Aspects of the Interactions Between Honey Bees (Apis Mellifera) and Propagules of Plant Pathogens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of the Potential for Biological Control of Wild Radish (Raphanus Raphanistrum) Based on Surveys in the Mediterranean Region
Thirteenth Australian Weeds Conference Review of the potential for biological control of wild radish (Raphanus raphanistrum) based on surveys in the Mediterranean region John K. Scott1,2,3, Janine Vitou2 and Mireille Jourdan2 1 Cooperative Research Centre for Australian Weed Management 2 CSIRO European Laboratory, Campus International de Baillarguet, 34980 Montferrier sur Lez, France 3 Present Address: CSIRO Entomology, Private Bag 5, PO Wembley, Western Australia 6913, Australia Summary Wild radish (Raphanus raphanistrum) BIOLOGICAL CONTROL STRATEGY (Brassicaceae) is one of southern Australia’s worst Classical biological control of wild radish is a diffi cult weeds of cropping. The potential for biological objective. In the sections below are summarised the control of this weed in Australia is being investigated main issues, which are mainly to do with the safety of in the weed’s original distribution, southern Europe biological control because of the shared evolution be- and the circum-Mediterranean region. Surveys for tween wild radish and some important crop species. insects and pathogens have been made throughout the Mediterranean region, concentrating on southern Genetics and evolution of Raphanus Wild radish Portugal, northern Tunisia, the Mediterranean coast relatives in the family Brassicaceae comprises about of France, and southern Greece. While many of 13 tribes, 375 genera and 3200 species (Hewson the organisms found are specialists on the family 1982, Schulz 1936). The genus Raphanus is included Brassicaceae, most of these are not suffi ciently host in the tribe Brassiceae, which is regarded as a natural specifi c to exclude the risk to canola (Brassica napus), grouping. Within the Brassiceae, most phylogenetic the most important crop related to wild radish. -
Pest Management of Small Grains—Weeds
PUBLICATION 8172 SMALL GRAIN PRODUCTION MANUAL PART 9 Pest Management of Small Grains—Weeds MICK CANEVARI, University of California Cooperative Extension Farm Advisor, San Joaquin County; STEVE ORLOFF, University of California Cooperative Extension Farm Advisor, Siskiyou County; RoN VARGAS, University of California Cooperative Extension Farm Advisor, UNIVERSITY OF Madera County; STEVE WRIGHT, University of California Cooperative Extension Farm CALIFORNIA Advisor, Tulare County; RoB WILsoN, University of California Cooperative Extension Farm Division of Agriculture Advisor, Lassen County; DAVE CUDNEY, Extension Weed Scientist Emeritus, Botany and and Natural Resources Plant Sciences, University of California, Riverside; and LEE JACKsoN, Extension Specialist, http://anrcatalog.ucdavis.edu Small Grains, Department of Plant Sciences, University of California, Davis This publication, Pest Management of Small Grains—Weeds, is the ninth in a fourteen- part series of University of California Cooperative Extension online publications that comprise the Small Grain Production Manual. The other parts cover specific aspects of small grain production practices in California: • Part 1: Importance of Small Grain Crops in California Agriculture, Publication 8164 • Part 2: Growth and Development, Publication 8165 • Part 3: Seedbed Preparation, Sowing, and Residue Management, Publication 8166 • Part 4: Fertilization, Publication 8167 • Part 5: Irrigation and Water Relations, Publication 8168 • Part 6: Pest Management—Diseases, Publication 8169 • Part 7: -
(RAPHANUS RAPHANISTRUM) Heather F. Sahli
Genetics: Published Articles Ahead of Print, published on October 14, 2008 as 10.1534/genetics.107.085084 ADAPTIVE DIFFERENTIATION OF QUANTITATIVE TRAITS IN THE GLOBALLY DISTRIBUTED WEED, WILD RADISH (RAPHANUS RAPHANISTRUM) Heather F. Sahli1,3 Jeffrey K. Conner1, Frank H. Shaw2, Stephen Howe1, and Allison Lale1 1Kellogg Biological Station and Department of Plant Biology, Michigan State University 3700 East Gull Lake Drive, Hickory Corners, MI 49060 USA 2Department of Ecology, Evolution and Behavior , University of Minnesota St. Paul, Minnesota 55108 3 Present address: Department of Biology, University of Hawaii-Hilo, 200 W. Kawili St., Hilo, HI 96720 Sahli et al. p.2 Running Head: POPULATION DIFFERENTIATION IN WILD RADISH Key Words: FST, QST, colonization, natural selection, rapid weed evolution Corresponding Author: Heather Sahli University of Hawaii, 200 West Kawili Street, Hilo, HI 96720 Phone: 808-933-0320 Fax: 808-974-7693 email: [email protected] Sahli et al. p.3 Abstract Weedy species with wide geographical distributions may face strong selection to adapt to new environments, which can lead to adaptive genetic differentiation among populations. However, genetic drift, particularly due to founder effects, will also commonly result in differentiation in colonizing species. To test whether selection has contributed to trait divergence, we compared differentiation at eight microsatellite loci (measured as FST) to differentiation of quantitative floral and phenological traits (measured as QST) of wild radish (Raphanus raphanistrum) across populations from three continents. We sampled eight populations: seven naturalized populations and one from its native range. By comparing estimates of QST and FST, we found that petal size was the only floral trait that may have diverged more than expected due to drift alone, but inflorescence height, flowering time and rosette formation have greatly diverged between the native and non-native populations. -
(Last Updated: 8 January 2021) List of the Plants Subject to Specific
(Annex4) (Last updated: 8 January 2021) List of the plants subject to specific phytosanitary measures to be carried out in exporting countries (Annexed table 2-2 of the Ordinance for Enforcement of the Plant Protection Act) and the details of requirements for each of the quarantine pests: Note: Underlined regions/countries, plants, quarantine pests or requirements will be added. Strikethrough regions/countries or plants will be deleted. Common requirements The plants must be accompanied by a phytosanitary certificate or a certified copy of the phytosanitary certificate issued by the NPPO of an exporting country to certify that the plants have been inspected and are considered to be free from quarantine pests. Item Region/countries Plants Quarantine pests Requirements No 1 [Latin America] Argentina, Uruguay, Fresh fruits of the following plants: Anastrepha fraterculus The plants must fulfill either of the following specific requirement under Ecuador, El Salvador, Guyana, Pouteria obovata, abiu (Pouteria caimito), apricot (South American fruit fly) the supervision of the NPPO of the exporting country and found to be Guatemala, Costa Rica, Colombia, (Prunus armeniaca), yellow pitahaya free from Anastrepha fraterculus. Surinam, Trinidad and Tobago, (Hylocereus megalanthus (syn. Selenicereus The additional declaration and the details of treatment (e.g. registration Nicaragua, Panama, Paraguay, megalanthus)), common fig (Ficus carica), number of facility, date, temperature, time) are made on the Brazil, French Guiana, Venezuela, persimmon (Diospyros), Campomanesia phytosanitary certificate or the certified copy of the phytosanitary Belize, Peru, Bolivia, Honduras, xanthocarpa, kiwi fruit (Actinidia deliciosa, A. certificate based on the work plan. Mexico chinensis)), passion fruit (Passiflora edulis), Chrysophyllum gonocarpum, tamarillo The work plan which describes the following specific requirements (Cyphomandra betacea (syn. -
Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes
microorganisms Article Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes Krishni Fernando 1,2, Priyanka Reddy 1, Inoka K. Hettiarachchige 1, German C. Spangenberg 1,2, Simone J. Rochfort 1,2 and Kathryn M. Guthridge 1,* 1 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; [email protected] (K.F.); [email protected] (P.R.); [email protected] (I.K.H.); [email protected] (G.C.S.); [email protected] (S.J.R.) 2 School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia * Correspondence: [email protected]; Tel.: +61390327062 Received: 27 May 2020; Accepted: 19 June 2020; Published: 24 June 2020 Abstract: Asexual Epichloë spp. fungal endophytes have been extensively studied for their functional secondary metabolite production. Historically, research mostly focused on understanding toxicity of endophyte-derived compounds on grazing livestock. However, endophyte-derived compounds also provide protection against invertebrate pests, disease, and other environmental stresses, which is important for ensuring yield and persistence of pastures. A preliminary screen of 30 strains using an in vitro dual culture bioassay identified 18 endophyte strains with antifungal activity. The novel strains NEA12, NEA21, and NEA23 were selected for further investigation as they are also known to produce alkaloids associated with protection against insect pests. Antifungal activity of selected endophyte strains was confirmed against three grass pathogens, Ceratobasidium sp., Dreschlera sp., and Fusarium sp., using independent isolates in an in vitro bioassay. NEA21 and NEA23 showed potent activity against Ceratobasidium sp. -
Dissertação Jaqueline Maria.Pdf
UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS AGRÁRIAS, AMBIENTAIS E BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS AGRÁRIAS CURSO DE MESTRADO DIVERSIDADE DE FERRUGENS (Pucciniales) NO NORDESTE BRASILEIRO JAQUELINE MARIA OLIVEIRA DO NASCIMENTO CRUZ DAS ALMAS-BAHIA FEVEREIRO – 2013 DIVERSIDADE DE FERRUGENS (Pucciniales) NO NORDESTE BRASILEIRO JAQUELINE MARIA OLIVEIRA DO NASCIMENTO Engenheira Agrônoma Universidade Federal do Recôncavo da Bahia, 2010 Dissertação submetida ao Colegiado do Curso do Programa de Pós-Graduação em Ciências Agrárias da Universidade Federal do Recôncavo da Bahia, como requisito parcial para obtenção do Grau de Mestre em Ciências Agrárias, Área de Concentração Fitotecnia. Orientador: Prof. Dr. Jorge Teodoro de Souza Co-Orientador: Prof. Dr. Aníbal Alves de Carvalho Júnior UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA MESTRADO EM CIÊNCIAS AGRÁRIAS CRUZ DAS ALMAS - BAHIA - 2013 FICHA CATALOGRÁFICA N244 Nascimento, Jaqueline Maria Oliveira do. Diversidade de ferrugens (Pucciniales) no Noredeste Brasileiro / Jaqueline Maria Oliveira do Nascimento._ Cruz das Almas, BA, 2013. 81f.; il. Orientador: Jorge Teodoro de Souza. Ficha elaborada Dissertação pela Biblioteca (Mestrado) Universitária – Universidade de Cruz das Federal Almas -do UFRB. Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas. 1.Fitopatologia – Plantas. 2.Fungos – Doenças. 3.Diversidade biológica. I.Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas. II.Título. CDD: 632.3 Ficha elaborada pela Biblioteca Universitária de Cruz das Almas - UFRB. Aos meus pais, minha irmã e ao meu namorado pelo apoio, companheirismo e dedicação que sempre tens comigo. Dedico Agradecimentos Em primeiro lugar a Deus, pelas oportunidades que me tem concedido. Aos meus pais Jair e Jandira pelo amor, apoio, carinho e exemplos de perseverança, humildade e honestidade. -
A Case Study of the Endangered Carnaby's Cockatoo
A peer-reviewed open-access journal Nature ConservationNature 9: 19–43 conservation (2014) on agricultural land: a case study of the endangered... 19 doi: 10.3897/natureconservation.9.8385 CONSERVATION IN PRACTICE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Nature conservation on agricultural land: a case study of the endangered Carnaby’s Cockatoo Calyptorhynchus latirostris breeding at Koobabbie in the northern wheatbelt of Western Australia Denis A. Saunders1, Rick Dawson2, Alison Doley3, John Lauri4, Anna Le Souëf5, Peter R. Mawson6, Kristin Warren5, Nicole White7 1 CSIRO Land and Water, GPO Box 1700, Canberra ACT 2601, Australia 2 Department of Parks and Wildlife, Locked Bag 104, Bentley DC, WA 6983, Australia 3 Koobabbie, Coorow, WA 6515 4 BirdLife Australia, 48 Bournemouth Parade, Trigg WA 6029 5 College of Veterinary Medicine, Murdoch University, South Street, Murdoch, WA 6150 6 Perth Zoo, 20 Labouchere Road, South Perth, WA 6151, Australia 7 Trace and Environmental DNA laboratory, Curtin University, Kent Street, Bentley, WA 6102 Corresponding author: Denis A. Saunders ([email protected]) Academic editor: Klaus Henle | Received 5 August 2014 | Accepted 21 October 2014 | Published 8 December 2014 http://zoobank.org/660B3593-F8D6-4965-B518-63B2071B1111 Citation: Saunders DA, Dawson R, Doley A, Lauri J, Le Souëf A, Mawson PR, Warren K, White N (2014) Nature conservation on agricultural land: a case study of the endangered Carnaby’s Cockatoo Calyptorhynchus latirostris breeding at Koobabbie in the northern wheatbelt of Western Australia. Nature Conservation 9: 19–43. doi: 10.3897/ natureconservation.9.8385 This paper is dedicated to the late John Doley (1937–2007), whose wise counsel and hard work contributed greatly to the Carnaby’s Cockatoo conservation program on Koobabbie. -
The Emergence of Cereal Fungal Diseases and the Incidence of Leaf Spot Diseases in Finland
AGRICULTURAL AND FOOD SCIENCE AGRICULTURAL AND FOOD SCIENCE Vol. 20 (2011): 62–73. Vol. 20(2011): 62–73. The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Marja Jalli, Pauliina Laitinen and Satu Latvala MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland, email: [email protected] Fungal plant pathogens causing cereal diseases in Finland have been studied by a literature survey, and a field survey of cereal leaf spot diseases conducted in 2009. Fifty-seven cereal fungal diseases have been identified in Finland. The first available references on different cereal fungal pathogens were published in 1868 and the most recent reports are on the emergence of Ramularia collo-cygni and Fusarium langsethiae in 2001. The incidence of cereal leaf spot diseases has increased during the last 40 years. Based on the field survey done in 2009 in Finland, Pyrenophora teres was present in 86%, Cochliobolus sativus in 90% and Rhynchosporium secalis in 52% of the investigated barley fields.Mycosphaerella graminicola was identi- fied for the first time in Finnish spring wheat fields, being present in 6% of the studied fields.Stagonospora nodorum was present in 98% and Pyrenophora tritici-repentis in 94% of spring wheat fields. Oat fields had the fewest fungal diseases. Pyrenophora chaetomioides was present in 63% and Cochliobolus sativus in 25% of the oat fields studied. Key-words: Plant disease, leaf spot disease, emergence, cereal, barley, wheat, oat Introduction nbrock and McDonald 2009). Changes in cropping systems and in climate are likely to maintain the plant-pathogen interactions (Gregory et al. -
A List of the Terrestrial Fungi, Flora and Fauna of Madeira and Selvagens Archipelagos
Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos Coordenadores | Coordinators Paulo A. V. Borges, Cristina Abreu, António M. Franquinho Aguiar, Palmira Carvalho, Roberto Jardim, Ireneia Melo, Paulo Oliveira, Cecília Sérgio, Artur R. M. Serrano e Paulo Vieira Composição da capa e da obra | Front and text graphic design DPI Cromotipo – Oficina de Artes Gráficas, Rua Alexandre Braga, 21B, 1150-002 Lisboa www.dpicromotipo.pt Fotos | Photos A. Franquinho Aguiar; Dinarte Teixeira João Paulo Mendes; Olga Baeta (Jardim Botânico da Madeira) Impressão | Printing Tipografia Peres, Rua das Fontaínhas, Lote 2 Vendas Nova, 2700-391 Amadora. Distribuição | Distribution Secretaria Regional do Ambiente e dos Recursos Naturais do Governo Regional da Madeira, Rua Dr. Pestana Júnior, n.º 6 – 3.º Direito. 9054-558 Funchal – Madeira. ISBN: 978-989-95790-0-2 Depósito Legal: 276512/08 2 INICIATIVA COMUNITÁRIA INTERREG III B 2000-2006 ESPAÇO AÇORES – MADEIRA - CANÁRIAS PROJECTO: COOPERACIÓN Y SINERGIAS PARA EL DESARROLLO DE LA RED NATURA 2000 Y LA PRESERVACIÓN DE LA BIODIVERSIDAD DE LA REGIÓN MACARONÉSICA BIONATURA Instituição coordenadora: Dirección General de Política Ambiental del Gobierno de Canarias Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos COORDENADO POR | COORDINATED BY PAULO A. V. BORGES, CRISTINA ABREU, -
Agricultural and Food Science, Vol. 20 (2011): 117 S
AGRICULTURAL AND FOOD A gricultural A N D F O O D S ci ence Vol. 20, No. 1, 2011 Contents Hyvönen, T. 1 Preface Agricultural anD food science Hakala, K., Hannukkala, A., Huusela-Veistola, E., Jalli, M. and Peltonen-Sainio, P. 3 Pests and diseases in a changing climate: a major challenge for Finnish crop production Heikkilä, J. 15 A review of risk prioritisation schemes of pathogens, pests and weeds: principles and practices Lemmetty, A., Laamanen J., Soukainen, M. and Tegel, J. 29 SC Emerging virus and viroid pathogen species identified for the first time in horticultural plants in Finland in IENCE 1997–2010 V o l . 2 0 , N o . 1 , 2 0 1 1 Hannukkala, A.O. 42 Examples of alien pathogens in Finnish potato production – their introduction, establishment and conse- quences Special Issue Jalli, M., Laitinen, P. and Latvala, S. 62 The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Alien pest species in agriculture and Lilja, A., Rytkönen, A., Hantula, J., Müller, M., Parikka, P. and Kurkela, T. 74 horticulture in Finland Introduced pathogens found on ornamentals, strawberry and trees in Finland over the past 20 years Hyvönen, T. and Jalli, H. 86 Alien species in the Finnish weed flora Vänninen, I., Worner, S., Huusela-Veistola, E., Tuovinen, T., Nissinen, A. and Saikkonen, K. 96 Recorded and potential alien invertebrate pests in Finnish agriculture and horticulture Saxe, A. 115 Letter to Editor. Third sector organizations in rural development: – A Comment. Valentinov, V. 117 Letter to Editor. Third sector organizations in rural development: – Reply. -
Georgia Seed Law, Rules & Regulations
GEORGIA SEED LAW AND RULES AND REGULATIONS Georgia Department of Agriculture Gary W. Black Commissioner of Agriculture SEED DIVISION GEORGIA DEPARTMENT OF AGRICULTURE, 19 M. L. KING JR. DRIVE SW, ROOM 410 ATLANTA, GA 30334 PHONE: 404-656-5584 FAX: 404-463-8568 TABLE OF CONTENTS Article 2 SALE AND TRANSPORTATION OF SEEDS Section Page 2-11-20 Short title 2-11-21 Definitions 2-11-22 Labeling requirements 2-11-23 Prohibited acts 2-11-24 Records 2-11-25 Powers and duties of Commissioner 2-11-26 Licensing authority; penalties 2-11-27 Reserved 2-11-28 Rule-making authority 2-11-29 Reserved 2-11-30 Seizure 2-11-31 Injunctions 2-11-32 Exemption 2-11-33 Applicability 2-11-34 Penalties Article 3 CERTIFICATION OF SEEDS AND PLANTS 2-11-50 Legislative intent 2-11-51 Definitions 2-11-52 Designation of agency; liability 2-11-53 False certification SEED ARBITRATION COUNCIL 2-11-70 Purpose 2-11-71 Definitions 2-11-72 Labeling requirements 2-11-73 Filing complaints 2-11-74 Council membership 2-11-75 Hearings and investigations 2-11-76 Findings and recommendations 2-11-77 Rules and regulations RULES AND REGULATIONS Chapters & Rules Page 40-12-1 Definitions32 40-12-2 Seed testing protocol & statistical tolerances 40-12-3 Standards 40-12-4 Limitations on noxious weed seeds 40-12-5 Labeling requirements 40-12-6 Seed arbitration 40-12-7 Charges for seed sample assay 40-12-8 Seed dealer license fees Official Code of Georgia Annotated TITLE 2 CHAPTER 11 SEEDS AND PLANTS ARTICLE 2 SALE AND TRANSPORTATION OF SEEDS Revised July 1, 2012 2-11-20. -
Field Manual of Diseases on Garden and Greenhouse Flowers Field Manual of Diseases on Garden and Greenhouse Flowers
R. Kenneth Horst Field Manual of Diseases on Garden and Greenhouse Flowers Field Manual of Diseases on Garden and Greenhouse Flowers R. Kenneth Horst Field Manual of Diseases on Garden and Greenhouse Flowers R. Kenneth Horst Plant Pathology and Plant Microbe Biology Cornell University Ithaca, NY , USA ISBN 978-94-007-6048-6 ISBN 978-94-007-6049-3 (eBook) DOI 10.1007/978-94-007-6049-3 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013935122 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.