Astrobiology and Habitability Studies in Preparation for Future Mars Missions: Trends from Investigating Minerals, Organics and Biota

Total Page:16

File Type:pdf, Size:1020Kb

Astrobiology and Habitability Studies in Preparation for Future Mars Missions: Trends from Investigating Minerals, Organics and Biota International Journal of Astrobiology 10 (3): 239–253 (2011) 239 doi:10.1017/S1473550411000140 © Cambridge University Press 2011 Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota P. Ehrenfreund1,2, W.F.M. Röling3, C.S. Thiel4, R. Quinn5, M.A. Sephton6, C. Stoker5, J.M. Kotler1, S.O.L. Direito3, Z. Martins6, G.E. Orzechowska7, R.D. Kidd7, C.A van Sluis8 and B.H. Foing9 1Leiden Institute of Chemistry, PO Box 9502, 2300 Leiden, The Netherlands e-mail: [email protected] 2Space Policy Institute, Elliott School of International Affairs, Washington, DC, USA 3Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands 4Institute of Medical Physics and Biophysics, CeNTech, University of Münster, 48149, Münster, Germany 5NASA Ames Research Center, Moffett Field, CA 94035, USA 6Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK 7Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 8Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands 9ESA ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands Abstract: Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expected life detection targets. We have characterized the mineralogy, organic chemistry and microbiology of ten selected sample sites from the Utah desert in close vicinity to the Mars Desert Research Station (MDRS) during the EuroGeoMars 2009 campaign (organized by International Lunar Exploration Working Group (ILEWG), NASA Ames and ESA ESTEC). Compared with extremely arid deserts (such as the Atacama), organic and biological materials can be identified in a larger number of samples and subsequently be used to perform correlation studies. Among the important findings of this field research campaign are the diversity in the mineralogical composition of soil samples even when collected in close proximity, the low abundances of detectable polycyclic aromatic hydrocarbons (PAHs) and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles, mainly Bacteria and also Archaea and Eukarya was observed. The dominant factor in measurable bacterial abundance seems to be soil porosity and lower small (clay-sized) particle content. However, correlations between many measured parameters are difficult to establish. Field research conducted during the EuroGeoMars 2009 campaign shows that the geological history and depositional environment of the region, as well as the mineralogy influence the ability to detect compounds such as amino acids and DNA. Clays are known to strongly absorb and bind organic molecules often preventing extraction by even sophisticated laboratory methods. Our results indicate the need for further development and optimization of extraction procedures that release biological compounds from host matrices to enable the effective detection of biomarkers during future sampling campaigns on Earth and Mars. Received 25 January 2011, accepted 1 April 2011, first published online 12 May 2011 Key words: astrobiology, habitability, life detection, field analogue research, Mars, organics, clays, landing site criteria. Introduction 2011 will explore the Martian surface, followed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) space- The objective of future international planetary exploration craft, scheduled for launch in late 2013. A long-term ESA– programmes is to implement a long-term plan for the robotic NASA cooperation plan for the exploration of Mars with and later human exploration of the Moon, Mars and Near- missions in 2016 and 2018 has been recently developed that Earth Asteroids (NEOs). Mars is the central object of interest will investigate the atmosphere and the surface of Mars for for habitability studies and life detection beyond the Earth and signs of habitability and life and prepare for the Mars Sample can be visited frequently by robotic spacecrafts, paving the Return (MSR) mission (Grant et al. 2010). China will way for returned samples and human exploration. NASA’s contribute the Yinghou-1 (YH-1) orbiter to the Russian Mars Science Laboratory (MSL) to be launched in November Phobos-Grunt sample return mission in 2011 and conduct 240 P. Ehrenfreund et al. space-environment, atmospheric, gravity and surface-imaging of culturable biomass in Yungay soils. The total organic con- studies of Mars. tent (TOC) was estimated between 560 and 765 ppm. Connon Our knowledge about planet Mars has benefited over the last et al. (2007) studied the bacterial diversity in the Atacama few decades from a fleet of orbital and landed spacecraft such Desert and detected Actinobacteria, Protobacteria, Firmicutes as Mars Global Surveyor, Mars Odyssey, the Mars Explo- and TM7. ration Rovers, Mars Express and the Mars Reconnaissance In this paper, we report on astrobiology field research from Orbiter. Results from these missions indicate that Mars had a the Mars Desert Research Station (MDRS) in Hanksville, different climate in the past. On ancient Mars water was Utah conducted during the EuroGeoMars 2009 campaign persistent in shallow surface bodies, lakes, connected networks (Foing et al. 2011). MDRS is located in a geological formation and as groundwater near the surface (Malin et al. 2003; Knoll that was formed 150 million years ago (Hintze & Kowallis & Grotzinger 2006; Murchie et al. 2009; Squyres et al. 2009). 2009; Clarke & Stoker 2011). Geology close to the habitat A diverse suite of minerals, including hydrated sulphates, includes the Middle Jurassic Summerville Formation, the phyllosilicates and silica, produced during aqueous alteration Late Jurassic Morrison Formation, the Early Cretaceous of Martian crustal rocks has been identified both from orbit Dakota Sandstone and the middle Cretaceous Mancos Shale and from the Martian surface (e.g. Chevrier & Mathé 2007; Formations (Clarke & Stoker 2011; Stoker et al. 2011). Sedi- Arvidson et al. 2008; Hecht et al. 2009; Poulet et al. 2009). mentary deposits of sands, evaporites and clays are found; Recent observations with instruments onboard Mars Express gypsum and a variety of clay minerals have been detected and the Mars Reconnaissance orbiters identified more (Borst et al. 2010). In addition, MDRS is located in an area than 990 hydrated mineral exposures on Mars (Carter et al. characterized by red-coloured hills, soils and sandstones due to 2011). At the Mawrth Vallis region, phyllosilicate units are the presence of iron oxides (e.g. haematite) (Chan et al. 2004; observed that resemble terrestrial sedimentary deposits Ormö et al. 2004). We have investigated ten selected samples (Bishop et al. 2011). Recent Earth-based observations have from different geological formations (Mancos Shale, Morrison detected methane in the atmosphere of Mars (e.g. Formisano and Dakota) and also chose a variety of locations (surface, et al. 2004; Mumma et al. 2009). Zahnle et al. (2011) critically subsurface and cliffs) for mineralogy, organic content and review these results and argue that variable methane on Mars biota (Direito et al. 2011; Kotler et al. 2011; Martins et al. is physically and chemically implausible. Results from the 2011; Orzechowska et al. 2011; Thiel et al. 2011a). In this Phoenix mission have yielded new insights into the compo- paper, we analyse the individual studies in an attempt to sition of the Martian soil. A slightly alkaline soil pH and establish correlations among environmental parameters and perchlorate as dominant soluble anion were determined by the biota. The results are interpreted in the context of future Phoenix Wet Chemical Laboratory (Hecht et al. 2009). CO2 missions that target the identification of organic molecules and release measured in the Thermal Evolved Gas Analyzer indi- biomarkers on Mars. cates the presence of calcium carbonate (Boynton et al. 2009). Robotic and human operations in space can be effectively Sample analysis prepared on Earth, as terrestrial extreme environments often provide analogues to landing and operation sites on the Moon Data from several studies on ten selected samples are compiled and Mars. Existing Earth-based field research programmes and compared in this paper, see Fig. 1. Soil samples were preparing for planetary exploration are diverse (Ansdell et al. collected under sterile conditions at desert areas of Utah in the 2011). Many space instruments augment their flight readiness vicinity of MDRS. The samples were partly analysed in situ level through tests in planetary analogue regions on Earth. and later distributed to the various laboratories for subsequent Lessons learned from sample collection, handling and in-situ analysis of mineralogy, organic content and microbiology. analysis at these sites help to overcome contamination issues as Soil sample properties that were measured in the MDRS well as improve instrument performance. Using Mars regolith habitat laboratory included pH and elemental composition of analogues to test physical and chemical properties such as pH, nitrate, potassium (K), phosphorous (P) and magnesium (Mg) redox potential, elemental composition, conductivity and (Table 1). For the pH measurements, the soil
Recommended publications
  • Department of Biology Course Outline SC/BIOL 3300 3.00 Origins And
    Department of Biology Course Outline SC/BIOL 3300 3.00 Origins and Development of Biological Theories Fall 2020 Course Description An analysis of the origins and development of biological theories, which may include those in evolutionary biology, ecology, biodiversity, and molecular phylogenetics. Prerequisites Note: Open only to students in the third or final year of a biology program, or with permission of the instructor. Only open to students who have completed a minimum of 12 credits at the 2000 level in Biology courses. Course Credit Exclusion: SC/BIOL 4300 3.00 Course Instructors and Contact Information Professor Jan Sapp Email [email protected] Office: Farquharson 306. Schedule Class time: Thursdays 14:30-17:30 Location: delivered remotely on zoom for live stream lectures. Students will require a computer and internet service. Lectures will also be recorded. • For outside class time questions, I will provide “office hours” after class. You may also contact me at [email protected]. 1 Evaluation Midterm test: 25% October 22- based on lectures and required readings. Jan Sapp, Co- existence: The Ecology and Evolution of Tropical Biodiversity (OUP 2016). Chapters supplied on course e-class. The mid term test may be conducted with the aid of an online proctoring service. All students must write the test on October 13. Research Proposal: 15%, due date October 1. Assessment will be based on formulation of the questions of your essay highlighting the significance of the research you will write about, and how you will investigate the origins and development of that research. ~250 words, plus a bibliography indicating the literature you intend to study.
    [Show full text]
  • NASA Astrobiology Institute 2017 Annual Science Report
    Habitability, Life Detection, and the Signatures of Life on the Terrestrial Planet Lead Institution: University of Wisconsin-Madison Team Overview The Wisconsin Astrobiology Research Consortium pursues research and education on habitability, life detection, and the signatures of life on the terrestrial planets, with a focus on Earth and Mars. This effort is fundamentally built around a broad interpretation of Life Detection, which includes not only detection of the organic signatures of life in modern and ancient environments, on Earth or other plane- tary bodies, but also the inorganic signatures of life, which may have the greatest fidelity over billion-year timescales and complex geologic histories. Biosignatures developed from laboratory experiments are field-tested in modern and ancient environments on Earth, which in turn inform new experimental studies, producing an iterative process of testing and evaluation. The goal is to ultimately develop the interpretive context needed to evaluate the potential for life on other planetary bodies, as well as to understand the evolution of life on Earth. The three research components of our program are: Principal Investigator: Clark Johnson • Developing methods for life detection on Mars and in Mars analog environments • Biosignatures: developing the tools for detection of ancient life and determining paleoenvironments • Life detection in the ancient terrestrial rock record Team Website: http://geoscience.wisc.edu/astrobiology NASA Astrobiology Institute 56 Annual Report 2017 2017 Executive Summary The research portfolio in the last year (Year 5 of CAN-6) included 26 projects that spanned the team's three research themes on life detection, biosignature development, and the ancient ter- restrial rock record.
    [Show full text]
  • Extraterrestrial Nucleobases in the Murchison Meteorite
    Extraterrestrial nucleobases in the Murchison meteorite Zita Martins a,b*, Oliver Botta c,d,1, Marilyn L. Fogel e, Mark A. Sephton b, Daniel P. Glavin c, Jonathan S. Watson f, Jason P. Dworkin c, Alan W. Schwartz g & Pascale Ehrenfreund a,c aAstrobiology Laboratory, Leiden Institute of Chemistry, 2300 RA Leiden, The Netherlands bDepartment of Earth Science and Engineering, Imperial College, London, SW7 2AZ, UK cNASA Goddard Space Flight Center, Code 699, Greenbelt, MD 20771, USA dGoddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD 21228, USA eGL, Carnegie Institution of Washington, Washington, DC 20015, USA fPlanetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK gRadboud University Nijmegen, 6525 ED, Nijmegen,The Netherlands 1Now at International Space Science Institute, Hallerstrasse 6, 3012 Bern, Switzerland. *Corresponding author: Zita Martins. Current address: Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK. Tel: +442075949982. Fax: +442075947444. Email: [email protected] To appear in Earth and Planetary Science Letters 270, 130-136. 15 June 2008 1 Abstract Carbon-rich meteorites, carbonaceous chondrites, contain many biologically relevant organic molecules and delivered prebiotic material to the young Earth. We present compound-specific carbon isotope data indicating that measured purine and pyrimidine compounds are indigenous components of the Murchison meteorite. Carbon isotope ratios for uracil and xanthine of δ13 C = +44.5‰ and +37.7‰, respectively, indicate a non-terrestrial origin for these compounds. These new results demonstrate that organic compounds, which are components of the genetic code in modern biochemistry, were already present in the early solar system and may have played a key role in life’s origin.
    [Show full text]
  • Astrobiology and the Possibility of Life on Earth and Elsewhere…
    Space Sci Rev DOI 10.1007/s11214-015-0196-1 Astrobiology and the Possibility of Life on Earth andElsewhere... Hervé Cottin1 · Julia Michelle Kotler2,3 · Kristin Bartik4 · H. James Cleaves II5,6,7,8 · Charles S. Cockell9 · Jean-Pierre P. de Vera10 · Pascale Ehrenfreund11 · Stefan Leuko12 · Inge Loes Ten Kate13 · Zita Martins14 · Robert Pascal15 · Richard Quinn16 · Petra Rettberg12 · Frances Westall17 Received: 24 September 2014 / Accepted: 6 August 2015 © Springer Science+Business Media Dordrecht 2015 Abstract Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parame- ters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the B H. Cottin [email protected] 1 LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 61, av du Général de Gaulle, 94010 Créteil Cedex, France 2 Leiden Institute of Chemistry, P.O. Box 9502, 2300 Leiden, The Netherlands 3 Faculty of Applied Sciences, City of Oxford College, Oxpens Road, Oxford, OX1 1SA, UK 4 EMNS, Ecole Polytechnique, Université libre de Bruxelles, 1050 Bruxelles, Belgium 5 Blue Marble Space Institute of Science,
    [Show full text]
  • For Peer Review Only Journal: Meteoritics & Planetary Science
    Running Head The amino acid and hy drocarbon contents of the Paris meteorite: Insights into the most primitive CM chondrite For Peer Review Only Journal: Meteoritics & Planetary Science Manuscript ID: MAPS-2144.R1 Manuscript Type: Article Date Submitted by the Author: 29-Oct-2014 Complete List of Authors: Martins, Zita; Imperial College London, Department of Earth Science and Engineering Modica, Paola; CNRS - Université Paris XI, Institut d’Astrophysique Spatiale, ‘‘Astrochimie et Origines’’ Zanda, Brigitte; Muséum national d'Histoire naturelle, LMCM - Histoire de la Terre; Rutgers University, Department of Earth and Planetary Sciences Le Sergeant d'Hendecourt, Louis; CNRS - Université Paris XI, Institut d’Astrophysique Spatiale, ‘‘Astrochimie et Origines’’ Amino acid(s), carbonaceous chondrite < Meteorite(s), soluble < Organic Keywords: matter, Hydrocarbons Meteoritics & Planetary Science Page 1 of 38 Running Head 1 2 1 The amino acid and hydrocarbon contents of the Paris 3 2 meteorite: Insights into the most primitive CM chondrite 4 5 3 6 4 Zita Martins a, Paola Modica b, Brigitte Zanda c, Louis Le Sergeant d'Hendecourt b 7 5 8 6 aDepartment of Earth Science and Engineering, Imperial College London, South 9 7 Kensington Campus, London SW7 2AZ, UK 10 b 8 CNRS - Université Paris XI, Institut d’Astrophysique Spatiale, ‘‘Astrochimie et 11 9 Origines’’, FR 91405 Orsay Cedex, France 12 c 13 10 Muséum d’Histoire Naturelle, CNRS, 61 rue Buffon, 75005, Paris, France 14 11 For Peer Review Only 15 16 12 Corresponding author: Zita Martins. Department of Earth Science and Engineering, 17 13 Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
    [Show full text]
  • Organic Molecules in Meteorites
    Astronomy in Focus, XXIXB, Focus Meeting 15 XXIXth IAU General Assembly, August 2015 c International Astronomical Union 2016 Piero Benvenuti, ed. doi:10.1017/S1743921316005676 Organic molecules in meteorites Zita Martins Dept of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK email: [email protected] Abstract. The analysis of the organic content of meteorites provides a window into the con- ditions of the early solar system, such as the extension of aqueous alteration or thermal meta- morphism on the meteorite parent bodies. The analysis of the soluble organic content of CM chondrites indicates that extensive aqueous alteration on their meteorite parent body may result on 1) the decomposition of α-amino acids; 2) synthesis of β-andγ-amino acids; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs); and 4) higher L-enantiomer excess (Lee) value of isovaline. Exogenous delivery of organic matter by meteorites may have contributed to the organic inventory of the early Earth, providing a diversity of resources to the first living organisms on Earth and on other places of our solar system where life could have potentially originated. 1. Introduction Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3- 5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous me- teorites may have contributed to the organic inventory of the early Earth, as the inner solar system was heavily bombarded from around 4.5 to 3.8 billion years ago (Schidlowski 1988, Schopf 1993, Chyba & Sagan 1992). The majority (> 70%) of the meteoritic organic material consist of insoluble organic matter (IOM) (Cody and Alexander 2005), while the remaining meteoritic organic material (< 30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochem- istry (Cronin & Chang 1993, Martins & Sephton 2009, Martins 2011).
    [Show full text]
  • Thèse De Doctorat
    UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 127 : ASTRONOMIE ET ASTROPHYSIQUE D’ÎLE-DE-FRANCE Laboratoire : Institut d’Astrophysique Spatiale THÈSE DE DOCTORAT PHYSIQUE par Paola MODICA From astrophysics to astrobiology: Significance of laboratory organic residues from photo-irradiation of cosmic ice analogs Date de soutenance : 26/11/2014 Composition du jury : Directeur de thèse : Louis LE SERGEANT D’HENDECOURT Directeur de recherche (IAS – CNRS - Université Paris-Sud) Rapporteurs : Hervé COTTIN Professeur (LISA - Université Paris-Est) Murthy GUDIPATI Principal Scientist (JPL - California Institute of Technology) Examinateurs : Guillaume PINEAU DES FORETS Professeur (IAS - Université Paris-Sud) Matthieu GOUNELLE Professeur (IMPMC - MNHN) Fathi MOUSSA Professeur (LETIAM - Université Paris-Sud) Membre invité : Michel VISO Responsable du programme Exobiologie (CNES) Acknowledgments During my PhD I received help, advice, and support from many people to whom I would like to show my greatest gratitude. First of all I would like to express my special appreciation and thanks to my advisor Louis Le Sergeant d’Hendecourt for being such a remarkable mentor. His dynamism and confidence in obtained results were always encouraging me to perseverate. I would like to stress here his great spirit of sacrifice in accompanying me through this long scientific project until the day of my thesis defense and his constant concern in doing everything possible to make me feel at ease in my life in France, both emotionally and financially. As his last student, I hope having contributed to end in style his scientific mentoring activity. Then I would like to thank all the members of the jury for letting my defense be a pleasant moment.
    [Show full text]
  • Matthieu Gounelle Obtained a DEA in Nuclear Physics
    Matthieu Gounelle obtained a DEA in nuclear isotopic, chemical, and mineralogical studies of meteorites, interplan­ physics (1994) and a DEA in philosophy of science etary dust particles, and Stardust mission samples. He has worked for (1996). He received his Doctorat de Physique from NASA at the Johnson Space Center since 2003, where he has established the Université Denis Diderot (Paris 7) in 2000. His a NanoSIMS 50L ion microprobe laboratory. interests span a broad range of topics in cosmo­ Ann N. Nguyen received her PhD from Washington chemistry and astrophysics. He has worked on the University in St. Louis in 2005. Her thesis focused possible cometary origin of the Orgueil CI chon­ on the analysis of presolar silicate grains. She com­ drite and the link between asteroids and comets. pleted a postdoc with Larry Nittler at the Carnegie He is a professor at the Museum National d’Histoire Naturelle, Paris. Institution of Washington and is currently a staff He was awarded the Nier Prize by the Meteoritical Society in 2006. member in the Astromaterials Research and Weifu Guo received his PhD degree in geochem­ Exploration Science Division at Johnson Space istry from the California Institute of Technology Center, Houston, Texas, USA. in 2008. His thesis work dealt with the develop­ ment and applications of carbonate clumped­ John F. Rudge is a research fellow in the Department isotope thermometry, under the supervision of Dr. of Earth Sciences at the University of Cambridge. John M. Eiler. He is currently a Carnegie postdoc­ He did his undergraduate and graduate training in toral fellow at the Geophysical Laboratory of the Cambridge, earning a BA in mathematics and a Carnegie Institution of Washington.
    [Show full text]
  • A Small Sea at Large: Mediterranean Controls on Global Climate
    5 A small sea at large: Mediterranean controls on global climate In the late 1990s, R. G. Johnson noted that the Aswan Dam on the river Nile was causing the Mediterranean Sea to become more saline. He suggested far-reaching implications for global climate, including the formation of a new ice sheet in Canada – all because of the saltier water flowing from the Mediterranean into the Atlan- tic. In fact, he went so far as to propose a dam across the Strait of Gibraltar to stop this from happening. Oceans form an integral part of the global carbon cycle and also serve as a major heat sink – clearly, they play a pivotal role in the global climate system. But can a change in the salinity of a small sea such as the Mediterranean really bring about climatic change on a global scale? Models of the present day suggest that this is indeed possible. Rel- atively warm, saline (and therefore dense) Mediterranean outflow The Messinian Salinity Crisis is thought to have been caused by extreme water enters the Atlantic at depth and strengthens the deep-ocean restriction of the exchange between the Mediterranean and the Atlantic. The part of the thermohaline circulation, the ‘global conveyor belt’ of cur- black lines show the present-day Strait of Gibraltar as delineated by the coasts of Spain and Morocco. During the salinity crisis, the green land areas limited rents that move water around the world. The long timescales (centu- flow. (Credit: Ivanovic) ries) on which the thermohaline circulation changes, however, mean that past events may yield useful insights about potential conse- quences of fluctuations in Mediterranean outflow water.
    [Show full text]
  • Space As a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond
    Space Sci Rev (2017) 209:83–181 DOI 10.1007/s11214-017-0365-5 SPECIAL COMMUNICATION Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond Hervé Cottin1 · Julia Michelle Kotler2,3,4 · Daniela Billi5 · Charles Cockell6 · René Demets7 · Pascale Ehrenfreund8 · Andreas Elsaesser9,10 · Louis d’Hendecourt11 · Jack J.W.A. van Loon12,13 · Zita Martins14 · Silvano Onofri15 · Richard C. Quinn16 · Elke Rabbow17 · Petra Rettberg17 · Antonio J. Ricco16 · Klaus Slenzka18,19 · Rosa de la Torre20 · Jean-Pierre de Vera21 · Frances Westall22 · Nathalie Carrasco23 · Aurélien Fresneau1 · Yuko Kawaguchi24 · Yoko Kebukawa 25 · Dara Nguyen1 · Olivier Poch1 · Kafila Saiagh1 · Fabien Stalport1 · Akihiko Yamagishi24 · Hajime Yano26 · Benjamin A. Klamm16 Received: 30 September 2015 / Accepted: 5 April 2017 / Published online: 20 June 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The space environment is regularly used for experiments addressing astrobiol- ogy research goals. The specific conditions prevailing in Earth orbit and beyond, notably Note by the editor: This is a Special Communication, supplementing the papers by Cottin et al. on “Astrobiology and the Possibility of Life on Earth and Elsewhere...”,2015, Space Science Reviews, doi:10.1007/s11214-015-0196-1 and Martins et al. (2017) “Earth as a Tool for Astrobiology—A European Perspective”, Space Science Reviews; doi:10.1007/s11214-017-0369-1. B H. Cottin [email protected] 1 LISA, UMR CNRS 7583,
    [Show full text]
  • Seeds of Life in Comet Impact
    appeared on 25th Sep 2013 Seeds of life in comet impact Another route to generating components of life has been discovered, says S.Ananthanarayanan. The Miller‐Urey experiment of 1953 had shown that amino acids, of which proteins are made up, are generated when a mixture of gases, like what may have existed in the primitive earth, is exposed to electric discharge, to simulate lightning. Other experiments have shown that these components could later assemble to form cell‐like and primitive forms of self‐replicating structures. Zita Martins, Mark C. Price, Nir Goldman, Mark A. Sephton and Mark J. Burchell from London, Canterbury and California report in the journal, Nature, that impact of rocky bodies into the icy surfaces of comets could also generate complex organic molecules, like amino acids. The discovery is significant in the context of NASA’s Stardust spacecraft having found the simple amino acid, glycine, in the gas surrounding the comet, 81P/Wild 2. Abiogenesis The Miller-Urey experiment demonstrated how organic molecules could arise from inorganic components. Water vapour, ammonia, methane and hydrogen were cycled through a flask in which electric sparks were fired. After passing through the flask where the mixture was sparked, the vapour was condensed, to be collected and heated again, and so on. Within a day, the mixture had turned pink in colour, and at the end of two weeks 10 to15% of the carbon in the system had turned to organic compounds. Two percent of the carbon had formed amino acids, with glycine as the most abundant. 18% of the methane-molecules became bio- molecules.
    [Show full text]
  • Faça Download Da Folha De Sala
    Comemorações dos 25 anos da criação do Ministério da Ciência e Tecnologia em Portugal e dos 200 anos do Teatro Thalia www.ciencia25anos.pt Lisboa |Teatro Thalia | 2 de dezembro | 19h00 No âmbito das Comemorações dos 25 anos da criação do Ministério da Ciência, Tecnologia e Ensino Superior e dos 200 anos do Teatro Thalia, iremos apresentar o concerto «Shakespeare e a Ciência- to play or not to play» que será antecedido pela apresentação da exposição «Turbulence-the Voice of Space» e de um Prelúdio científico. «TURBULENCE – THE VOICE OF SPACE» A exposição «Turbulence – The Voice of Space» é um projeto criativo de divulgação científica, associado ao projeto “InPairs”, da ERC, criado para melhorar o envolvimento do público com a astrofísica. A inovação deste projeto consiste em usar dados brutos de simulações numéricas e transformá-los artisticamente numa série de media digitais (imagens, vídeos, sons e experiências de realidade virtual). Desta forma, “Turbulence – A Voice of Space” recria uma experiência imersiva e multissensorial que comunica os resultados científicos usando um canal mais acessível: o emocional e o artístico. A missão da exposição “Turbulence – The Voice of Space” traduz-se no seu lema: “Arte para melhorar a Ciência – Arte para comunicar a Ciência”. O projeto recebeu o Prémio de Melhor Vídeo em Física de Plasma de 2018, da Sociedade Europeia de Física, e foi apresentado em várias palestras e conferências internacionais resultantes de convites provenientes dos EUA e da Europa. A exposição é comissariada por Luís Oliveira e Silva e o Grupo de Lasers e Plasma do IST. Luís Oliveira e Silva Professor Catedrático de Física no Instituto Superior Técnico, onde lidera o Grupo de Lasers e Plasmas/IPFN.
    [Show full text]