Space As a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Space As a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond Space Sci Rev (2017) 209:83–181 DOI 10.1007/s11214-017-0365-5 SPECIAL COMMUNICATION Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond Hervé Cottin1 · Julia Michelle Kotler2,3,4 · Daniela Billi5 · Charles Cockell6 · René Demets7 · Pascale Ehrenfreund8 · Andreas Elsaesser9,10 · Louis d’Hendecourt11 · Jack J.W.A. van Loon12,13 · Zita Martins14 · Silvano Onofri15 · Richard C. Quinn16 · Elke Rabbow17 · Petra Rettberg17 · Antonio J. Ricco16 · Klaus Slenzka18,19 · Rosa de la Torre20 · Jean-Pierre de Vera21 · Frances Westall22 · Nathalie Carrasco23 · Aurélien Fresneau1 · Yuko Kawaguchi24 · Yoko Kebukawa 25 · Dara Nguyen1 · Olivier Poch1 · Kafila Saiagh1 · Fabien Stalport1 · Akihiko Yamagishi24 · Hajime Yano26 · Benjamin A. Klamm16 Received: 30 September 2015 / Accepted: 5 April 2017 / Published online: 20 June 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The space environment is regularly used for experiments addressing astrobiol- ogy research goals. The specific conditions prevailing in Earth orbit and beyond, notably Note by the editor: This is a Special Communication, supplementing the papers by Cottin et al. on “Astrobiology and the Possibility of Life on Earth and Elsewhere...”,2015, Space Science Reviews, doi:10.1007/s11214-015-0196-1 and Martins et al. (2017) “Earth as a Tool for Astrobiology—A European Perspective”, Space Science Reviews; doi:10.1007/s11214-017-0369-1. B H. Cottin [email protected] 1 LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 61, av du Général de Gaulle, 94010, Créteil Cedex, France 2 Leiden Observatory, PO Box 9513, 2300 Leiden, The Netherlands 3 Universität Konstanz FB Biologie, Z 818, 78457 Konstanz, Germany 4 Chemical Analysis Facility, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK 5 University of Rome Tor Vergata, Rome, Italy 6 School of Physics and Astronomy, UK Centre for Astrobiology, SUPA, James Clerk Maxwell Building, King’s Buildings, Edinburgh, EH9 3JZ, UK 7 ESTEC (HRE-UB), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 8 Space Policy Institute, George Washington University, 20052 Washington DC, USA 9 Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands 10 Experimental Molecular Biophysics, Department of Physics, Free University of Berlin, 14195 Berlin, Germany 11 Institut d’Astrophysique Spatiale, UMR 8617 CNRS, Université Paris-Sud, Orsay, France 12 VU University Medical Center (VUmc), Dept. Oral and Maxillofacial Surgery/Oral Pathology, VU Amsterdam, Amsterdam, The Netherlands 84 H. Cottin et al. the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure plat- forms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format. Keywords Astrobiology · Exobiology · Astrochemistry · Hardware for space experiments · BIOPAN · STONE · EXPOSE · Tanpopo · Cubesat · Nanosatellites · International Space Station · Space environment Contents 1 Introduction ....................................... 85 2TheSpaceRadiationEnvironment........................... 86 2.1Photons....................................... 88 2.2RadiationOtherthanPhotons........................... 88 2.3SpaceEnvironmentVersusLaboratoryEnvironment............... 94 3 Current and Past Astrobiology Facilities . ...................... 97 13 European Space Research and Technology Centre (ESTEC), TEC-MMG, Life & Physical Science, Instrumentation and Life Support Laboratory, European Space Agency (ESA), Keplerlaan 1, 2200 AG, Noordwijk, The Netherlands 14 Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, London, UK 15 Università della Tuscia, Viterbo, Italy 16 NASA Ames Research Center, Moffett Field, CA, 94035, USA 17 Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, DLR, Koeln, Germany 18 Jacobs Univ., Bremen, Germany 19 OHB, Bremen, Germany 20 INTA, Instituto Nacional de Técnica Aeroespacial, Crta. Ajalvir, km. 4, 28850 Torrejón de Ardoz, Madrid, Spain 21 Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiology Laboratories, DLR, Berlin, Germany 22 CNRS, CBM, UPR 4301, rue Charles Sadron, 45071 Orléans, France 23 Université Versailles St-Quentin, UPMC Univ. Paris 06, CNRS, LATMOS, 11 Blvd. d’Alembert, 78280 Guyancourt, France 24 Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan 25 Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan 26 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan Space as a Tool for Astrobiology: Review and Recommendations. 85 3.1 Common Tools and Facilities ........................... 97 3.1.1LDEF..................................... 98 3.1.2EURECA................................... 98 3.1.3Salute-6,7,Bion-9,11andMIRSpaceStation............... 99 3.1.4BiopanonFotonCapsule.......................... 99 3.1.5EXPOSEOutsidetheInternationalSpaceStation............. 100 3.1.6TANPOPOOutsidetheInternationalSpaceStation............ 108 3.1.7 O/OREOS Nanosatellite .......................... 110 3.1.8 OREOcube: An ISS Hitchhiker and New In-situ Exposure Platform . 112 3.1.9STONEExperiments............................ 113 3.2SpaceExperimentsforChemistry......................... 114 3.2.1DiversityofSamplesforAstrochemistryExperimentsinSpace..... 114 3.2.2HardwareforChemistry........................... 120 3.2.3Results.................................... 135 3.2.4 Limitations of Current Astrochemistry Facilities . .......... 139 3.3SpaceExperimentsforBiology.......................... 141 3.3.1DiversityofSamplesforBiologyExperimentsinSpace......... 141 3.3.2HardwareforBiology............................ 143 3.3.3Results.................................... 159 3.3.4 Limitations of Current Biology Facilities . ................ 165 4 Future Astrobiology Facilities . ........................... 166 4.1AstrobiologicalScienceDrivers.......................... 166 4.2 Relevant and Accessible Space Environments for Astrobiology Experiments . 168 4.3 Cubesats for Astrobiology/Astrochemistry .................... 169 4.4 The Gaps: Key Future Facilities .......................... 170 5Summary,ConclusionsandRecommendations.................... 172 Acknowledgements.................................... 175 References......................................... 175 1 Introduction Science experiments designed to benefit from the unique conditions provided in situ by the space environment began almost at the same time as the conquest of space in the late 1950s. When the word “exobiology” was coined by J. Lederberg in 1960 (Lederberg 1960), at a time when the search for life beyond Earth started to settle on the scientific founda- tion that prevails today (Cottin et al. 2015a), microorganisms were intentionally placed in space as part of the scientific payloads of Sputniks, Vostoks and Gemini spacecraft, prin- cipally to study the effects of microgravity (Taylor et al. 1974). The very first exposure of microorganisms to space radiation, proving that life could survive the extremely harsh con- ditions of open space, were conducted on sounding rockets in 1965 (150 km) (Hotchin et al. 1967), extended to the Gemini 9 and 12 missions in 1966 (300 km) (Hotchin et al. 1968) and finally as the Apollo 16 mission was flying back to Earth from the Moon (Taylor et al. 1974). After Apollo 16, space was used episodically as a tool for astrobiology in the 1980s (Long Duration Exposure Facility—LDEF) and in the early 1990s (EUropean REtrievable CArrier—EURECA). In parallel with the increasing number of organic molecules detected in the interstellar medium and better understanding of the chemical complexity of carbona- ceous chondrites, comets, and planetary environments such as the atmosphere of Titan, the 86 H. Cottin et al. number of experiments addressing chemistry with an astrobiological perspective increased. It is now quite common to have both astrochemistry and biology experiments on a given fa- cility. With the Biopan, STONE, and now the EXPOSE facilities on the International Space Station (ISS), the European Space Agency (ESA) has shown sustained interest since the mid- 1990s in granting its science community regular access to the space environment. Two main scientific questions related to astrobiology motivate the experiments supported by those fa- cilities: • What does the resistance of microorganisms to space conditions tell us about the possi- bility to find life beyond Earth and what can we learn from space effects on microbes that is pertinent to planetary protection? • How was the chemistry leading to the origin of life on Earth influenced by processes in space? • What can we learn from these types of experiments to support
Recommended publications
  • Department of Biology Course Outline SC/BIOL 3300 3.00 Origins And
    Department of Biology Course Outline SC/BIOL 3300 3.00 Origins and Development of Biological Theories Fall 2020 Course Description An analysis of the origins and development of biological theories, which may include those in evolutionary biology, ecology, biodiversity, and molecular phylogenetics. Prerequisites Note: Open only to students in the third or final year of a biology program, or with permission of the instructor. Only open to students who have completed a minimum of 12 credits at the 2000 level in Biology courses. Course Credit Exclusion: SC/BIOL 4300 3.00 Course Instructors and Contact Information Professor Jan Sapp Email [email protected] Office: Farquharson 306. Schedule Class time: Thursdays 14:30-17:30 Location: delivered remotely on zoom for live stream lectures. Students will require a computer and internet service. Lectures will also be recorded. • For outside class time questions, I will provide “office hours” after class. You may also contact me at [email protected]. 1 Evaluation Midterm test: 25% October 22- based on lectures and required readings. Jan Sapp, Co- existence: The Ecology and Evolution of Tropical Biodiversity (OUP 2016). Chapters supplied on course e-class. The mid term test may be conducted with the aid of an online proctoring service. All students must write the test on October 13. Research Proposal: 15%, due date October 1. Assessment will be based on formulation of the questions of your essay highlighting the significance of the research you will write about, and how you will investigate the origins and development of that research. ~250 words, plus a bibliography indicating the literature you intend to study.
    [Show full text]
  • Second Annual NASA Ames Space Science and Astrobiology Jamboree
    Second Annual NASA Ames Space Science and Astrobiology Jamboree March 4, 2014 Welcome to the Second Annual Ames Space Sciences and Astrobiology Jamboree! The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-ops, post-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one’s fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We also wanted to continue a new tradition created last year within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. Jeff Cuzzi this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr.
    [Show full text]
  • Radiation Exposure and Mission Strategies for Interplanetary Manned Mission
    Radiation Exposure and Mission Strategies for Interplanetary Manned Mission Radiation Hazard and Space Weather Warning System WP 5000 Final Version: 14 December 2004 Compiled by Claire Foullon1, Andrew Holmes-Siedle2, Norma Bock Crosby1, Daniel Heynderickx1 1 Belgian Institute for Space Aeronomy Ringlaan-3-Avenue Circulaire 1180 Brussels, Belgium 2 REM OXFORD Ltd. 64A Acre End St. Eynsham, Oxford OX29 4PD, England INTRODUCTION Radiation protection is a prime issue for space station operations, for extended missions to planets in our solar system (e.g. Mars), or for a return visit to the Moon. The radiation environment encountered by solar system missions mainly consists of the following components: 1. Trapped radiation in the Earth’s Van Allen Belts and in the magnetosphere of Jupiter 2. Galactic Cosmic Ray (GCR) background radiation 3. Solar Energetic Particle Events – Solar Proton Events (SPEs) Along with the continuous GCR background, SPEs constitute the main hazard for interplanetary missions. Up to now, prediction of SPE events is not possible. Future interplanetary manned missions will need to consider solar activity (e.g. solar flares, coronal mass ejections, …) very carefully due to the obvious detrimental effects of radiation on humans. Very high doses during the transit phase of a mission can result in radiation sickness or even death. This is equally true for extended visits to surfaces of other planets (for example to Mars) and moons lacking a strong magnetic field capable of deflecting solar particles. The risk of developing cancer several years after a mission is somewhat more difficult to quantify, but must also be considered in mission planning.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Transformation of Bacteria with Different Plasmids
    Molecular Biology of Life Laboratory BIOL 123 TRANSFORMATION OF BACTERIA WITH DIFFERENT PLASMIDS Objectives • To understand the concept of DNA as genetic material through the process of transformation. • To test the conditions that make cells competent for use in DNA-mediated transformation. • To study the characteristics of plasmid vectors. Introduction Transformation Modern molecular biology began with the experiments of Avery, MacLeod and McCarty (1944) on two strains of Pneumococcus bacteria. When grown on an agar plate, the wild type virulent strain had smooth glistening colonies designated as type S while an avirulent strain had colonies with irregular shape and rough surface, designated as type R. The change from type R to S could be mediated if a DNA extract from S was added to type R bacteria in a test tube. The term "transformation" was coined for such a change. Other contemporary scientists did not easily accept these experiments and what they implicated, mainly because the method of identifying DNA was not yet well established at the time. It took a decade before the validity of such experiments and their conclusions became fully appreciated as a result of rapidly increasing knowledge and understanding of the chemical and physical nature of DNA. Normally grown E. coli cells can not take up the exogenously supplied DNA. However, if the cells are soaked in an ice cold calcium chloride solution for a short time before the addition of DNA and a brief (90 seconds) heat shock (42°C) is given, DNA uptake by the cells is facilitated (Hanahan, 1983). When bacteria have been prepared in this special manner to easily accept the foreign DNA, they are said to be "competent".
    [Show full text]
  • 6 FOTON RETRIEVABLE CAPSULES This Section Is Aimed at Providing New and Experienced Users with Basic Utilisation Information Regarding Foton Retrievable Capsules
    6 FOTON RETRIEVABLE CAPSULES This section is aimed at providing new and experienced users with basic utilisation information regarding Foton retrievable capsules. It begins with an introduction to the Foton capsule. 6.1 Introduction to Foton Capsules 6.1.1 What Are Foton Capsules? Foton capsules (Figure 6-1 and Figure 6-2) are unmanned, retrievable capsules, derived from the design of the 1960’s Soviet Vostok manned spacecraft and the Zenit military reconnaissance satellite. These capsules are very similar to the Bion and Resurs-F satellites introduced by the Soviets in the 1970’s, for biological research and Earth natural resources investigation, respectively. The first Foton capsule was launched in 1985 as Cosmos 1645 and only with the fourth launch in 1988 was the spacecraft officially designated Foton (Foton-4). These capsules are launched into near-circular, low-earth orbits by a Soyuz-U rocket, providing researchers with gravity levels less than 10 -5 g, for missions lasting approximately 2 weeks. The earlier Foton missions were conceived primarily for materials science research, but later missions also began to include experiments in the fields of fluid physics, biology and radiation dosimetry. ESA’s participation in the Foton programme began in 1991 with a protein crystallisation experiment on-board Foton-7, followed by a further 35 experiments up to and including the Foton- 12 mission in 1999. In 2002, ESA provided a large number of experiments for the Foton-M1 mission (the first flight of an upgraded version of the Foton spacecraft). This mission ended in disaster when the Soyuz launcher rocket exploded shortly after lift-off due to a malfunction in one of its engines.
    [Show full text]
  • NASA Astrobiology Institute 2018 Annual Science Report
    A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute
    [Show full text]
  • The Space Exposure Platforms BIOPAN and EXPOSE to Study
    The space exposure platforms BIOPAN and EXPOSE to study living organisms in space Wolfgang Schulte (1), Pietro Baglioni (2), René Demets (2), Ralf von Heise-Rotenburg (1), Petra Rettberg (3) (1) Kayser-Threde GmbH, Wolfratshauser Str. 48, 81379 Munich, Germany, [email protected], Phone: +49-89-72495-225, Fax: +49-89-72495-215; [email protected], Phone: +49-89-72495-341, Fax: +49-89-72495-215 (2) European Space Agency ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands, [email protected], Phone + 31-71-565-3856, Fax +31-71-565-3141; [email protected], Phone +31-71-565-5081, Fax +31-71-565-3141 (3) German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Linder Höhe, 51147 Köln, Germany, [email protected], Phone +49-2203-601-4637, Fax +49-2203-61970 BIOPAN and EXPOSE are two European space exposure platforms, developed for the European Space Agency by Kayser-Threde GmbH, Munich/Germany to offer flight opportunities to the science community of exo/astrobiology research in low earth orbit. Both platforms are conceived for the research on the behaviour of living organisms in the environment of space and on simulated conditions of other planets (Mars). The conditions for a possible transfer of life between planets can be studied. Both facilities can also be used for materials and components validation and as test bed for advanced technologies envisaged for future exploration missions (radio-protection, miniaturized devices, electronic components). Since 1992 BIOPAN has flown five times aboard the Russian FOTON re-entry cap- sule.
    [Show full text]
  • The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia Coli
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 2:207-223 Copyright April 2002, M&I UBC The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli VICKY CHAN, LISA F. DREOLINI, KERRY A. FLINTOFF, SONJA J. LLOYD, AND ANDREA A. MATTENLEY Department of Microbiology and Immunology, UBC Based on the observation that the transformation of Escherchia coli was more efficient with pUC19 than with the larger plasmid pBR322, we hypothesized that transformation frequency is somehow affected by size. To test this hypothesis, we attempted to insert a 1.7kb lambda NdeI fragment into pUC19 to generate a plasmid (pHEL) of the same size as pBR322. The two plasmids of equal size were then to be used to transform E. coli in order to compare transformation efficiencies. After two rounds of cloning, we were unable to generate pHEL. In lieu of using pHEL and pBR322, E. coli were transformed with previously prepared plasmids of varying sizes: pUC8 (2.6 kb), pUC8 0-690 (4.3 kb), and pUC8 0-690::pKT210 (16.1 kb). The results of these transformations indicate that increasing plasmid size correlates with a decrease in transformation efficiency. Transformation is an important technique in molecular cloning for transferring genetic material to bacteria. It can be done by either heat shock or electroporation. The former involves the preparation of competent cells, incubation of the cells with DNA at 0oC and the completion of DNA uptake by heat pulse. Competent cells are capable of taking up DNA. They can be prepared by cold treatment with calcium chloride.
    [Show full text]
  • NASA Astrobiology Institute 2017 Annual Science Report
    Habitability, Life Detection, and the Signatures of Life on the Terrestrial Planet Lead Institution: University of Wisconsin-Madison Team Overview The Wisconsin Astrobiology Research Consortium pursues research and education on habitability, life detection, and the signatures of life on the terrestrial planets, with a focus on Earth and Mars. This effort is fundamentally built around a broad interpretation of Life Detection, which includes not only detection of the organic signatures of life in modern and ancient environments, on Earth or other plane- tary bodies, but also the inorganic signatures of life, which may have the greatest fidelity over billion-year timescales and complex geologic histories. Biosignatures developed from laboratory experiments are field-tested in modern and ancient environments on Earth, which in turn inform new experimental studies, producing an iterative process of testing and evaluation. The goal is to ultimately develop the interpretive context needed to evaluate the potential for life on other planetary bodies, as well as to understand the evolution of life on Earth. The three research components of our program are: Principal Investigator: Clark Johnson • Developing methods for life detection on Mars and in Mars analog environments • Biosignatures: developing the tools for detection of ancient life and determining paleoenvironments • Life detection in the ancient terrestrial rock record Team Website: http://geoscience.wisc.edu/astrobiology NASA Astrobiology Institute 56 Annual Report 2017 2017 Executive Summary The research portfolio in the last year (Year 5 of CAN-6) included 26 projects that spanned the team's three research themes on life detection, biosignature development, and the ancient ter- restrial rock record.
    [Show full text]
  • Extraterrestrial Nucleobases in the Murchison Meteorite
    Extraterrestrial nucleobases in the Murchison meteorite Zita Martins a,b*, Oliver Botta c,d,1, Marilyn L. Fogel e, Mark A. Sephton b, Daniel P. Glavin c, Jonathan S. Watson f, Jason P. Dworkin c, Alan W. Schwartz g & Pascale Ehrenfreund a,c aAstrobiology Laboratory, Leiden Institute of Chemistry, 2300 RA Leiden, The Netherlands bDepartment of Earth Science and Engineering, Imperial College, London, SW7 2AZ, UK cNASA Goddard Space Flight Center, Code 699, Greenbelt, MD 20771, USA dGoddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD 21228, USA eGL, Carnegie Institution of Washington, Washington, DC 20015, USA fPlanetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK gRadboud University Nijmegen, 6525 ED, Nijmegen,The Netherlands 1Now at International Space Science Institute, Hallerstrasse 6, 3012 Bern, Switzerland. *Corresponding author: Zita Martins. Current address: Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK. Tel: +442075949982. Fax: +442075947444. Email: [email protected] To appear in Earth and Planetary Science Letters 270, 130-136. 15 June 2008 1 Abstract Carbon-rich meteorites, carbonaceous chondrites, contain many biologically relevant organic molecules and delivered prebiotic material to the young Earth. We present compound-specific carbon isotope data indicating that measured purine and pyrimidine compounds are indigenous components of the Murchison meteorite. Carbon isotope ratios for uracil and xanthine of δ13 C = +44.5‰ and +37.7‰, respectively, indicate a non-terrestrial origin for these compounds. These new results demonstrate that organic compounds, which are components of the genetic code in modern biochemistry, were already present in the early solar system and may have played a key role in life’s origin.
    [Show full text]