Larval Transport by Internal Tidal Bores

Total Page:16

File Type:pdf, Size:1020Kb

Larval Transport by Internal Tidal Bores 8 Biology Department iology Department research covers a research on how pollution affects marine ticipated fully in an Alvin cruise in May, and Bwide range of organisms from viruses organisms, and acoustical, anatomical, and continued working through much of the and bacteria to algae, zooplankton, whales, behavioral studies of whales and dolphins. summer with his characteristic passion, thor- and birds. We use an equally broad array of In the face of ever tighter Federal sup- oughness, and charm. He received the Bergey methods and approaches, including molecu- port for basic research in biological ocean- Award from the Bergey’s Manual Trust in lar biology; video microscopy and flow ography, our scientists have turned to in- 1998 for long-term distinguished achieve- cytometry; acoustic, video, and net sam- creasingly diverse sources of support and ment in bacterial taxonomy. pling; behavioral observations; and math- new kinds of partnerships. We submitted a We were fortunate to be able to appoint ematical modeling and analysis. total of 100 proposals to all sources, and two new Assistant Scientists in 1998, In 1998 the department had 25 scientific received full or partial funding for 46 per- Andreas Teske, working on bacteria from staff, along with 7 Scientists Emeritus, 2 cent of them, for a total of more than $5 hydrothermal vents, and Ken Halanych, who Oceanographers Emeritus, 15 Postdoctoral million in sponsored research in 1998. applies molecular and classical techniques to Scholars, Fellows, and Investigators, 14 Leadership and participation by our staff in problems of evolution and phylogeny in technical staff, 33 Joint Program students, large national and international programs benthic invertebrates. During 1998, Jesús and 29 other support staff. During the year, remains strong, including Joint Global Pineda was promoted to Associate Scientist the Scientific Staff pursued over 150 sepa- Ocean Flux Study research in the Atlantic and Mark Dennett to Research Specialist. rate research projects, publishing about 69 and Southern Oceans, the International Retired Senior Scientist and former Depart- scientific papers. We continue to show great Ridge Inter-Disciplinary Global Experi- ment Chair Joel Goldman was appointed strength in many subdisciplines such as ments and Larvae at Ridge Vents programs Scientist Emeritus, and George Hampson ecology and physiology of bacteria and for hydrothermal vents, the Ecology and became the Department’s second Oceanog- protozoa, bio-optical studies of phytoplank- Oceanography of Harmful Algal Blooms rapher Emeritus. Senior Scientist David ton, advanced optical and acoustic tech- program, and the US Global Ecosystems Caron was awarded the first Mary Sears niques for zooplankton distribution and Dynamics Northwest Atlantic Program on Chair for Excellence in Oceanography, and behavior, and the ecology, behavior, and Georges Bank, which is headquartered in Research Specialist Carl Wirsen received a development of invertebrate larvae. Other the WHOI Biology Department. WHOI Senior Technical Staff Award for his areas of interest include mathematical analy- The department and the entire commu- work in deep-sea microbiology. sis and computer modeling of life history, nity were saddened by the death in September —Laurence P. Madin, Department Chair population dynamics and physical-biological of Holger Jannasch, a world-renowned pio- interactions, toxicological and molecular neer in deep-sea microbiology. Holger par- Larval Transport By Internal Tidal Bores Jesús Pineda, Associate Scientist New generations of bottom-dwelling coastal marine animals face Processes affecting the larvae offshore a complication on their way to establishing new colonies. The early Currents, behavior, and substrate processes life stages of such organisms as clams, mussels, shrimp, and barnacles Larval transport during settlement processes Natural enemies and live suspended in the water, drifting at the mercy of ocean currents in physical stresses influencing a “larval phase” that generally lasts a few weeks. At the end of it, the adults larvae must find a suitable habitat where they can grow into adults and complete their life cycles. Because ocean currents disperse the larvae far from their birth- places, they may find themselves several miles offshore in deep water just when they are ready to settle in the shallow coastal water—a Jayne Doucette waste of larvae because they will not survive in this situation. + Abundance – After several weeks suspended in the ocean, the probability of a Processes that influence the population abundance of coastal bottom- larva returning to its birthplace must be minimal, and the abundance dwelling organisms, with a barnacle as example. The number of larvae is of the colonizers at a given site is uncoupled from the living condi- larger than the number of adults, as each adult produces a myriad of larvae. Larvae are often found offshore, and before they can settle suc- tions of the adults. A site with no natural enemies and rich in food cessfully at the coast, several conditions must be fulfilled. In each case, may be vacant because currents do not bring larvae, or, on the other the proportion of larvae moving to the next set of processes is smaller. hand, a sub-optimal habitat with scarce food may contain a large Small changes in the proportion of larvae that pass from one step to the number of organisms if currents bring many larvae. Knowledge of next can produce large population changes. WHOI • 1998 Annual Report Biology Department 9 ocean currents that return Gooseneck warmer water offshore. A few barnacle larvae the larvae to coastal habi- Crab larvae hours later, in the second tats is therefore key to Moss animal larvae phase, the heavier cold water understanding the mainte- Common recedes offshore, and is nance and dynamics of barnacle larvae replaced by warmer offshore coastal species. Understanding surface water. A front or line in larval transport is also important FRONT the sea parallel to the shoreline for managing fisheries and designing marks the boundary between marine reserves. For example, it cold and warm water and leads would be futile to preserve a coastal warmer water the surface water in the second site that contains many adults if their phase, with several other lines or larvae are all wasted because current slicks following shortly. The circulation at that site carries all the lines are created by currents that Onshore larvae offshore. Doucette Jayne concentrate surface buoyant colder water Much of my research focuses on material, and, in the case of a studying the various biological and Schematic representation front, the line contains a large physical phenomena involved in larval of an internal tidal bore front with concentration of floating debris, transport by internal tidal bores. observed circulation. Larvae of two species of barnacle and crabs accu- surf grass, and several species of When waves traveling at the surface of mulate at the front, but larvae of a moss animal (bryozoan) do not. All larvae. Observations of these the ocean approach the beach, they larvae occur offshore of the front, while most larvae found shoreward of fronts revealed both striking the front belong to the bryozoan and one species of barnacle. “feel the bottom,” break, and produce patterns of circulation, capable a surge of surf running upslope. Internal (subsurface) waves, which of concentrating buoyant material, and frontal accumulation of some are also ubiquitous, but slower and much larger than surface waves, species of larvae but not of others. also break when they shoal, producing internal surf. Rather than With funding from the National Science Foundation and propagating along the air-sea interface, internal waves propagate WHOI’s Rinehart Coastal Research Center, we are pursuing many along the interfaces of layers of water of different temperature and questions related to internal tidal bores. They range from the effects salinity that are found in most oceans. These internal tidal bores or of El Niño on this mechanism to its variability along the shore in breaking internal waves often occur about every 12.4 or 24 hours. sites separated by several tens of miles to the fine mechanics of the Recent observations in California show that when internal tidal process of frontal accumulation (the latter in collaboration with Karl bores occur, parcels of water that may be several miles long and Helfrich of the Physical Oceanography Department) and the reasons extend from the beach to about 2 miles offshore are fully replaced by why only some types of larvae accumulate in the fronts while others offshore waters once or twice a day. This dramatic exchange of water do not. Further study should also elucidate the physical effects and brings larvae of coastal species shoreward and occurs in two phases. ecological consequences of internal tidal bores, a process with pro- First, the large internal tidal bore transports vast masses of colder found yet largely unexplored implications for coastal communities. water found at depth towards the shore, displacing the nearshore For more information, visit http://mathecol.whoi.edu/~pineda/ WHOI • 1998 Annual Report.
Recommended publications
  • MAR 110 LECTURE #22 Standing Waves and Tides
    27 October 2007 MAR110_Lec22_standing Waves_tides_27oct07.doc 1 MAR 110 LECTURE #22 Standing Waves and Tides Coastal Zone – Beach Profile Figure 22.1 Beach Profile Summer Onshore Sand Transport Breaking Swell Currents Erode Bar Sand…. & Build the Summer Berm Figure 22.2 Beach Evolution – Summer Onshore Transport 27 October 2007 MAR110_Lec22_standing Waves_tides_27oct07.doc 2 Winter Offshore Sand Transport Winter Storm Wave Currents Erode Beach Sand…. to form sandbars Figure 22.3 Beach Evolution – Winter Offshore Transport No Net Motion or Energy Propagation Figure 22.4 Wave Reflection and Standing Waves A standing wave does not travel or propagate but merely oscillates up and down with stationary nodes (with no vertical movement) and antinodes (with the maximum possible movement) that oscillates between the crest and the trough. A standing wave occurs when the wave hits a barrier such as a seawall exactly at either the wave’s crest or trough, causing the reflected wave to be a mirror image of the original. (??) 27 October 2007 MAR110_Lec22_standing Waves_tides_27oct07.doc 3 Standing Waves and a Bathtub Seiche Figure 22.5 Standing Waves Standing waves can also occur in an enclosed basin such as a bathtub. In such a case, at the center of the basin there is no vertical movement and the location of this node does not change while at either end is the maximum vertical oscillation of the water. This type of waves is also known as a seiche and occurs in harbors and in large enclosed bodies of water such as the Great Lakes. (??, ??) Standing Wave or Seiche Period l Figure 22.6 Seiche Period The wavelength of a standing wave is equal to twice the length of the basin it is in, which along with the depth (d) of the water within the basin, determines the period (T) of the wave.
    [Show full text]
  • Usually Undersea Earthquakes, Landslides, Meteor Strikes. Tsunami Are Not Like Wind Driven Waves, but Are Caused by a Change in the Basin in Which the Ocean Lies
    TSUNAMI Tsunami: These are caused by displacement – usually undersea earthquakes, landslides, meteor strikes. Tsunami are not like wind driven waves, but are caused by a change in the basin in which the ocean lies. Earthquakes are measured on the Richter Scale or the Mercalli Scale. The Richter Scale measures the amount of energy released whereas the Mercalli measures the amount of damage the earthquake is capable of. Here again scales are scientific artifacts produced with a specific goal in mind. Neither is right or wrong nor in conflict with the other. Tsunami do not look like breaking waves. Rather they look like an extremely high incoming tide. They appear as though someone has been adding more and more water to the ocean and the level keeps rising. Some serious Tsunamis: Santorini (Thera) An enormous volcanic eruption which produced a tsunami Somewhere around 1628 BCE Evidence from Greenland, California tree rings Climate affected – crop failure in Chine, part of Egypt impacted, (information appears on the stele of Ahmose). Some felt that this ended Minoan Civilization but archaeological evidence finds Minoan culture after the eruption. It is possible that the society was so damaged that it became perhaps too weak to defend against a very militant Mycene. There is some speculation that this eruption is the bases of Plato's Atlantis myth. Lisbon 1755 Nov, 1st at 9:40 am. (All Saints Day) Earthquake followed by a tsunami. People reported seeing the tide go out far enough to expose some ship wrecks. Churches where many had fled for protection were destroyed. Many candles which had been lit helped ignite fires all over.
    [Show full text]
  • Probable Late Messinian Tsunamiites Near Monte Dei Corvi, Italy, and the Nijar Basin, Spain: Expected Architecture of Offshore Tsunami Deposits
    Nat Hazards DOI 10.1007/s11069-011-9947-9 ORIGINAL PAPER Probable late Messinian tsunamiites near Monte Dei Corvi, Italy, and the Nijar Basin, Spain: expected architecture of offshore tsunami deposits Jan Smit • Cor Laffra • Karlien Meulenaars • Alessandro Montanari Received: 1 February 2010 / Accepted: 15 August 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Three distinct, 30- to 80-cm-thick, graded, multilayered, coarse-grained sandstone layers, intercalated in the late Messinian mudstones of the Colombacci forma- tion in Lago Mare facies of the Trave section are interpreted as tsunamiites (Ts1–Ts3). Each of these layers is sheet-like and could be followed along strike over several tens of meters. The lower two layers (Ts1–Ts2) occur in the lower part of the Colombacci for- mation and the third (Ts3) just below a conspicuous white ‘‘colombacci’’ limestone near the top of the formation. The three sandstone layers represent unique sedimentary events within the 120-m-thick San Donato-Colombacci mudstones, which contain many thin, fine- grained, possibly storm-related turbidites. Each of the three clastic layers is overall graded and strongly cross-bedded. A single layer consists of a stack of several graded sublayers that are eroded into the underlying mudstones and into each other. Absence of hummocky cross-stratification (HCS) indicates that the layers are not produced during a large, cata- strophic storm event. Current ripples such as dm-sized trough cross-beds suggest strong, prolonged, unidirectional currents, capable of carrying coarse conglomeratic sands. Climbing ripples in middle-fine sand units indicate a high suspension load settling under waning current strength.
    [Show full text]
  • Wave >True One Is a Tidal Bore – Where High Tide Advances up A
    Oceanography Chapter 11: Tides “Tidal” Wave >True one is a Tidal Bore – where high tide advances up a narrow river valley. ¾ Most are about 3 feet, but the biggest is 28 ft and moves at 25 mi/hr . Wavelengths of tide – are always shallow water waves Tides are periodic, short-term change in the height of the ocean surface at a particular place caused by a combination of the gravitational force of the moon and the sun and the motion of the earth. Tides are the longest of all waves and are forced waves, which are never free of the forces that create them. First studies and ties to the moon- the Greeks – Pytheas (300 BC) Math description later – Newton – 1687 Mathematical Principals of Natural Philosophy ¾ Main idea – Pull of gravity between two bodies is proportional to the masses of the bodies, but inversely proportional to the square of the distance between them. Implications: Heavy bodies attract each other more, G weakens fast with distance F = G (m1, m2) r2 But, the tides are a little different, and are expressed by T = G (m1, m2) r3 r = distance between their centers Thus, sun is 22 trillion times more massive, but 387 times farther away ¾ So, its influence is 46% that of the moon’s Newton’s Model of Tides- Equilibrium Theory ¾ Does not function ocean depth or land masses Dynamic Theory – LaPlace – accounts for these EQ Theory Earth and Moon are attracted, but inertia (the tendency of an object to move in a straight line) keeps us in balance. Insert Pretty Drawing here: ¾ Sometimes called centrifugal force Moon revolves around the earth around the center of mass, which is located about 1000 miles down Figure 11.5: Forces involved in the development of the tidal bulge – Tractive forces ¾ Points 1-2 G > Inertia (look at arrows) ¾ Points 3-4 G< Inertia Only at CE are they equal – solid Earth can’t move much, but liquid and gas can.
    [Show full text]
  • Tidal Bores, Aegir, Eagre, Mascaret, Pororoca
    August 9, 2011 10:41 9.75in x 6.5in b1126-ch01 Chapter 1 INTRODUCTION 1.1. PRESENTATION A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising. It forms during spring tide conditions when the tidal range exceeds 4–6 m and the flood tide is confined to a narrow funnelled estuary. The estuarine zone is defined herein as a water body where the tide meets the river flow. It corresponds to the river section where the mixing of freshwater and seawater occurs. Figure 1.1 illustrates several tidal bores in France. Figure 1.1A shows a tidal bore in the Baie du Mont Saint Michel (France). The tidal bore advances in the riverbed and on the surrounding sand flats and sandbanks. Figure 1.1B presents the tidal bore of the Garonne River about 30 km upstream of Bordeaux (France). The surfers give the scale of the bore front. Figure 1.1C illustrates the formation of a tidal bore at the upstream end of a funnel-shaped bay during the early flood tide, while Fig. 1.1D shows a tidal bore propagating upstream into a small creek. The origin of the word ‘bore’ is believed to derive from the Icelandic ‘bara’ (‘billow’, ‘wave’) indicating a potentially dangerous phenomenon, i.e. a breaking tidal bore (Coates 2007). During the 19th century, the Severn tidal bore was referred to as a ‘bore’, although it was also called ‘Hygra’(Rowbotham 1983).An older name was ‘eagre’, used today for the tidal bore of the Trent River (UK).
    [Show full text]
  • Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations." World Scientific, Singapore, 220 Pages (ISBN: 978-981-4335-41-6 / 981-4335-41-X)
    CHANSON, H. (2011). "Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations." World Scientific, Singapore, 220 pages (ISBN: 978-981-4335-41-6 / 981-4335-41-X) TIDAL BORES, AEGIR, EAGRE, MASCARET, POROROCA: THEORY AND OBSERVATIONS by Hubert CHANSON Professor, School of Civil Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072, Australia Ph.: (61 7) 3365 3619, Fax: (61 7) 3365 4599, Email: [email protected] Url: http://www.uq.edu.au/~e2hchans/ December 2009 Tidal bores of the Garonne River (Top left), Dordogne River (Top right), Sélune River (Bottom left) and Sée River (Bottom right) in 2008 CHANSON, H. (2011). "Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations." World Scientific, Singapore, 220 pages (ISBN: 978-981-4335-41-6 / 981-4335-41-X) Abstract A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising. It forms during spring tide conditions when the tidal range exceeds 4 to 6 m and the flood tide is confined to a narrow funnelled estuary. The existence is based upon a fragile hydrodynamic balance between the tidal amplitude, the freshwater river flow conditions and the river channel bathymetry, and it is shown that this balance may be easily disturbed by changes in boundary conditions and freshwater inflow. This book demystifies the physics of a tidal bore and it documents thoroughly the tidal bores on our Planet with reliable and accurate informations. It aims to share a passion for a beautiful, but fragile geophysical process and it is supported by over 190 illustrations and photographs.
    [Show full text]
  • Tides Throughout the Day, the Level of the Sea Rises and Falls. This Rise And
    Tides bore forms. A tidal bore can have a breaking crest or it can be a smooth wave. Tidal bores usually are found in places with large Throughout the day, the level of the sea rises and falls. This rise tidal ranges. When a tidal bore enters a river, its force causes water and fall in sea level is called a tide. A tide is caused by a giant in the river to reverse its flow. Waves in a tidal bore might reach 5 m wave produced by the gravitational pull of the Sun and the Moon. in height and speeds of 65 km/h. Although this wave is only 1 m or 2 m high, its wavelength is thousands of kilometers long. As the crest of this wave How does the Moon affect tides? approaches the shore, sea level seems to rise. This rise in sea level is called high tide. When the trough of this huge wave nears The Moon and the Sun exert a gravitational pull on Earth. The Sun the shore, sea level appears to drop. This drop in sea level is is much bigger than Earth, but the Moon is much closer. The Moon referred to as low tide. has a stronger pull on Earth than the Sun. Earth and the water in Earth’s oceans respond to this pull. The water bulges outward as the What is the tidal range? Moon’s gravity pulls it. This results in a high tide. The process is shown in the figure below. As Earth rotates, Earth’s surface passes through the crests and troughs of this giant wave.
    [Show full text]
  • Community Vulnerability to Elevated Sea Level and Coastal Tsunami Events in Otago
    Community vulnerability to elevated sea level and coastal tsunami events in Otago Otago Regional Council Private Bag 1954, 70 Stafford St, Dunedin 9054 Phone 03 474 0827 Fax 03 479 0015 Freephone 0800 474 082 www.orc.govt.nz © Copyright for this publication is held by the Otago Regional Council. This publication may be reproduced in whole or in part provided the source is fully and clearly acknowledged. ISBN: 978 0 478 37630 2 Published July 2012 Prepared by Michael Goldsmith, Manager Natural Hazards, Otago Regional Council Community vulnerability to elevated sea level and coastal tsunami events in Otago i Executive summary The Otago coastline extends 480km from Chaslands in the south to the mouth of the Waitaki River in the north. Approximately 124,000 people (64% of Otago’s population) live within five kilometres of this coastline. A number of the communities situated along the coast have a level of hazard exposure to elevated sea level (or storm surge) and tsunami events. This report assesses the vulnerability (rather than the risk) 1 of these coastal communities to these hazards. The report draws on tsunami and storm surge modelling undertaken by National Institute of Water and Atmosphere (NIWA) for the Otago Regional Council (ORC) in 2007/08, coastal topography data and local knowledge of each community. This information has been used to assess how people and the communities in which they live would be affected during credible, high magnitude tsunami and elevated sea level events. It is intended that this information will: • increase community awareness of elevated sea level and tsunami hazard • inform decision making on the development of warning systems and evacuation plans • assist with the selection of land-use planning and development controls • increase the resilience of infrastructure and utilities (‘lifelines’).
    [Show full text]
  • The Tidal Bore in the Sit- Taung River a Sensitivity Analyse of the Propagation
    The tidal bore in the Sit- taung River A sensitivity analyse of the propagation M.P.de Ridder Technische Universiteit Delft THETIDALBOREINTHE SITTAUNG RIVER A SENSITIVITY ANALYSE OF THE PROPAGATION by M.P.de Ridder Additional thesis Master Hydraulic Engineering and Water Resource Management at the Delft University of Technology. Student number: 4230965 Supervisor: Prof. dr. ir. Z.B. Wang Dr. ir. M.M. Rutten An electronic version of this thesis is available at http://repository.tudelft.nl/. PREFACE This thesis is part of my master Hydraulic Engineering and Water Resource Management at the TU Delft and NUS Singapore. The research is done in collaboration with the Myanmar Maritime University. I would like to thank everyone from the Myanmar Maritime University who helped me during my stay in Myanmar. Especially Khin Kyi Cin Linn for collaborating in this study. Without your help, it was not possible to do this study. I also thank my supervisors, Zheng Bing Wang and Martine Rutten, for their feedback. M.P.de Ridder Delft, January 2017 iii ABSTRACT A 2D numerical model is set-up for the tidal bore in the Sittaung River. This model is used to analyse the effect of the bottom friction, bathymetry, tidal range and river discharge on the propagation of the tidal bore. To obtain information about the tidal bore the Sittaung River is visited two times. During the second visit, depth measurements were carried out. It became clear that the tidal bore occurs only a few days after full and new moon at the village Kyaik Ka Thar. The tidal bore is also observed near Kyaik Ka Thar as an undular bore with a height of ± 0.3 m.
    [Show full text]
  • Part 2: Application of Estuarine Waste Load Allocation Models
    Click here for DISCLAIMER Document starts on next page TITLE: Technical Guidance Manual for Performing Wasteload Allocations, Book III: Estuaries – Part 2: Application of Estuarine Waste Load Allocation Models EPA DOCUMENT NUMBER: EPA 823/R-92-003 DATE: May 1990 ABSTRACT As part of ongoing efforts to keep EPA’s technical guidance readily accessible to water quality practitioners, selected publications on Water Quality Modeling and TMDL Guidance available at http://www.epa.gov/waterscience/pc/watqual.html have been enhanced for easier access. This document is part of a series of manuals that provides technical information related to the preparation of technically sound wasteload allocations (WLAs) that ensure that acceptable water quality conditions are achieved to support designated beneficial uses. The document provides a guide to monitoring and model calibration and testing, and a case study tutorial on simulation of waste load allocation problems in simplified estuarine systems. Book III Part 2 presents information on the monitoring protocols to be used for collection of data to support calibration and validation of estuarine WLA models, and discusses how to use this data in calibration and validation steps to determine the predictive capability of the model. It also explains how to use the calibrated and validated model to establish load allocations that result in acceptable water quality even under critical conditions. Simplified examples of estuarine modeling are included to illustrate both simple screening procedures and application of the WASP4 water quality model. This document should be used in conjunction with “Part 1: Estuaries and Waste Load Allocation Models” which provides technical and policy guidance on estuarine WLAs as well as summarizing estuarine characteristics, water quality problems, and processes along with available simulation models.
    [Show full text]
  • Giant Waves at Lituya Bay, Alaska
    Giant Waves in --·- .. -·- --·· Lituya Bay ...-----·~--- .. ·· ,. Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 354-C n , '., Giant Waves in Lituya Bay Alaska By DON J. MILLER SHORTER. CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 354-C A timely account of the nature and possible causes of certain giant waves, with eyewitness reports of their destructive capacity ' UNITED STATES GOVERNMENT PRINTING OFFIC.E, WA:SHIN:GTON : 1960 ,.... n• UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director ··~· For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract------------------------------------------- 51 Giant waves-Continued Introduction ____________ - _- _----------------------- 51 Waves on October 27, 1936-Continued Acknowledgments ______ -------_--------------------- 53 Effects of the waves ________________________ _ 69 Description and history of Li tuya Bay _______________ _ 53 Nature and cause of the waves ______________ _ 70 Geographic setting _____________________________ _ 53 Sudden draining of an ice-dammed body of water ______________________________ _ Geologic setting _______________________________ _ 55 71 Exploration and settlement _____________________ _ 56 Fault displacement _____________________ _ 71 Giant,vaves--------------------------------------­ 57 Rockslide, avalanche, or landslide ________ _ 71 Evidence-------------------------------------- 57 Submarine sliding ______________________
    [Show full text]
  • Minimal Model for Tidal Bore Revisited OPEN ACCESS M V Berry RECEIVED 28 April 2019 H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
    New J. Phys. 21 (2019) 073021 https://doi.org/10.1088/1367-2630/ab2b19 PAPER Minimal model for tidal bore revisited OPEN ACCESS M V Berry RECEIVED 28 April 2019 H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom REVISED E-mail: [email protected] 1 June 2019 Keywords: wave, Hamiltonian, asymptotic, caustic, nonlinearity, Airy function ACCEPTED FOR PUBLICATION 19 June 2019 PUBLISHED 8 July 2019 Abstract This develops a recent analysis of gentle undular tidal bores (2018 New J. Phys. 20 053066) and corrects Original content from this an error. The simplest linear-wave superposition, of monochromatic waves propagating according to work may be used under the terms of the Creative the shallow-water dispersion relation, leads to a family of profiles satisfying natural tidal bore Commons Attribution 3.0 fi licence. boundary conditions, involving initial smoothed steps with different shapes. These pro les can be Any further distribution of uniformly approximated to high accuracy in terms of the integral of an Airy function with deformed this work must maintain fi attribution to the argument. For the long times corresponding to realistic bores, the pro les condense asymptotically author(s) and the title of onto the previously obtained integral-Airy function with linear argument: as the bore propagates, it the work, journal citation and DOI. forgets the shape of the initial step. The integral-Airy profile expands slowly, as the cube root of time, rather than advancing rigidly. This ‘minimal model’ leads to simple formulas for the main properties of the profile: amplitude, maximum slope, ‘wavelength’, and steepness; and an assumption about energy loss suggests how the bore weakens as it propagates.
    [Show full text]