Space As a Tool for Astrobiology

Total Page:16

File Type:pdf, Size:1020Kb

Space As a Tool for Astrobiology Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond Hervé Cottin, Julia Michelle Kotler, Daniela Billi, Charles Cockell, René Demets, Pascale Ehrenfreund, Andreas Elsaesser, Louis d’Hendecourt, Jack J. W. A. van Loon, Zita Martins, et al. To cite this version: Hervé Cottin, Julia Michelle Kotler, Daniela Billi, Charles Cockell, René Demets, et al.. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond. Space Science Reviews, Springer Verlag, 2017, 209 (1-4), pp.83-181. 10.1007/s11214-017- 0365-5. insu-01544000 HAL Id: insu-01544000 https://hal-insu.archives-ouvertes.fr/insu-01544000 Submitted on 21 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Space Sci Rev DOI 10.1007/s11214-017-0365-5 SPECIAL COMMUNICATION Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond Hervé Cottin1 · Julia Michelle Kotler2,3,4 · Daniela Billi5 · Charles Cockell6 · René Demets7 · Pascale Ehrenfreund8 · Andreas Elsaesser9,10 · Louis d’Hendecourt11 · Jack J.W.A. van Loon12,13 · Zita Martins14 · Silvano Onofri15 · Richard C. Quinn16 · Elke Rabbow17 · Petra Rettberg17 · Antonio J. Ricco16 · Klaus Slenzka18,19 · Rosa de la Torre20 · Jean-Pierre de Vera21 · Frances Westall22 · Nathalie Carrasco23 · Aurélien Fresneau1 · Yuko Kawaguchi24 · Yoko Kebukawa 25 · Dara Nguyen1 · Olivier Poch1 · Kafila Saiagh1 · Fabien Stalport1 · Akihiko Yamagishi24 · Hajime Yano26 · Benjamin A. Klamm16 Received: 30 September 2015 / Accepted: 5 April 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The space environment is regularly used for experiments addressing astrobiol- ogy research goals. The specific conditions prevailing in Earth orbit and beyond, notably Note by the editor: This is a Special Communication, supplementing the papers by Cottin et al. on “Astrobiology and the Possibility of Life on Earth and Elsewhere...”,2015, Space Science Reviews, doi:10.1007/s11214-015-0196-1 and Martins et al. (2017) “Earth as a Tool for Astrobiology—A European Perspective”, Space Science Reviews; doi:10.1007/s11214-017-0369-1. B H. Cottin [email protected] 1 LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 61, av du Général de Gaulle, 94010, Créteil Cedex, France 2 Leiden Observatory, PO Box 9513, 2300 Leiden, The Netherlands 3 Universität Konstanz FB Biologie, Z 818, 78457 Konstanz, Germany 4 Chemical Analysis Facility, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK 5 University of Rome Tor Vergata, Rome, Italy 6 School of Physics and Astronomy, UK Centre for Astrobiology, SUPA, James Clerk Maxwell Building, King’s Buildings, Edinburgh, EH9 3JZ, UK 7 ESTEC (HRE-UB), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 8 Space Policy Institute, George Washington University, 20052 Washington DC, USA 9 Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands 10 Experimental Molecular Biophysics, Department of Physics, Free University of Berlin, 14195 Berlin, Germany 11 Institut d’Astrophysique Spatiale, UMR 8617 CNRS, Université Paris-Sud, Orsay, France 12 VU University Medical Center (VUmc), Dept. Oral and Maxillofacial Surgery/Oral Pathology, VU Amsterdam, Amsterdam, The Netherlands H. Cottin et al. the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure plat- forms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format. Keywords Astrobiology · Exobiology · Astrochemistry · Hardware for space experiments · BIOPAN · STONE · EXPOSE · Tanpopo · Cubesat · Nanosatellites · International Space Station · Space environment Contents 1 Introduction ....................................... 2TheSpaceRadiationEnvironment........................... 2.1Photons....................................... 2.2RadiationOtherthanPhotons........................... 2.3SpaceEnvironmentVersusLaboratoryEnvironment............... 3 Current and Past Astrobiology Facilities . ...................... 13 European Space Research and Technology Centre (ESTEC), TEC-MMG, Life & Physical Science, Instrumentation and Life Support Laboratory, European Space Agency (ESA), Keplerlaan 1, 2200 AG, Noordwijk, The Netherlands 14 Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, London, UK 15 Università della Tuscia, Viterbo, Italy 16 NASA Ames Research Center, Moffett Field, CA, 94035, USA 17 Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, DLR, Koeln, Germany 18 Jacobs Univ., Bremen, Germany 19 OHB, Bremen, Germany 20 INTA, Instituto Nacional de Técnica Aeroespacial, Crta. Ajalvir, km. 4, 28850 Torrejón de Ardoz, Madrid, Spain 21 Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiology Laboratories, DLR, Berlin, Germany 22 CNRS, CBM, UPR 4301, rue Charles Sadron, 45071 Orléans, France 23 Université Versailles St-Quentin, UPMC Univ. Paris 06, CNRS, LATMOS, 11 Blvd. d’Alembert, 78280 Guyancourt, France 24 Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan 25 Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan 26 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan Space as a Tool for Astrobiology: Review and Recommendations. 3.1 Common Tools and Facilities ........................... 3.1.1LDEF..................................... 3.1.2EURECA................................... 3.1.3Salute-6,7,Bion-9,11andMIRSpaceStation............... 3.1.4BiopanonFotonCapsule.......................... 3.1.5EXPOSEOutsidetheInternationalSpaceStation............. 3.1.6TANPOPOOutsidetheInternationalSpaceStation............ 3.1.7 O/OREOS Nanosatellite .......................... 3.1.8 OREOcube: An ISS Hitchhiker and New In-situ Exposure Platform . 3.1.9STONEExperiments............................ 3.2SpaceExperimentsforChemistry......................... 3.2.1DiversityofSamplesforAstrochemistryExperimentsinSpace..... 3.2.2HardwareforChemistry........................... 3.2.3Results.................................... 3.2.4 Limitations of Current Astrochemistry Facilities . .......... 3.3SpaceExperimentsforBiology.......................... 3.3.1DiversityofSamplesforBiologyExperimentsinSpace......... 3.3.2HardwareforBiology............................ 3.3.3Results.................................... 3.3.4 Limitations of Current Biology Facilities . ................ 4 Future Astrobiology Facilities . ........................... 4.1AstrobiologicalScienceDrivers.......................... 4.2 Relevant and Accessible Space Environments for Astrobiology Experiments . 4.3 Cubesats for Astrobiology/Astrochemistry .................... 4.4 The Gaps: Key Future Facilities .......................... 5Summary,ConclusionsandRecommendations.................... Acknowledgements.................................... References......................................... 1 Introduction Science experiments designed to benefit from the unique conditions provided in situ by the space environment began almost at the same time as the conquest of space in the late 1950s. When the word “exobiology” was coined by J. Lederberg in 1960 (Lederberg 1960), at a time when the search for life beyond Earth started to settle on the scientific founda- tion that prevails today (Cottin et al. 2015a), microorganisms were intentionally placed in space as part of the scientific payloads of Sputniks, Vostoks and Gemini spacecraft, prin- cipally to study the effects of microgravity (Taylor et al. 1974). The very first exposure of microorganisms to space radiation, proving that life could survive the extremely harsh con- ditions of open space, were conducted on sounding rockets in 1965 (150 km) (Hotchin et al. 1967), extended to the Gemini 9 and 12 missions in 1966 (300 km) (Hotchin et al. 1968) and finally as the Apollo 16 mission was flying back to Earth from the Moon (Taylor et al. 1974). After Apollo 16, space was used episodically as a tool for astrobiology in the 1980s (Long Duration Exposure Facility—LDEF) and in the early 1990s (EUropean REtrievable CArrier—EURECA). In parallel with the increasing number of organic molecules detected in the interstellar medium and better
Recommended publications
  • Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context
    United Nations Commission on Science and Technology for Development Inter-sessional Panel 2019-2020 7-8 November 2019 Geneva, Switzerland Issues Paper on Exploring space technologies for sustainable development and the benefits of international research collaboration in this context Draft Not to be cited Prepared by UNCTAD Secretariat1 18 October 2019 1 Contributions from the Governments of Austria, Belgium, Botswana, Brazil, Canada, Japan, Mexico, South Africa, Turkey, the United Kingdom, United States of America, as well as from the Economic and Social Commission for Asia and the Pacific, the Food and Agriculture Organization, the International Telecommunication Union, the United Nations Office for Disaster Risk Reduction and the World Food Programme are gratefully acknowledged. Contents Table of figures ....................................................................................................................................... 3 Table of boxes ......................................................................................................................................... 3 I. Introduction .................................................................................................................................... 4 II. Space technologies for the Sustainable Development Goals ......................................................... 5 1. Food security and agriculture ..................................................................................................... 5 2. Health applications ....................................................................................................................
    [Show full text]
  • Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales a White Paper for the NRC Decadal
    Global Ionosphere-Thermosphere-Mesosphere (ITM) Mapping Across Temporal and Spatial Scales A White Paper for the NRC Decadal Survey of Solar and Space Physics Andrew Stephan, Scott Budzien, Ken Dymond, and Damien Chua NRL Space Science Division Overview In order to fulfill the pressing need for accurate near-Earth space weather forecasts, it is essential that future measurements include both temporal and spatial aspects of the evolution of the ionosphere and thermosphere. A combination of high altitude global images and low Earth orbit altitude profiles from simple, in-the-medium sensors is an optimal scenario for creating continuous, routine space weather maps for both scientific and operational interests. The method presented here adapts the vast knowledge gained using ultraviolet airglow into a suggestion for a next-generation, near-Earth space weather mapping network. Why the Ionosphere, Thermosphere, and Mesosphere? The ionosphere-thermosphere-mesosphere (ITM) region of the terrestrial atmosphere is a complex and dynamic environment influenced by solar radiation, energy transfer, winds, waves, tides, electric and magnetic fields, and plasma processes. Recent measurements showing how coupling to other regions also influences dynamics in the ITM [e.g. Immel et al., 2006; Luhr, et al, 2007; Hagan et al., 2007] has exposed the need for a full, three- dimensional characterization of this region. Yet the true level of complexity in the ITM system remains undiscovered primarily because the fundamental components of this region are undersampled on the temporal and spatial scales that are necessary to expose these details. The solar and space physics research community has been driven over the past decade toward answering scientific questions that have a high level of practical application and relevance.
    [Show full text]
  • Department of Biology Course Outline SC/BIOL 3300 3.00 Origins And
    Department of Biology Course Outline SC/BIOL 3300 3.00 Origins and Development of Biological Theories Fall 2020 Course Description An analysis of the origins and development of biological theories, which may include those in evolutionary biology, ecology, biodiversity, and molecular phylogenetics. Prerequisites Note: Open only to students in the third or final year of a biology program, or with permission of the instructor. Only open to students who have completed a minimum of 12 credits at the 2000 level in Biology courses. Course Credit Exclusion: SC/BIOL 4300 3.00 Course Instructors and Contact Information Professor Jan Sapp Email [email protected] Office: Farquharson 306. Schedule Class time: Thursdays 14:30-17:30 Location: delivered remotely on zoom for live stream lectures. Students will require a computer and internet service. Lectures will also be recorded. • For outside class time questions, I will provide “office hours” after class. You may also contact me at [email protected]. 1 Evaluation Midterm test: 25% October 22- based on lectures and required readings. Jan Sapp, Co- existence: The Ecology and Evolution of Tropical Biodiversity (OUP 2016). Chapters supplied on course e-class. The mid term test may be conducted with the aid of an online proctoring service. All students must write the test on October 13. Research Proposal: 15%, due date October 1. Assessment will be based on formulation of the questions of your essay highlighting the significance of the research you will write about, and how you will investigate the origins and development of that research. ~250 words, plus a bibliography indicating the literature you intend to study.
    [Show full text]
  • Bayesian Analysis of the Astrobiological Implications of Life's
    Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications.
    [Show full text]
  • Second Annual NASA Ames Space Science and Astrobiology Jamboree
    Second Annual NASA Ames Space Science and Astrobiology Jamboree March 4, 2014 Welcome to the Second Annual Ames Space Sciences and Astrobiology Jamboree! The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-ops, post-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one’s fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We also wanted to continue a new tradition created last year within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. Jeff Cuzzi this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr.
    [Show full text]
  • DMC Grants Since Inception.Xlsm
    Grants Since Inception as of April 7, 2020 Grant Total Grant Board Approval Organization Name Number Grant Purpose Amount September Wayne State University School of 20131771 Support for the Henry L. Brasza Endowed $ 51,885.00 2013 Medicine Directorship of the Center for Molecular Medicine and Genetics to link the understanding of diabetes and its complications at the molecular level with clinical investigations into the strategies to treat, Wayne State University School of 20131772 Supportprevent and for thecure Marie diabetes E. Brasza Endowed Chair in $ 51,255.00 Medicine Gynecologic Oncology to advance research involving cancer of the ovaries, cervix and uterus Wayne State University School of 20131774 Support for the Lambert/Webber Endowed Chair for $ 121,907.00 Medicine Hematology/Oncology to support research Wayne State University School of 20131775 Support for the Parker-Webber Endowed Chair in $ 84,414.00 Medicine Neurology for academic pursuits and neurological research by the individual named to hold the chair Wayne State University School of 20131776 Support for the Dong H. Shin, M.D., Ph.D. Endowed $ 31,277.00 Medicine Professorship in Ophthalmology & Glaucoma Research for glaucoma research. education or Wayne State University School of 20131777 Supportpatient care for theactivities Fann Srere Endowed Chair in $ 74,268.00 Medicine Perinatal Medicine for development, maintenance and application of services and programs to benefit pregnant women and newborn infants, and to facilitate innovative perinatal research Grants Since Inception as of April 7, 2020 Grant Total Grant Board Approval Organization Name Number Grant Purpose Amount Wayne State University School of 20131778 Support for the Edward S.
    [Show full text]
  • Radiation Exposure and Mission Strategies for Interplanetary Manned Mission
    Radiation Exposure and Mission Strategies for Interplanetary Manned Mission Radiation Hazard and Space Weather Warning System WP 5000 Final Version: 14 December 2004 Compiled by Claire Foullon1, Andrew Holmes-Siedle2, Norma Bock Crosby1, Daniel Heynderickx1 1 Belgian Institute for Space Aeronomy Ringlaan-3-Avenue Circulaire 1180 Brussels, Belgium 2 REM OXFORD Ltd. 64A Acre End St. Eynsham, Oxford OX29 4PD, England INTRODUCTION Radiation protection is a prime issue for space station operations, for extended missions to planets in our solar system (e.g. Mars), or for a return visit to the Moon. The radiation environment encountered by solar system missions mainly consists of the following components: 1. Trapped radiation in the Earth’s Van Allen Belts and in the magnetosphere of Jupiter 2. Galactic Cosmic Ray (GCR) background radiation 3. Solar Energetic Particle Events – Solar Proton Events (SPEs) Along with the continuous GCR background, SPEs constitute the main hazard for interplanetary missions. Up to now, prediction of SPE events is not possible. Future interplanetary manned missions will need to consider solar activity (e.g. solar flares, coronal mass ejections, …) very carefully due to the obvious detrimental effects of radiation on humans. Very high doses during the transit phase of a mission can result in radiation sickness or even death. This is equally true for extended visits to surfaces of other planets (for example to Mars) and moons lacking a strong magnetic field capable of deflecting solar particles. The risk of developing cancer several years after a mission is somewhat more difficult to quantify, but must also be considered in mission planning.
    [Show full text]
  • Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
    IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • 2017 Journal Impact Factor (JCR)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317604703 2017 Journal Impact Factor (JCR) Technical Report · June 2017 CITATIONS READS 0 12,350 1 author: Pawel Domagala Pomeranian Medical University in Szczecin 34 PUBLICATIONS 326 CITATIONS SEE PROFILE All content following this page was uploaded by Pawel Domagala on 20 June 2017. The user has requested enhancement of the downloaded file. 1 , I , , 1 1 • • I , I • I : 1 t ( } THOMSON REUTERS - Journal Data Filtered By: Selected JCR Year: 2016 Selected Editions: SCIE,SSCI Selected Category Scheme: WoS Rank Full Journal Title Journal Impact Factor 1 CA-A CANCER JOURNAL FOR CLINICIANS 187.040 2 NEW ENGLAND JOURNAL OF MEDICINE 72.406 3 NATURE REVIEWS DRUG DISCOVERY 57.000 4 CHEMICAL REVIEWS 47.928 5 LANCET 47.831 6 NATURE REVIEWS MOLECULAR CELL BIOLOGY 46.602 7 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 44.405 8 NATURE BIOTECHNOLOGY 41.667 9 NATURE REVIEWS GENETICS 40.282 10 NATURE 40.137 11 NATURE REVIEWS IMMUNOLOGY 39.932 12 NATURE MATERIALS 39.737 13 Nature Nanotechnology 38.986 14 CHEMICAL SOCIETY REVIEWS 38.618 15 Nature Photonics 37.852 16 SCIENCE 37.205 17 NATURE REVIEWS CANCER 37.147 18 REVIEWS OF MODERN PHYSICS 36.917 19 LANCET ONCOLOGY 33.900 20 PROGRESS IN MATERIALS SCIENCE 31.140 21 Annual Review of Astronomy and Astrophysics 30.733 22 CELL 30.410 23 NATURE MEDICINE 29.886 24 Energy & Environmental Science 29.518 25 Living Reviews in Relativity 29.300 26 MATERIALS SCIENCE & ENGINEERING R-REPORTS 29.280 27 NATURE
    [Show full text]
  • Efficient Radar Forward Operator for Operational Data Assimilation
    Efficient Radar Forward Operator for Operational Data Assimilation within the COSMO-model Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakultät für Physik des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Dipl.-Math. Yuefei Zeng aus Fujian, China Tag der mündlichen Prüfung: 05.07.2013 Referent: Prof. Dr. Klaus D. Beheng Korreferent: Prof. Dr. Christoph Kottmeier Abstract The new weather radar network of the German Weather Service (DWD) will, after its complete update in 2014, comprise 17 dual-polarimetric C-Band Doppler radars evenly distributed throughout Germany for complete coverage. They provide unique 3-dimensional information about dynamical and microphysical characteristics of precipi- tating clouds in high spatial and temporal resolutions. Up to now, these data are not used in the operational COSMO-model of DWD except within the framework of the latent heat nudging and for a simple nudging method of Doppler velocity. Future applications are, however, planned to take better advantage of radar data within an upcoming new 4-Dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) data assimilation system, which will be based on the operational convective-scale ensemble prediction system (EPS) COSMO-DE-EPS (grid spacing of 2.8 km, rapid update cycle, Central Europe domain). It is assumed that the assimilation of weather radar data is a promising means for improvements of short-term precipitation forecasts, especially in convective situations. However, the observed quantities (reflectivity, Doppler velocity and polarization prop- erties) are not directly comparable to the prognostic variables of the numerical model. In order to, on one hand, enable radar data assimilation in the framework of the above- mentioned 4D-LETKF-assimilation system and, on the other hand, to facilitate compar- isons of numerical simulations with radar observations in the context of cloud micro- physics verification, a comprehensive modular radar forward operator has been developed.
    [Show full text]
  • Episode 2: Bodies in Orbit
    Episode 2: Bodies in Orbit This transcript is based on the second episode of Moonstruck, a podcast about humans in space, produced by Dra!House Media and featuring analysis from the Center for Strategic and International Studies’ Aerospace Security Project. Listen to the full episode on iTunes, Spotify, or on our website. BY Thomas González Roberts // PUBLISHED April 4, 2018 AS A DOCENT at the Smithsonian National Air & Space But before humans could use the bathroom in space, a Museum I get a lot of questions from visitors about the lot of questions needed to be answered. Understanding grittiest details of spaceflight. While part of me wants to how human bodies respond to the environment of outer believe that everyone is looking for a thoughtful Kennedy space took years of research. It was a dark, controversial quote to drive home an analysis of the complicated period in the history of spaceflight. This is Moonstruck, a relationship between nationalism and space travel, some podcast about humans in space. I’m Thomas González people are less interested in my stories and more Roberts. interested in other, equally scholarly topics: In the late 1940s, American scientists began to focus on Kids: I have a question. What if you need to go to the two important challenges of spaceflight: solar radiation bathroom while you're in a spacesuit? Is there a special and weightlessness.1 diaper? Aren't you like still wearing the diaper when you are wearing a spacesuit? Let'sThomas start González with radiation. Roberts is the host and executive producer of Moonstruck, and a space policy Alright, alright, I get it.
    [Show full text]