<<

Extraterrestrial in the Murchison

Zita Martins a,b*, Oliver Botta c,d,1, Marilyn L. Fogel e, Mark A. Sephton b, Daniel P. Glavin c, Jonathan S. Watson f, Jason P. Dworkin c, Alan W. Schwartz g & Pascale Ehrenfreund a,c

aAstrobiology Laboratory, Leiden Institute of Chemistry, 2300 RA Leiden, The Netherlands bDepartment of Earth Science and Engineering, Imperial College, London, SW7 2AZ, UK cNASA Goddard Space Flight Center, Code 699, Greenbelt, MD 20771, USA dGoddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD 21228, USA eGL, Carnegie Institution of Washington, Washington, DC 20015, USA fPlanetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK gRadboud University Nijmegen, 6525 ED, Nijmegen,The Netherlands 1Now at International Space Science Institute, Hallerstrasse 6, 3012 Bern, Switzerland.

*Correspondingauthor:ZitaMartins.Currentaddress:DepartmentofEarthScienceand Engineering,ImperialCollegeLondon,LondonSW72AZ,UK. Tel:+442075949982.Fax:+442075947444.Email:[email protected]

ToappearinEarthandPlanetaryScienceLetters270,130136.15June2008

1 Abstract rich , carbonaceous , contain many biologically relevant organic molecules and delivered prebiotic material to the young Earth. We present compoundspecific carbon data indicating that measured and compoundsareindigenouscomponentsoftheMurchisonmeteorite.Carbon isotope ratios for and of δ13 C = +44.5‰ and +37.7‰, respectively, indicate a nonterrestrial origin for these compounds. These new results demonstrate that organic compounds, which are components of the genetic code in modern ,werealreadypresentintheearlysolarsystemandmayhaveplayedakey rolein’sorigin.

Keywords: nucleobases, Murchison meteorite, carbon isotope, extraterrestrial organic molecules,originoflife.

2 1. Introduction Oneofthemostfundamentaldiscoveriesofmodernscienceishownucleicacids store, transcript and translate life’s genetic code (Watson and Crick, 1953). Nucleic acids are composed of subunits called , each containing a , a and a group. Nucleobases are onering () or tworing () compounds containing atoms. Pyrimidines include uracil, and,whilepurinesinclude,,andxanthine(see section Appendix A, figure A1 forthestructureofnucleobases).Adenine,guanineand cytosine are found in the ribonucleic acid (RNA) and deoxyribonucleic acid (DNA), while thymine is only found in DNA and uracil only in RNA. Hypoxanthine and xanthine are not present in DNA or RNA, but are important intermediates in the synthesisanddegradationofpurinenucleotides.Since the genetic code is an ancient featureoflife,itislikelythatEarth’searliestlivingsystemsusingageneticcodebased on the common nucleobases were in existence (Dworkinetal.,2003).Oneproposed sourceofthesenucleobasesistheirsynthesisonthe early Earth by abiotic chemical reactions under plausible primitive Earth conditions,suchastheones appliedonthe MillerUreyexperiment(Miller,1953).However,thereducingatmosphericconditions usedinthistypeofexperimentarenotconsistentwiththeEarth’sprimitiveatmosphere (Kasting,1993;KastingandCatling,2003).Furthermore,itbecameevidentthatitis difficulttosynthesizeprebioticcompoundsinanonreducingatmosphere(Striblingand Miller,1987).Onepotentiallyalternativesourceof nucleobases is the extraterrestrial deliveryoforganicmaterialtoEarthbycomets,asteroidsandtheirfragmentsaswellas interplanetarydustparticles(IDPs)(ChybaandSagan,1992). Carbonaceouschondrites, which contain many biologically relevant organic compounds (for reviews see e.g. BottaandBada,2002;Sephton,2002)havebeenanalyzedfornucleobasesbyseveral different research groups (Hayatsu, 1964; Hayatsu etal.,1968,1975;Folsomeetal., 1971, 1973; Lawless et al., 1972; Van der Velden and Schwartz, 1977; Stoks and Schwartz, 1979, 1981). Hayatsu (1964) reported the detection of Nheterocyclic compoundsinanacetylatedacidhydrolyzedsample.Thenucleobasesadenine andguanine,aswellas(ammelineandmelamine)wereidentifiedusingpaper chromatography.Later,Hayatsuetal.(1968)usedHClbutnoacetylationin theiranalyticalproceduretopreventthealterationordestructionoforganiccompounds duringtheacetylationstepappliedintheirpreviouswork.Guanylureaandthepurine

3 adeninewereidentifiedintheOrgueilmeteorite,butnoguaninewasdetected.Analysis by a different group (Folsome et al., 1971, 1973; Lawless et al., 1972) using gas chromatographymass spectrometry (GCMS) of trimethylsilyl (TMS) derivatives producedclearlydifferentresults,withnopurines,triazinesorguanylureadetectedin water and formic acid extracts of the Orgueil, Murchison and Murray meteorites. However, Folsome et al. (1971, 1973) and Lawless et al. (1972) detected 4 hydroxypyrimidine in the same meteorite extracts. Hayatsu et al. (1975) analyzed MurchisonsamplesusingthesameextractionprocedureasFolsomeetal.(1971,1973) anddetectedonlyaliphaticaminesandalkylpyridinesbydirectsamplevolatilisationin amassspectrometer.However,whenmore“drastic”extractionconditionswereapplied (36MHClortrifluoroaceticacid),Hayatsuetal.(1975)foundthepurinesadenineand guanine,guanylureaandtriazines,butno4hydroxypyrimidine,andthis suggestedthat purines and triazines were released by acid hydrolysis from the meteorite macromolecular material. Two years later, Van der Velden and Schwartz (1977) analyzed a sample of the Murchison meteorite using high performance liquid chromatography (HPLC) with UV , a technique that did not require derivatization or volatilisation prior to analysis. With this technique xanthine was detectedatanabundanceof2.4partspermillion(ppm)informicacidextracts;guanine andhypoxanthinewerealsotentativelyidentified(withaconcentrationof0.1ppmand 0.04 ppm, respectively), while no pyrimidines were found at levels higher than the background (0.01 ppm) in water or formic acid extracts. However, after silylation hydroxypyrimidines appeared in the water extracts leading to the suggestion that the compoundsdetectedbyFolsomeetal.(1971,1973)and Lawlessetal.(1972)might have been produced from contaminants present in the silylation reagents (Van der VeldenandSchwartz,1977).StoksandSchwartz(1979)reanalyzedwaterandformic acid extracts of the Murchison, Murray and Orgueil meteorites using specific fractionation techniques (including activated charcoal columns, which adsorb N heterocyclic compounds, separating the nucleobases from other organic compounds present in the meteorite extract) and ion exclusion chromatography with UV spectroscopyanddetectedforthefirsttimethenucleobaseuracil,intheextractsofall thesemeteorites.FurtherreanalysisoftheformicacidextractsofMurchison,Murray andOrgueilusingGC,HPLCandmassspectrometry(MS)resultedinthedetectionof xanthine,adenine,hypoxanthineandguanineinconcentrationsrangingfrom114to655 partsperbillion (ppb) in all three meteorites. In contrast, hydroxypyrimidines and

4 triazineswerenotidentifiedabovedetectionlimitsof10ppband50ppb,respectively, suggestingthatpreviousidentificationsoftriazinesbyHayatsu(1964)andHayatsuet al. (1968, 1975) may have been artefacts synthesized during the experimental procedure. Shimoyama et al. (1990) detected guanine, and possible xanthine and hypoxanthineintheAntarcticmeteoriteYamato(Y)74662andY791198meteorites usingHPLCwithUVspectroscopy.Theconcentrationsofguaninerangedfrom30to 420ppb,andnopyrimidineswerefound.TwootherAntarctic meteorites, Y793321 andBelgica(B)7904,alsoyieldednonucleobases(Shimoyamaetal.1990). Several circumstantial lines of evidence suggested that the origin of the nucleobases present in carbonaceous meteorites is extraterrestrial (e.g. high relative xanthineabundance,lowthyminetouracilratio,andlowabundanceofcytosine)(Van der Velden and Schwartz, 1977). However, significant quantitative and qualitative variations even between different fragments of the same meteorite (Folsome et al., 1971, 1973; Hayatsu et al., 1975; Van der Velden and Schwartz, 1977; Stoks and Schwatz,1979,1981),leftopenthepossibilitythatterrestrialcontaminationatthefall site, or during the curation history of the meteorites, as well as analytical artefacts duringtheextraction,purificationandderivatizationprocedures,couldhaveproduced thesecompounds(VanderVeldenandSchwartz,1977). Compoundspecificstableisotopecompositionsofhydrogen,carbonandnitrogen canbepowerfuldiscriminatorsoftheoriginoforganiccompoundsinmeteorites.For example, the 13 C isotope enrichment of amino acids and carboxylic acids in the Murchison meteorite has been critical to establish the extraterrestrial origin of these compounds(seee.g.Yuenetal.,1984;Engeletal.,1990;Pizzarelloetal.,2004;Huang etal.,2005).Accordingly,toestablishtheorigin(terrestrial vs. extraterrestrial)ofthe nucleobases in Murchison, the carbon isotopic ratio of these compounds must be determined.Compoundspecificisotopemeasurementsofnucleobasesincarbonaceous meteoriteshavenotpreviouslybeenreported. We subjected the Murchison meteorite (and appropriate controls) to a well established extraction and isolation procedure (Van der Velden and Schwartz, 1977; StoksandSchwartz,1979,1981)andsupplementedit by analyzing the extracts with moderncompoundspecificcarbonisotoperatioinstrumentation.Murchisonwasusedin thisstudytoreplicatetheextractionandisolationproceduresusedpreviously(Vander VeldenandSchwartz,1977;StoksandSchwartz,1979,1981),andbecausearelatively largequantity(afewgrams)ofthismeteoriteisavailable.Forcomparison,asoilsample

5 collectedin1999intheproximityofthemeteorite’s1969fallsitewasalsosubjectedto thesameextraction,isolationandanalyticalprocedure.Tothebestofourknowledge, soilfromtheMurchisonmeteoritefallsitewasnotcollectedin1969.Analysisofsoil samples collected in the proximity of meteorite falls were previously shown to be critical in assessing the extent of terrestrial organic contamination in meteorites (e.g. Glavin et al., 1999). In this study, nucleobases were identified in the Murchison meteorite and soil extracts using GCMS, and their carbon isotope ratios were determinedby gas chromatographycombustionisotope ratio mass spectrometry (GC CIRMS). 2. Materials and Methods 2.1. Extraction and cleaning procedure Amodificationofpreviouslypublishedmethods(VanderVeldenandSchwartz, 1977; Stoks and Schwartz, 1979, 1981) was applied to our protocol for isolation, extractionandanalysisofnucleobases. An interior piece of about 15g of Murchison meteorite as well as 15g of soil collected near the Murchison recovery location and a serpentine sample (heated to 500ºCfor3h)usedasaproceduralblankwereseparatelycrushedintopowderusinga ceramicmortarandpestle.Murchisonmeteoritepowderandsoilwereplacedseparately insidePyrexculturetubes(withTeflonlinedscrewcaps),1gpertube.Sampleswere extractedbyultrasonicationwithformicacid(8ml/tube,3times)for1hourat60°C. After centrifugation, the acid supernatants were transferredto15mlPyrextubesand driedundervacuum.Bothmeteoriteandsoilformicacidextractsweredissolvedin15 ml1MHCl,andaddedseparatelytocolumnsof0.6x5cmactivatedcharcoal(charcoal columnswereactivatedasdescribedbyVanderVeldenandSchwartz,1977),towhich nucleobasesareadsorbed.Activatedcharcoalcolumnswerewashedwith1MHCland

H2Otoremoveunboundmaterial,andnucleobaseswerethenelutedfromthecolumns withformicacid.Theextractswerethendriedundervacuumandhydrolyzed(torelease the bound fraction of the solventsoluble nucleobases) as described elsewhere (Stoks and Schwartz, 1979, 1981). The hydrolyzed extracts were diluted with 1M HCl and extractedwithether,followedbycharcoalcleaningoftheaqueousfraction.Theextracts were then dried under vacuum, dissolved in H 2O and subjected to ionexchange separationwithcolumns(0.4x6cm)of50WX8resin.Uracilandthyminewereeluted

6 from these columns with H 2O, cytosine and all purines eluted with 5M HCl. Both eluatesweredriedundervacuum. The efficiency of the cleaning process was tested by determining the yields of recovery for the different steps involved (charcoal filtration, hydrolysis and ion exchangeseparation)usingsolutionsofnucleobasesstandardsofknownconcentrations. Theseresultsaswellasthetotalnucleobaserecoveryyields(calculatedbyconsidering thatweappliedthecharcoalfiltrationsteptwice,thehydrolysissteponceandtheion exchangesteponce)aredisplayedintheSupplementaryMaterial(seesection Appendix A).ThecorrespondingtechnicalimplicationsarealsodiscussedintheSupplementary Material(seesection Appendix A ). All glassware and ceramics used for sample processing were sterilized by annealinginfoilat500°Cfor3h.Detailsaboutchemicalsandreagentsused inthisstudyareavailableonlineintheAppendixA.

2.2. GC-QMS analysis

Themeteoriteandsoilextractsweredissolvedin500 lof0.1NNH 4OHand30 l aliquots were dried under vacuum. 10 l of anhydrous and 30 l of BSTFA/TMCSwereaddedtothedriedextractresidues.Derivatizationwascarriedout at100°Cfor90min.2 loftheresultingsolutionswereeachinjectedintoaGCQMS (ThermoFinniganTraceGCcoupledtoaThermoFinniganTraceDSQQMS).Dueto the lack of GC columns optimized for nucleobase compounds, various GC operating conditionsweretestedtooptimizethepeakshapeof nucleobases, including different GCcolumns,temperatureprogramsandcarriergasflowrates.Optimizedconditionsare asfollow.SplitlessinjectionwithHeascarriergasataconstantpressureof13PSIwas used.Separationwasperformedona HPUltra2(25mx0.32mmIDx0.17 mfilm thickness)column.TheGCoventemperaturewasheldfor1minat75°Candrampedto 300°Catarateof5°Cmin 1andthenheldfor5min.Thepresenceofnucleobaseswas confirmed by retention time comparison to standards and by their unique mass fragmentationpattern.

2.3. GC-C-IRMS analysis 300 laliquotsofthemeteoriteandsoilextracts(outofthe500 l)werecarried through the same procedure as described for GCQMS analysis. Carbon isotope

7 analyseswereperformedusingaThermoFinniganMATDeltaPlusXLGCCIRMS. Temperatureprogram,carriergasandpressurewerethesameastheGCQMSanalysis. TheGCcolumnintheGCQMSwasremovedandtheninstalledintheGCCIRMS.

CompoundsseparatedbytheGCcolumnwereconvertedtoCO 2throughanoxidation 13 ovenkeptat980ºC.CO 2referencegaswithaknown δ Cvalue(41.10‰PDB)was injectedviatheinterfacetotheIRMS,forthecomputationof δ13 Cvaluesofsampleand standardcompounds.Peakscorrespondingtothecompoundsofinterestwereintegrated using the software supplied with the GCCIRMS instrument, which corrects for background, calculates and reports δ 13 C values. Standards for the analyses included pyrene, with a δ13 C value of 24.03‰ (±0.16‰) when measured by GCCIRMS. Additionally, individual nucleobases standards were subjected to the entire derivatization procedure described above and run on the GCCIRMS, with typical standard deviation of ±0.44‰. Corrections for carbon added from the BSFTA were calculated by mass balance: δ13 C nucleobase in sample derivatized = (% of carbon nucleobase) ( δ13 C nucleobase sample) + (% of carbon BSTFA) ( δ13 C BSTFA). The average δ13 CvaluesusedforBSTFAwere48.99‰±0.1‰(fromuracilstandards), 44.91‰ ± 0.38‰ (from thymine standards), and 40.47‰ ± 0.34‰ (from xanthine standards),andwereobtainedbymassbalance: δ13 Cnucleobasestandardderivatized= (% of carbon nucleobase) (EA nucleobase standard) + (% of carbon BSTFA) ( δ13 C BSTFA),wheretheEAnucleobasestandardvaluecorrespondstothe δ13 Cvalueofthe nucleobase standard establishedby a Carlo Erba elemental analyzer (EA)IRMS with Heasthecarriergas.Theuncertaintiesinthe δ13 Cvalues( δx)arebasedonthestandard deviationoftheaveragevalueofbetweenthreeand four separate measurements (N) −1/2 withastandarderror δx= σx⋅Ν . 3. Results Followingtheliteratureprotocol(VanderVeldenandSchwartz,1977;Stoksand Schwartz,1979,1981),aninteriorfragmentoftheMurchisonmeteoritewasextracted andpurifiedfornucleobaseisotopicanalyses.Thisproceduresubstantiallylimitedthe presenceofinterferingcompoundsandwasoptimized for the detection of uracil and xanthine (see section 2. Materials and Methods for details). A detailed study of the yieldsofrecoveryforeachcleaningstepduringthepurificationprocessisdescribedin section Appendix A . A relatively large quantity of Murchison meteorite (15 g) was

8 necessary to perform carbon isotope measurements of nucleobases (see section 2. Materials and Methods ).ThelimitofdetectionoftheGCCIRMS,combinedwiththe limited mass availability of meteorite samples, prevented us from performing stable nitrogenorhydrogenmeasurementsofthenucleobases. TwochromatographictracesobtainedfromtheGCCIRMSanalysisofthewater eluate from the ionexchange separation of the formic acid extract of the Murchison 12 meteoriteareshowninFigures1a:the m/z 44( CO 2)trace(bottom)andtheratio m/z 13 12 45/44 ( CO 2/ CO 2) (top). These traces include the peak corresponding to BSTFA derivatized uracil, assigned by retention time comparison with BSTFAderivatized authentic uracil standard analyzed on the same instrument. Confirmation of this assignment was achieved by comparison of the mass fragmentation patterns of the corresponding peak in the meteorite extracts (Figure 1b) with the mass spectra of a BSTFAderivatized authentic uracil standard (Figure 1b inset), analyzed by gas chromatographyquadrupolemassspectrometry(GCQMS)usingthesameGCcolumn andanalyticalconditionsthatwereusedfortheGCCIRMSmeasurements.Thesame analysis was performed for the hydrochloric acid eluate from the ionexchange separation.Thetwotraces m/z 44(bottom)andratio m/z 45/44(top)thatincludethe peak corresponding to BSTFAderivatized xanthine areshownin Figure2a, andthe corresponding GCQMS mass fragmentation patterns of the peaks in the meteorite extractandtheauthenticxanthinestandardareshowninFigure2b.Thepeakshapesin the m/z 45/44 traces (top in Figures 1a and 2a) do not correspond to the typical sinusoidal m/z 45/44traces,inwhichm/z 45goesthroughtheGCcolumnslightlyahead of m/z 44.ThiscanbeexplainedbythelackofGCcolumnsoptimizedfornucleobase compounds (see section 2.2. GC-QMS analysis ), and in particular for isotope measurements, as the m/z 45/44 traces of BSTFAderivatized authentic nucleobase standardsanalyzedunderthesameconditionsshowedthesamebehavior. 4. Discussion 4.1. Compound-specific carbon isotopic measurements AnalysisofthedatafromtheGCCIRMSmeasurementsyieldedδ13 Cvaluesof +44.5‰ (± 2.3‰) for uracil and +37.7‰ (± 1.6‰) for xanthine in the Murchison meteorite (Table 1). These values fall within the range of those measured for extraterrestrial aminoacidsandcarboxylicacidsincarbonaceouschondrites(Yuen et

9 al.,1984;Engeletal.,1990;Pizzarelloetal.,2004;Huangetal.,2005).Inorderto constrain the possible contributions of terrestrial nucleobases to the carbon isotope valuesforuracilandxanthinemeasuredinMurchison,GCCIRMSanalyseswerealso carried out for the nucleobases present in the Murchison soil extract (Table 1). Soil uracilhasa δ13 Cvalueof10.6‰(±1.8‰)andxanthinewasbelowthedetectionlimit of GCCIRMS (~1 ppb). Thus, there should be no terrestrial contribution from the landingsitesoiltothe valueforxanthinemeasuredinthemeteorite.Foruracil,any terrestrialcontaminationfromthesoilwoulddecreasethemeasured δ13 Cvalueinthe Murchisonmeteoriteextract.Whileouranalyticalmethodswerenotoptimizedforthe detection of other nucleobases, we were able to detect thymine in the soil ( δ13 C = 15.9‰±1.1‰).Thenegative δ13 Cvaluesmeasuredforuracilandthymineinthesoil are in the range expected for terrestrial organic compounds of biological origin (for reviewseee.g.SephtonandBotta,2005;Scottetal.,2006)andareclearlydistinctfrom the positive δ13 C values of uracil and xanthine we have measured in the Murchison meteorite. Extraterrestrial dicarboxylic acids are the most abundant class of compounds detectedintheMurchisonmeteoriteextracts.Theirmeasured δ13 Cvalueswereinthe range of +28‰ to +44‰ (see Table 2 and section 4.2. Carboxylic acids in the and soil samples ),consistentwithpreviousresults(Pizzarelloand Huang, 2002). These compounds were chromatographically separated from the nucleobases (different retention time) and thereforedidnotinterferewithour carbon isotopemeasurements.Comparisonofthemassfragmentationpatternsofthemeteorite extractstostandardsindicatesthepossiblepresenceofcoelutingcompounds withthe BSTFAderivatizedxanthinepeaks.Ofthese,themostconspicuousinterferingpeakis the m/z 313 present in the Murchison xanthine spectrum (Figure 2b). This mass fragment corresponds to BSTFAderivatized hexadecanoic acid (a monocarboxylic acid),whichisalsoobservedatthesameretentiontimeinthesoilextract,andhasm/z 313 (Figure 3). Thus, it is very likely that this compound in the meteorite has a terrestrial origin and carries a light isotopic signature. In addition, the high carbon numberofhexadecanoicacid(C 16 )isinconsistentwithknownextraterrestrialmeteoritic monocarboxylicacidsthatrangefromC 2uptoC12 (Naraokaetal.,1999;Huangetal., 2005andreferencestherein).

10 A background of unresolved compounds, which coelute with the meteoritic nucleobasesisobservedinFigures1and2.Forexample,thecharacteristicfragmentsof BSTFAderivatizedxanthinepresentinthemeteoriteextractareclearlyevidentinthe GCQMSmassspectrum(Figure2b).Inadditiontothis,thereisacontinuumofions derived from the chromatographically unresolved background material. Software suppliedwiththeGCCIRMSinstrumentcorrectsforthisbackgroundandthereforeit will not interfere with the reported δ 13 Cvaluesforuracilandxanthinepresentinthe Murchisonmeteorite. Basedonthesearguments,themeasuredcarbonisotopevaluesforuracil(possible contribution of terrestrial uracil from the soil) and xanthine (possible coelution of terrestrial hexadecanoic acid) in the Murchison meteorite should be considered to be lowerlimits.Giventhehighpositive δ13 Cvaluesforuracilandxanthinemeasuredfor Murchison meteorite extracts, these interferences do not compromise the conclusion thatthesetwonucleobasesaredefinitelyofextraterrestrialorigin. 4.2. Carboxylic acids in the Murchison meteorite and soil samples Theidentification(byretentiontimeandmassfragmentationpatterns)ofseveral peaks in the GCQMS total ion current (TIC) was essential to determine whether the nucleobasepeakassignments(bothintheMurchison meteorite and in the soil) were correctandifthenucleobasepeakswereseparateanddistinctfromothercompounds. Thedetectionandcarbonisotopecompositionshavealreadybeenpublishedfor mostofthedicarboxylicacidspresentintheMurchisonmeteorite(Lawlessetal.,1974; Peltzer et al., 1984; Cronin et al., 1993; Pizzarello and Huang, 2002). Despite the extensivefractionationprocedureappliedtoisolatenucleobasesfromothercompounds inthemeteoriteandsoilextracts,GCQMSanalysesshowthatdicarboxylicacidsare stillpresentinthepurifiedformicacidextracts ofboththeMurchisonmeteoriteand soil. Since dicarboxylic acids are present in both the H2O and HCl eluates of the Murchisonmeteorite(Figures1aand2a),they mightbetrailingintheionexchange separationstep(seesection 2.2. Extraction and cleaning procedure ).Thiscouldbedue tooverloadingoftheionexchangecolumnsaswellasthepresenceofothercompounds which would cause elution of the dicarboxylic acids. It is not clear if additional purificationstepswouldhaveremovedtheseinterferences,butitwoulddefinitelyhave led to further sample loss preventing the stable carbon isotope measurements of

11 nucleobases.Thepresenceofdicarboxylicacidsintheeluatesdidnotinterferewiththe isotopicanalysisofthenucleobasessincetheywerechromatographicallyseparatedon theGCCIRMScolumn.DicarboxylicacidspresentontheGCCIRMStracesforboth theH 2Oeluate(Figure1a)andtheHCleluateoftheMurchisonmeteorite(Figure2a) havebeenidentifiedbyGCQMSasbutanedioicacid,2methylbutanedioicacid,2,3 dimethylbutanedioic acid, pentanedioic acid, 2methylpentanedioic acid, 3 methylpentanedioicacid,hexanedioicacid,and1,2benzenedicarboxylicacid(peaks2,

3,5to8,11and13intheH 2Oeluate,Figure1a;peaks1to8intheHCleluate,Figure 2a). Stable carbon isotope values of dicarboxylic acids present in the Murchison meteoriteobtainedinapreviousstudyrangefrom+19.1‰to+28.1‰(Pizzarelloand Huang, 2002). The δ13 C values for the Murchison meteorite dicarboxylic acids measured in this study are in agreement with these literature values, or are slightly higher(Table2).Theonlyexceptionispentanedioicacid,whose δ13 Cvalueof+44.0‰ is significantly higher than the δ13 C value of +26.8‰ published previously for Murchison (Pizzarello and Huang, 2002). The difference between the two measurementscouldbeduetoahigherdegreeofterrestrialcontaminationinthesample of Murchison from the previous measurement, since pentanedioic acid is a common terrestrialcontaminantfoundinthebiosphere(PizzarelloandHuang,2002),leadingtoa smalldecreaseinthe δ13 Cvalue.Wecannotexcludethepossibilityofasmallamountof an isotopically heavy compound coeluting with pentanedioic acid in our analysis, whichwouldincreasethecarbonisotopevalueforpentanedioicacid.

4.3. Origin of meteoritic nucleobases Itisgenerallyacceptedthatextraterrestrialnucleobasescouldhavebeenformed byabioticreactionmechanismsinavarietyofcosmicenvironments.However,alow formationratecombinedwithalowstabilityagainstUVradiationmakesthedetection ofnucleobasesintheinterstellarandcircumstellarmediumextremelydifficult(Peeters etal.,2003).Infact,onlyupperlimitsofthisclassofcompoundsweredetectedinthe interstellarmedium(Kuanetal.,2003).Instead,synthetic processes on the meteorite parentbodyduringaqueousalterationaremorelikelytoberesponsibleforthepresence ofmeteoriticnucleobases.Anumberofabioticsyntheticrouteshavebeeninvestigated inlaboratorysimulations.Theseincludethepolymerizationofhydrogencyanide(HCN) (Oró,1960,1961;OróandKimball1961;Sanchezetal.,1967;Ferrisetal.,1978;Voet

12 andSchwartz,1983;SchwartzandBakker,1989;Minardetal.,1998;Levyetal.,1999;

Miyakawaetal.,2002),synthesisbyquenchingaCON2H2Ohightemperatureplasma (Miyakawaetal.,2000),thereactionofcyanoacetylenewithcyanateinrelativedilute solution at pH 8 and room temperature (Ferris et al., 1968), and the reaction of cyanoacetaldehyde with in eutectic solution (Nelson et al., 2001) or at higher temperature(RobertsonandMiller,1995). Otherpathwaysareobviouslyalsopossible (foranoverviewseeFerrisandHagan,1984;Orgel,2004),andanumberofthemmight haveoccurredontheMurchisonmeteoriteparentbody. Degradationofnucleobasesin thehydratedparentbodyenvironmentalsohastobeconsidered. Forexample,cytosine degradestouracilwithahalflifeof17,000yearsandguaninedecomposestoxanthine with a halflife of 1.3 Ma (Levy and Miller, 1998) at 0ºC and pH 7. Consequently, meteoritic nucleobase distributions are the result of both synthetic and subsequent degradationreactions.

5. Conclusions BydemonstratingthatonepurineandonepyrimidineintheMurchisonmeteorite areextraterrestrialinorigin,alargevarietyofthekeycomponentclassesinterrestrial biochemistry, including amino acids, sugar related compounds (Cooper et al., 2001), carboxylicacidsandnucleobases,havebeenidentifiedasindigenouscomponentsinthe Murchisonmeteorite(forareviewseee.g.BottaandBada,2002;Sephton,2002).Our dataadvanceproposalsthatlife’srawmaterialsweredeliveredtotheearlyEarthand other planetary bodies by exogenous sources, including carbonaceous meteorites. In contrast, the endogenous synthesis of prebiotic organic compounds may have been constrained by the conditions on the young Earth, perhaps most importantly by the oxidationstateoftheatmosphere.Forexample,only low yields of amino acids were producedundernonreducingconditionsintheMillerUreytypeexperiment(Stribling andMiller,1987).Yet,whatevertheinventoryofendogenousorganiccompoundson the ancient Earth, it would have been augmented by extraterrestrial material. It is estimatedthatthesesourcesdelivered~10 9kgofcarbonperyeartotheEarthduringthe heavybombardmentphase4.5–3.9billionyearsago(ChybaandSagan,1992). InmodernuracilisubiquitousasanucleobaseinRNA,whiletheroleof xanthineislimitedinmodernbiochemistry(Kulikowskaetal.,2004),mostnotablyas anintermediateintheofanduricacid.Itisalsointerestingto

13 notethatbothxanthineanduracilarecapableofselfassociationinmonolayers,which mighthavebeenofimportanceinprebioticchemistryonmineralsurfacesontheearly Earth (Sowerby and Petersen, 1999). A continuous influx of meteoritic uracil and xanthine and possibly other nucleobases would have enriched the prebiotic organic inventorynecessaryforlifetoassembleontheearlyEarth.Followingthebirthofthe SolarSystem,carbonaceousmeteoriteinfallwouldhavebeencommononallterrestrial planets. Consequently, nucleobases delivered to these worlds together with sugar relatedspeciesandaminoacidsmighthavebeenbeneficialtotheoriginoflifeonEarth, Mars,orelsewhere. Acknowledgements We are grateful to R. D. van der Hilst and two anonymous reviewers for their helpful comments. This project was supported by Fundação para a Ciência e a Tecnologia (scholarship SFRH/BD/10518/2002), NASA Institute, the NASA Exobiology and Evolutionary Biology Program and through cooperative agreement NNA04CC09A, Goddard Center for Astrobiology/NASA Astrobiology, EuropeanSpaceAgency,NWOVI016023003andPPARC.Theauthorswouldliketo thankL.Welzenbach(SmithsonianNationalMuseumofNaturalHistory,Washington DC)forprovidinguswithaMurchisonsampleandZ.Peetersforgraphicsupport.

Appendix A. Supplementary data Supplementarydataassociatedwiththisarticlecanbefoundintheonlineversion.

14 References Botta,O.,Bada,J.L.2002.Extraterrestrialorganiccompoundsinmeteorites.Surveys inGeophysics23,411467. Chyba,C.,Sagan,C.1992.Endogenousproduction,exogenous delivery and impact shocksynthesisoforganicmolecules:aninventoryfortheoriginsoflife.Nature 355,125132. Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., Garrel, L. 2001. Carbonaceousmeteoritesasasourceofsugarrelatedorganiccompoundsforthe earlyEarth.Nature414,879883. Cronin, J. R., Pizzarello, S., Epstein, S., Krishnamurthy, R. V. 1993. Molecular and isotopic analysis of the hydroxyl acids, dicarboxylic acids and hydrocarboxylic acidsoftheMurchisonmeteorite.GeochimicaetCosmochimicaActa57,4745 4752. Dworkin,J.P.,Lazcano,A.,Miller,S.L.2003.TheroadstoandfromtheRNAworld. JournalofTheoreticalBiology222,127–134. Engel, M. H., Macko, S. A., Silfer, J. A. 1990. Carbon isotope composition of individualaminoacidsintheMurchisonmeteorite.Nature348,4749. Ferris,J.P.,Hagan,W.J.1984.HCNandchemical evolution: The possible role of cyanocompoundsinprebioticsynthesis.Tetrahedron40,10931120. Ferris, J. P., Sanchez, R. A., Orgel, L. E. 1968. Studies in prebiotic synthesis: III. Synthesisofpyrimidinesfromcyanoacetyleneandcyanate.JournalofMolecular Biology33,693704. Ferris,J.P.,Joshi,P.C.,Edelson,E.H.,Lawless,J.G.1978.HCN:Aplausiblesource of purines, pyrimidines and amino acids on the primitive Earth. Journal of MolecularEvolution11,293311. Folsome, C. E., Lawless, J., Romiez, M., Ponnamperuma, C. 1971. Heterocyclic compoundsindigenoustotheMurchisonmeteorite.Nature232,108109. Folsome, C. E., Lawless, J., Romiez, M., Ponnamperuma, C. 1973. Heterocyclic compounds recovered from carbonaceous . Geochimica et CosmochimicaActa37,455465. Glavin,D.P.,Bada,J.L.,Brinton,K.L.F.,McDonald,G.D.,1999.Aminoacidsinthe MartianmeteoriteNakhla.ProceedingsoftheNationalAcademyofSciences96, 88358838.

15 Hayatsu, R. 1964. Orgueil meteorite: organic nitrogen contents. Science 146, 1291 1293. Hayatsu,R.,Studier,M.,Oda,A.,Fuse,K.,Anders,E.1968.Originoforganicmatter intheearlysolarsystemII.Nitrogencompounds.GeochimicaetCosmochimica Acta32,175190. Hayatsu,R.,Studier,M.H.,Moore,L.P.,Anders,E.1975.Purinesandtriazinesinthe Murchisonmeteorite.GeochimicaetCosmochimicaActa39,471488. Huang, Y., Wang, Y., Alexandre, M. R., Lee, T., RosePetruck, C., Fuller, M., Pizzarello,S.2005.Molecularandcompoundspecificisotopiccharacterizationof monocarboxylicacidsincarbonaceousmeteorites.GeochimicaetCosmochimica Acta69,10731084. Kasting,J.F.1993.Earth’searlyatmosphere.Science259,920–926.

Kasting, J. F., Catling D. 2003. Evolution of a habitable planet. Annual Review of

Astronomy&Astrophysics41,429463.

Kuan, Y.J., Yan, C.H., Charnley, S. B., Kisiel, Z., Ehrenfreund, P., Huang, H.C. 2003. A search for interstellar pyrimidine. Monthly Notices of the Royal AstronomicalSociety345,650656. Kulikowska, E., Kierdaszuk, B., Shugar, D. 2004. Xanthine, and its nucleotides: solution structures of neutral and ionic forms, and relevance to substrate properties in various systems and metabolic pathways. Acta BiochimicaPolonica51,493531. Lawless,J.G.,Folsome,C.E.,Kvenvolden,K.A.1972.Organicmatterinmeteorites. ScientificAmerican226,3846. Lawless,J.G., Zeitman,B.,Pereira,W.E.,Summons,R.E.,Duffield,A.M.1974. DicarboxylicacidsintheMurchisonmeteorite.Nature251,4042. Levy,M.,Miller,S.L.1998.ThestabilityoftheRNAbases:Implicationsfortheorigin oflife.ProceedingsoftheNationalAcademyofSciences95,79337938.

Levy, M., Miller, S. L., Oró, J. 1999. Production of guanine from NH 4CN polymerizations.JournalofMolecularEvolution49,165168. Miller, S. T. 1953. A production of amino acids under possible primitive Earth conditions.Science117,528529. Minard, R. D., Hatcher, P. G., Gourley, R. C., Matthews, C. N. 1998. Structural investigations of hydrogen cyanide polymers: new insights using TMAH

16 thermochemolysis/GCMS. Origins of Life and Evolution of the Biosphere 28, 461473. Miyakawa,S.,Murasawa,K.I.,Kobayashi,K.,Sawaoka,A.B.2000.Abioticsynthesis of guanine with hightemperature plasma. Origins of LifeandEvolutionofthe Biosphere30,557566. Miyakawa,S.,Cleaves,H.J.,Miller,S.L.2002.Thecoldoriginoflife:B.Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions.OriginsofLifeandEvolutionoftheBiosphere32,209218. Naraoka, H., Shimoyama, A., Harada, K. 1999. Molecular distribution of monocarboxylicacidsinAsukacarbonaceouschondritesfromAntarctica.Origins ofLifeandEvolutionoftheBiosphere29,187201. Nelson, K. E., Robertson, M. P., Levy, M., Miller, S. L. 2001. Concentration by evaporationandtheprebioticsynthesisofcytosine.OriginsofLifeandEvolution ofBiospheres31,221229. Orgel,L.E.2004.Prebioticadeninerevisited:Eutecticsandphotochemistry.Originsof LifeandEvolutionoftheBiosphere34,361369. Oró, J. 1960. Synthesis of adenine from ammonium cyanide. Biochemical and BiophysicalResearchCommunications2,407412. Oró,J.1961.Mechanismofsynthesisofadeninefromhydrogencyanideunderpossible primitiveEarthconditions.Nature191,11931194. Oró, J., Kimball, A. P. 1961. Synthesis of purines under possible primitive Earth conditions I. Adenine from hydrogen cyanide. Archives of Biochemistry and Biophysics94,217227. Peeters, Z., Botta, O., Charnely, S. B., Ruiterkamp, R., Ehrenfreund, P. 2003. The astrobiologyofnucleobases.AstrophysicalJournal593:L129132. Peltzer,E.T.,Bada,J.L.,Schlesinger,G.,Miller,S.L.1984.Thechemicalconditions on the parent body of the Murchison meteorite: Some conclusions based on amino,hydroxyanddicarboxylicacids.AdvancesinSpaceResearch4,6974. Pizzarello,S.,Huang,Y.2002.MolecularandisotopicanalysesofTagishLakealkyl dicarboxylicacids.Meteoritics&PlanetaryScience37,687689. Pizzarello, S., Huang, Y., Fuller, M. 2004. The carbon isotopic distribution of Murchisonaminoacids.GeochimicaetCosmochimicaActa68,49634969. Robertson,M.P.,Miller,S.L.1995.Anefficientprebioticsynthesisofcytosineand uracil.Nature375,772774.

17 Sanchez, R. A, Ferris, J. P, Orgel, L. E 1967. Studies in prebiotic synthesis. II. Synthesisofpurineprecursorsandaminoacidsfromaqueoushydrogencyanide. JournalofMolecularBiology30,223253. Schwartz,A.W.,Bakker,C.G.1989.Wasadeninethefirstpurine?Science245,1102 1104. Scott,J. H., O'Brien, D. M., Fogel, M. L., Emerson, D., , H., McDonald, G. D. 2006.Anexaminationofthecarbonisotopeeffects associated with amino acid biosynthesis.Astrobiology6,867880. Sephton,M.A.2002.Organiccompoundsincarbonaceousmeteorites.NaturalProduct Reports19,292311. Sephton,M.A.,Botta,O.2005.Recognizinglifeinthesolarsystem:Guidancefrom meteoriticorganicmatter.InternationalJournalofAstrobiology4,269276. Shimoyama, A., Hagishita, S., Harada, K. 1990. Search for nucleic acid bases in carbonaceouschondritesfromAntarctica.GeochemicalJournal24,343348. Sowerby,S.J.,Petersen,G.B.1999.Scanningtunnelling microscopy and molecular modelling of xanthine monolayers selfassembled at the solidliquid interface: relevance to the origin of life. Origins of Life andEvolutionofBiospheres29, 597614. Stoks,P.G.,Schwartz,A.W.1979.Uracilincarbonaceous meteorites. Nature 282, 709710. Stoks, P.G., Schwartz, A. W. 1981. Nitrogenheterocyclic compounds in meteorites: significance and mechanisms of formation. Geochimica et Cosmochimica Acta 45,563569. Stribling,R.,Miller,S.L.1987.Energyyieldsforhydrogencyanideandformaldehyde syntheses:theHCNandaminoacidconcentrationsintheprimitiveocean.Origins ofLifeandEvolutionofBiospheres17,261273. Van der Velden, W., Schwartz, A. W. 1977. Search for purines and pyrimidines in Murchisonmeteorite.GeochimicaetCosmochimicaActa41,961968. Voet,A.B.,Schwartz,A.W.UracilSynthesisviaHCNoligomerization.1983.Origins ofLife12,4549. Watson,J.D.,Crick,F.H.C.1953.Molecularstructureofnucleicacids:astructurefor deoxyribosenucleicacid.Nature171,737–738.

18 Yuen,G.,Blair,N.,DesMarais,D.J.,Chang,S.1984.Carbonisotopecompositionof low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite.Nature307,252254.

19 Figure Captions

Figure 1 GC-C-IRMS analysis of the BSTFA-derivatized formic acid extract, 12 water eluate of the Murchison meteorite. (a)The m/z 44( CO 2)trace(bottom)and 13 12 theratiobetweenthe m/z 45and m/z 44( CO 2/ CO 2)trace(top)fortheGCCIRMS analysisaredisplayed.Theinsetsshowtheuracilregion of each chromatogram. The followingpeaksweretentativelyidentifiedbyGCQMS:1.2hydroxyhexanoicacid;2. butanedioic acid; 3. 2methylbutanedioic acid; 4. unidentified; 5. 2, 3 dimethylbutanedioic acid; 6. pentanedioic acid; 7. 2methylpentanedioic acid; 8. 3 methylpentanedioic acid; 9. 3ethylpentanedioic acid; 10. ethylpentanedioic acid; 11. hexanedioic acid; 12. heptanedioic acid; 13. 1,2benzenedicarboxylic acid; 14. unidentified;15.unidentified.(b)TheGCQMSmassspectrumforthepeakassignedto BSTFAderivatized uracil and its structure. The inset shows the mass spectrum of a BSTFAderivatizeduracilstandard.

Figure 2 GC-C-IRMS analysis of the BSTFA-derivatized formic acid extract, 12 hydrochloric acid eluate of the Murchison meteorite. (a)The m/z 44( CO 2)trace 13 12 (bottom)andtheratiobetweenthe m/z 45and m/z 44( CO 2/ CO 2)trace(top)forthe GCCIRMS analysis are displayed. The insets show the xanthine region of each chromatogram. The following peaks were tentatively identified by GCQMS: 1. butanedioic acid; 2. 2methylbutanedioic acid; 3. 2, 3dimethylbutanedioic acid; 4. pentanedioic acid; 5. 2methylpentanedioic acid; 6. 3methylpentanedioic acid; 7. unidentified;8.1,2benzenedicarboxylicacid;9.unidentified;10.unidentified.(b)The GCQMSmassspectrumforthepeakassignedtoBSTFAderivatizedxanthineandits structure. The inset shows the mass spectrum of a BSTFAderivatized xanthine standard. Figure 3 - GC-QMS mass spectrum corresponding to hexadecanoic acid present in the Murchison soil. ThestructureofBSTFAderivatizedhexadecanoicacidisshown.

20 Figure 1 Martins et al.

1.185 a Uracil 2. 1.18 3. 6. 5. 1.175 7. 15. 14. 1.17 10. 13. 8. 12. 1.165 9. 11. 1.158

45/44 1.16 1.157 Uracil 1. 4. 1.156 4. 1.155 1.155 45/44 1.15 1.154 1.153 1.145 540 560 580 600 620 Time (s) 1.14 440 640 840 1040 1240 1440 Time (s)

5 6. 1.05 Uracil 4.5 0.95

7. Volts 4. 4 0.85 3.5 0.75 3 540 560 580 600 620 Uracil 5. 10. 8. 14. 15. Time (s) 2.5 2. 13. Volts 3. 2 9. 12. 11. 1.5 1 1. 4. 0.5 0 440 640 840 1040 1240 1440 Time (s)

b 241

255 147

147 73 241

O

73 Si N

255 O N

Si

1 m/z

21 Figure 2 Martins et al.

1.21 a 1.205 10. 1.2 9. 8. 1.195 4.5. 7. Xanthine 1.19 3. 6. 1.185 2. 1.18 1. 1.201 45/44 1.175 1.199

1.17 45/44 1.198 10. Xanthine 1.165 1.196 1.16 1300 1350 1400 1450 1500 1.155 Time (s) 440 640 840 1040 1240 1440 Time (s) 3 9. 2.5 4.5. 7. 2 Xanthine 6. 8. 10. 2. 3. 1.5 1.

Volts 1.9 1.8 10. Xanthine 1 1.7

Volts 1.6 1.5 0.5 1.4 1300 1350 1400 1450 1500 0 Time (s) 440 640 840 1040 1240 1440 Time (s)

b 353

368 313 353 293 73 147

O 313 Si N N

73 147 N 368 O N Si Si 293

m/z

22 Figure 3 Martins et al.

313

Si O

(CH2)14 O

m/z

23 Table 1 - δδδ13 C values (‰) of nucleobases in the Murchison meteorite and soil samples. δ13 C Uracil Xanthine Thymine Murchisonmeteorite +44.5±2.3 +37.7±1.6 n.d. Soil 10.6±1.8 n.d. 15.9±1.1 n.d.notdeterminedduetolowconcentrations.

24 Table 2 δ13 Cvalues(‰)ofdicarboxylicacidsintheMurchisonmeteorite. Dicarboxylicacids Thisstudy Literature* butanedioicacid +30.1 +28.1 2methylbutanedioicacid +28.0 +26.5 pentanedioicacid +44.0 +26.8 2methylpentanedioicacid +34.2 +27.9 3methylpentanedioicacid +28.0 +19.1 hexanedioicacid +28.4 +21.4 *PizzarelloandHuang(2002).

25 Appendix A A1. Materials and Methods

A1.1 Chemicals and reagents Purine and pyrimidine standards comprised cytosine, uracil, hypoxanthine, guanine,xanthine,thymine(SigmaAldrich, ≥97%purity)andadenine(Merck, ≥99% purity). A stock solution of these nucleobases was prepared by dissolving each nucleobasein0.1Nammoniumhydroxide.Ammoniumformate,ammoniumhydroxide, HPLCgradewater,bis(trimethylsilyl)trifluoroacetamidewith1%trimethylchlorosilane (BSTFA/TMCS),andanhydrouspyridinewerepurchasedfromSigmaAldrich.Formic acidp.a.(assay ≥99%)waspurchasedfromAcrosOrganics,HPLCSgradientgrade acetonitrilefromBiosolveLtd.,hydrochloricacid(37%)fromMerck,anddiethylether from RiedeldeHaën. AG® 50WX8 cation exchange resin (100200 mesh) was purchased fromBioRadandactivated cocoanut charcoal(50200mesh) fromFisher. Biopurtips(Fisherbrand)andEppendorf microcentrifugetubes(SigmaAldrich)were suppliedsterilized.

A1.2 Determination of the nucleobase recoveries The efficiency of the cleaning process was tested by determining the yields of recovery for the different steps involved (charcoal filtration, hydrolysis and ion exchangeseparation)usingsolutionsofnucleobasesstandardsofknownconcentrations. Theseresultsaswellasthetotalnucleobaserecoveryyields(calculatedbyconsidering thatweappliedthecharcoalfiltrationsteptwice,thehydrolysissteponceandtheion exchange step once) are displayed in TableA1. The corresponding technical implicationsarediscussedinsection A2 Technical implications .

A1.2.1 Charcoal filtration Therecoveriesweredeterminedbypassingmixturesofnucleobasestandards(5 gofguanineand4 geach ofuracil,thymine,xanthine,hypoxanthineandadenine, andasecondmixtureofnucleobasestandardstentimesmorediluted)in5mlof1M HCl through columns of 0.6 x 5 cm activated charcoal beds. These columns were washedwith5ml1MHCland5mlH 2Oeach.Thecharcoalcolumnswerefirsteluted with5mlofformicacid,andanadditionalelutionof5mlofformicacidwascollected.

26 All collected fractions were dried under vacuum, brought up in 0.1N NH 4OH and analyzedbyHPLCUVS(seesection A1.3 forHPLCUVanalysis). A1.2.2 Acid hydrolysis Totestthehydrolysisstep,individualnucleobasestandardssolutionswereplaced separately in different test tubes and then dried under vacuum. The amounts of nucleobases in the test tubes were 4 g each of guanine and xanthine, and 5 g of cytosine,uracil,thymine,hypoxanthineandadenine.Thesampleswerehydrolyzedwith 8ml3MHCl,at110°Cfor18h.Subsequently,samplesweredried,broughtupin0.1N

NH 4OHandanalyzedbyHPLCUVS(seesection A1.3 forHPLCUVanalysis).

A1.2.3 Ion-exchange separation Therecoveriesweredeterminedbyloadingseparate50WX8resincolumns(0.4x

6cm)eachwith5mlH 2Osolutionscontaining4 gofguanineandxanthine,and5 g eachof cytosine,uracil,thymine,hypoxanthineand adenine. The columns were first elutedtwotimeswith5mlofH 2O,thentwotimeswith5mlof5MHCl.Alleluates weredried,redissolvedin0.1NNH 4OHandanalyzedforpurinesandpyrimidinesby HPLCUVS(seesection A1.3 forHPLCUVanalysis).

A1.3 HPLC-UVS analysis TM HPLC separation was achieved using a dC 18 reverse phase Atlantis column (Waters®,4.6x150mm,5 m),atroomtemperatureandaflowrateof1mlmin1. Buffer Awas10mMammoniumformatebufferandbuffer B was acetonitrile. The gradientusedwas0to0.01min.,0%bufferB;0.01to15min.,0to3%bufferB;15to 15.01min.,3to0%buffer B;15.01to25min.,0% buffer B. UV absorption was monitored with diode array detection on a Shimadzu SPDM10A VP , (spectral acquisitionrangefrom190nmto370nm).Peakswereintegratedusingthemaximum absorbance wavelength for each nucleobase: 257 nm for uracil, 248 nm for hypoxanthine,246nmforguanine,265nmforxanthine,263nmforthymineand259 nm for adenine.Nucleobases were identifiedby comparisonoftheretentiontimesof eachpeakattherespectivewavelengthwiththoseofastandard.

27 A2. Technical implications PreliminaryanalysisofformicacidextractsofMurchisonbyHPLCUVSshowed the presence of underlying UV absorbing material, namely abundant aliphatic and aromaticcarboxylicacids(identifiedbyGCMS),whichinterferedwiththedetectionof the nucleobases. For this reason an isolation process subsequent to the formic acid extractionwasperformedbasedonthemethodusedbyVanderVeldenandSchwartz (1977)andStoksandSchwartz(1979,1981). Minimalamountsofsolventswereusedintheisolationstepsinordertominimize samplelossandcontamination.Resultsshowthatitisnecessarytouse10mlofformic acid to completely elute 5 g of guanine and 4 g of uracil, thymine, xanthine, hypoxanthine and adenine from the charcoal columns. The overall average recovery (TableA1)ofthetwosolutions,onecontaining5 g of guanine and 4 gofallthe othernucleobases,andasolutiondilutedbyafactoroften,was71%(valuesranging from47%forguanineto97%forhypoxanthine).OurvalueisidenticaltothatofStoks andSchwartz(1981),whofoundanaveragenucleobasesrecoveryfortheformicacid extract after charcoal cleaning of 71%. Stoks and Schwartz (1979, 1981) used much larger volumes of solvent, which led to a more time consuming process with no apparentgaininthenucleobasesrecovery. Theaveragenucleobaserecoveryforacidhydrolysiswas88%(TableA1),with values for each nucleobase of 81% for thymine, 82% for xanthine, 83% for adenine (hydrolysedtohypoxanthine),85%forcytosine(hydrolysedtouracil),95%forguanine (hydrolysedtoxanthine)andhypoxanthine,and96%foruracil.Ouraveragerecoveryof purinesandpyrimidinesafter3MHClhydrolysisissubstantiallybetterthanthe60% obtainedbyStoksandSchwartz(1981).

Ouranalysisrevealedthat5mlofH 2Owasnecessarytoelute5 gofuraciland5 g of thymine from the 50WX8 resin, and that for all other nucleobases (4 g of guanineandxanthine,and5 geachofcytosine,hypoxanthineandadenine)10mlof5 MHClwasrequired.Theoverallaveragerecoveryfortheionexchangeseparationstep was72%(TableA1)withvaluesrangingfrom48%forxanthineto96%forcytosine. The overall recovery of nucleobases estimated from these individual steps was 32%(seeTableA1).

28 Figure Captions

Figure A1 – Structures of nucleobases. Nucleobases are onering (pyrimidines) or tworing (purines) Nheterocyclic compounds. The structure of purines (tworing N heterocycliccompounds)isshownonthetop,whilethestructureofpyrimidines(one ring Nheterocyclic compound) is shown on the bottom. Purines include adenine, guanine, hypoxanthine and xanthine, while pyrimidines include uracil, thymine and cytosine.

29 FigureA1Martinsetal.

Purines

N O O O N N N N N N N N

N N N N N N N N N O

Adenine Guanine Hypoxanthine Xanthine

Pyrimidines

O O N

N N N

N O N O N O

Uracil Thymine Cytosine

30 Table A1 - Summaryofthepercentageofnucleobasestandardmaterialrecoveredafter eachseparatecleaningstep(charcoalfiltration,hydrolysisandionexchangeseparation) duringthepurificationprocessoftheMurchisonmeteoriteextractandsoil.Valuesare notcumulative. CleaningStep Charcoal Ionexchange Hydrolysis Nucleobases cleaning separation Cytosine n.d. 85 96 Hypoxanthine 97 95 69 Guanine 47 95 57 Xanthine 72 82 48 Adenine 53 83 78 Uracil 88 96 86 Thymine 69 81 68 NR 71 88 72 n.d.notdetermined. NR(nucleobaserecovery)Thisvaluecorrespondstothepercentageoftheyieldsofnucleobasesafter eachspecificpurificationstep. Thetotalnucleobaserecovery(TNR)wascalculatedbyconsideringthatweappliedthecharcoalfiltration step twice, the hydrolysis step once and the ionexchange step once. TNR (in percentage) = 71% (charcoalfiltration)x88%(hydrolysis)x71%(charcoalcleaning)x72%(ionexchange)=32%

31