progress since Sept. 2016 Discussion of ongoing research Findings So Far 1. Field data update for 2016 2. Insect survey update 3. Gene7cs status 4. Habitat modeling 1. Status 2. Road bias 3. Ground-truthing + possible addi7onal research… Study Area 2015 Surveys • April 22 – Sept 24 • 274 surveys in 57 counes • 18 coun7es with posive H. lacerata surveys • 174 H. lacerata observed 2016 Surveys • April 6 – Sept 28 • 171 surveys in 28 counes • 53 surveys in 7 coun7es with posive H. lacerata surveys • 170 H. lacerata observed • 91 animals marked; 2 recaptures 2016 Surveys • 171 surveys (April 6 – August 26) • 52 walking; 18 lizards seen (0.04 lizards/hr) • 119 driving; 152 lizards seen (0.30 lizards/hr) • 28 counes across historical range • Areas of 2015 sigh7ngs • Historical range where no 2015 sigh7ngs • 170 Holbrookia lacerata sighted • No new coun7es with H. lacerata from 2015 (save Suon Co.) • Juveniles observed in every unit 2016 Surveys • Mark-recapture: • 91 individuals iden7fied (all photographed, 61 toe-clipped) • Two recaptures • Combinaon road and walking surveys Diet / Insect Surveys Diet data obtained
    [Show full text]
  • The Sabal May 2017
    The Sabal May 2017 Volume 34, number 5 In this issue: Native Plant Project (NPP) Board of Directors May program p1 below Texas at the Edge of the Subtropics— President: Ken King by Bill Carr — p 2-6 Vice Pres: Joe Lee Rubio Native Plant Tour Sat. May 20 in Harlingen — p 7 Secretary: Kathy Sheldon Treasurer: Bert Wessling LRGV Native Plant Sources & Landscapers, Drew Bennie NPP Sponsors, Upcoming Meetings p 7 Ginger Byram Membership Application (cover) p8 Raziel Flores Plant species page #s in the Sabal refer to: Carol Goolsby “Plants of Deep South Texas” (PDST). Sande Martin Jann Miller Eleanor Mosimann Christopher Muñoz Editor: Editorial Advisory Board: Rachel Nagy Christina Mild Mike Heep, Jan Dauphin Ben Nibert <[email protected]> Ken King, Betty Perez Ann Treece Vacek Submissions of relevant Eleanor Mosimann NPP Advisory Board articles and/or photos Dr. Alfred Richardson Mike Heep are welcomed. Ann Vacek Benito Trevino NPP meeting topic/speaker: "Round Table Plant Discussion" —by NPP members and guests Tues., April 23rd, at 7:30pm The Native Plant Project will have a Round Table Plant Discussion in lieu of the usual PowerPoint presentation. We’re encouraging everyone to bring a native plant, either a cutting or in a pot, to be identified and discussed at the meeting. It can be a plant you are unfamiliar with or something that you find remarkable, i.e. blooms for long periods of time or has fruit all winter or is simply gor- geous. We will take one plant at a time and discuss it with the entire group, inviting all comments about your experience with that native.
    [Show full text]
  • Cynoglossum Officinale L
    United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Invasive Species Technical Note No. MT-8 January 2007 Ecology and Management of Houndstongue (Cynoglossum officinale L.) by Jim Jacobs, NRCS Invasive Species Specialist, Bozeman, Montana Sharlene Sing, Assistant Research Professor, Montana State University, Bozeman, Montana Abstract Houndstongue, Cynoglossum officinale (Boraginaceae), is a biennial or short-lived perennial originating from montane zones in western Asia and Eastern Europe. Houndstongue reproduces by seed only, and was probably introduced to North America as a grain seed contaminant. This species was first reported in Montana from Sweet Grass County near Big Timber, Montana in 1900. As of 2006, houndstongue has been reported in 35 of Montana’s 56 counties (http://invader.dbs.umt.edu). Houndstongue invades grasslands, pastures, shrublands, forestlands, croplands and riparian areas, and is an effective competitor that readily displaces desirable species, establishing monocultures and further degrading forage quality in disturbed habitats. This species is particularly well adapted to invading and dominating forest openings created through logging activities. Houndstongue has a number of biological characteristics that contribute to its invasiveness. Houndstongue seeds are covered with barbed prickles that have been referred to as ‘nature’s Velcro®. These facilitate the effective, widespread dispersal of seeds on the fur, wool or hides of passing wildlife and livestock, and on the cloths of humans. The seeds are also relatively large; this provision of stored energy confers a significant competitive advantage due to high germination rates and seedling establishment. The large taproot developed in the first year of growth enables houndstongue to tolerate environmental stress and produce many seeds in the second year of growth.
    [Show full text]