Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Pt. 1

Total Page:16

File Type:pdf, Size:1020Kb

Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Pt. 1 + .+- HOP ON EVOLUTION OF IGNEOUS ASTEROIDS: FOCUS ON STA D THE HED METEORITES /i:? k, LPI Technical Report Number 96-02, Part 1 Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 113 LPIITR--96-02, Part 1, WORKSHOP ON EVOLUTION OF IGNEOUS ASTEROIDS: FOCUS ON VESTA AND THE HED METEORITES Edited by D. W. Mittlefehldt and J. J. Papike Held at Houston, Texas October 16-1 8,1996 Sponsored by Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058 -1 113 LPI Technical Report Number 96-02, Part 1 LPYTR--96-02, Part 1 Compiled in 1996 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may be cited as Mittlefehldt D. W. and Papike J. J., eds. (1996) Workshop on Igneous Asteroids: Focus on Vesta and the HED Meteorites. LPI Tech. Rpt. 96-02, Part 1, Lunar and Planetary Institute, Houston. 44 pp. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058- 11 13 Mail order requestors will be invoiced for the cost of shipping and handling. LPI Technical Report 96-02,Part 1 iii Preface This volume contains papers that have been accepted for presentation at the Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, October 16-1 8, 1996, in Houston, Texas. The organizers for this workshop were David Mittlefehldt from NASA Johnson space Center, and James Papike from the University of New Mexico. Logistics and administrative and publications support were provided by the Publications and Program Services Department staff at the Lunar and Planetary Institute. LPI Technical Report 96-02,Part I v Contents On the Sample Return from Vesta by Low-Thrust Spacecraft R. 2. Akhmetshin, T. M. Eneev, and G. B. E$mov ............................................................................. 1 4-1 Vesta: The Big Questions J. F. Bell ......................................................................................................................................... 1 -24 Astronomical Evidence Linking Vesta to the HED Meteorites: A Review - .. 3 R. P. Binzel ......................................................................................................................................... 2 Geologic Mapping of Vesta with the Hubble Space Telescope R. P. Binzel, M. J. Gafley, P. C. Thomas, B. H. Zellner, A. D. Storrs, and E. N. Wells ................................................................................................................................... 2-P2@ Early Energetic Particle Irradiation of the HED Parent Body Regolith D. D. Bogard, D. H. Garrison, and M. N. Rao .................................................................................. 2 5- Automated SEM Modal Analysis Applied to the Diogenites L. E. Bowman, M. N. Spilde, and J. J. Papike ................................................................................... 34- A Space Mission to Vesta: General Considerations L. Bussolino, R. Sommat, C. Casaccit, V. Zappal&,A. Cellino, and M. Di Martino .............................................................................................................................. 5l7 Cosmogonic Implications of the HED-Vesta Connection G. J. Consolmagno SJ ............................................-........................................................................... 6 + Disrupting and Destroying Families from Differentiated Parent Bodies D. R. Davis, P. Farinella, F. Marzari, and E. Ryan .......................................................................... Gy Mapping Vesta in the Visible and Near-Infrared: The 1994 and 1996 Oppositions as Viewed from the Ground C. Dumas and 0.R. Hainuut .............................................................................................................. 7 --/6 Asteroid Spectroscopy: Vesta, the Basaltic Achondrites, and Other Differentiated Asteroids M. J. GafSey ........................................................................................................................................ 8 --// The Thermal History of Asteroid 4 Vesta, Based on Radionuclide and Collisional Heating A. Ghosh and H. Y. McSween Jr. ....................................................................................................... 9 -12 The Content and Isotopic Composition of Carbon in HED Basaltic Achondrites M. M. Grady, I. P. Wright, and C. T. Pillinger ................................................................................ 10 vi Worbhop on Evolution of Igneous Asteroids Noncumulate vs. Cumulate Eucrites: Heterogeneity of 4 Vesta W. Hsu and G. Crozaz .............................................................................................: ........................ 1 1 Isotopic Constraints on the Origin of Eucrites M. Humayun and R. N. Clayton .......................................................................................................12 -/ $fl Multispectral Light Curves of Vesta R. Jaumann, A. Nathues, S. Mottola, and H. HofjCmann .................................................................. 13 The Origin of Eucrites: An Experimental Perspective J. H. Jones, D. W. Mittlefehldt, A. J. G. Jurewicz, H. V. Lauer Jr., B. Z. Hanson, C. R. Paslick, and G. A. McKay ............................................................................. 15 -/ 7 Practical Evaluation of Regolith Maturation Processes L. Ksanfomality and W. K. Hartmann .............................................................................................. 16 -/q The Vesta Asteroid Family: Origin and Evolution F. Marzari, A. Cellino, D. R. Davis, P. Farinella, V. Zappad, and V. Vanzani ............................. 16 A Dynamical Study of Vesta-Family Fragments F. Migliorini, V. Zappal&,A. Morbidelli, and A. Cellino ............................................................ 17 -2b Core Formation in the Howardite-Eucrite-Diogenite Parent Body (Vesta) H. E. Newsom ................................................................................................................................... 17 - 3 Pyroxene Homogenization and the Isotopic Systematics of Eucrites L. E. Nyquist and D. D. Bogard ....................................................................................................... 18 -2 2- Diogenites: Cumulates from Asteroid 4 Vesta-Insights from Orthopyroxene and Spinel Chemistry J. J. Papike, L. E. Bowman, M. N. Spilde, G. W. Fowler, and C. K. Shearer ................................. 19 -*29 Shape and Albedo Variations of Asteroid 4 Vesta K. L. Reed, M. J. Gaffey, and L. A. Lebofsky ................................................... ...................... 20 $y Core Formation in Vesta ‘2'3 K. Righter and M. J. Drake ................................................................................................................. -2g Asteroid 4 Vesta as the HED Parent Body: Implications for a Metallic Core and Magma Ocean Crystallization A. Ruzicka, G. A. Snyder, and L. A. Taylor ...................................................................................... 23 -2 6 The Composition of the Eucrite Parent Body: Implications for the Origin of the Moon and for Planetary Accretion A. Ruzicka, G.A. Snyder, and L. A. Taylor ................................................................................. 24 2 7 LPI Technical Report 96-02,Part I vii REE Partition Coefficients from Synthetic Diogenite-like Enstatite and the Implications of Petrogenetic Modeling C. S. Schwandt and G. A. McKay .....................................................................................................25 9f Metamorphism of Eucrites and Eucrite-related Meteorites and Implications for Parent Body Sources D. W. G. Sears, S. J. K. Symes, and P. H. Benoit ............................................................................. 27-27 Petrogenetic Models for the Origin of Diogenites and Their Relationship to Basaltic Magmatism on the HED Parent Body C. K. Shearer, G. Fowler, and J. J. Papike ...................................................................................... 28 -3d Is There Another Link in the Chain? Looking for Streams of HED Meteorites T. D. Swindle, R. Lippse, and I. Scott ............................................................................................... 30-3 / Mineralogical Records of Early Planetary Processes of the HED Parent Body H. Takeda ......................................................................................................................................... 30- sL Eucrites, Terrestrial Basalts, and Volcanic Processes on Vesta G. J. Taylor, R. C. Friedman, and A. Yamaguchi ...........................................................................31 Vesta: Spin Pole, Size, and Shape from HST Images P. C. Thomas, R. P. Binzel, M. J. Gaffey, B. H. Zellner, A. D. Storrs, and E. Wells ...................................................................................................................................... 32-3 4/ The Cumulate Eucrite Serra de MagC: New INAA Data and the Composition of Its Parent Magma A. H. Treiman and D. W.
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • The Hungaria Asteroids: Close Encounters and Impacts with Terrestrial Planets
    Mem. S.A.It. Suppl. Vol. 26, 38 Memorie della c SAIt 2014 Supplementi The Hungaria Asteroids: close encounters and impacts with terrestrial planets M. A. Galiazzo, A. Bazso, and R. Dvorak Institute of Astronomy, University of Vienna, Turkenschanzstr.¨ 17, A-1180 Wien, Austria e-mail: [email protected] Abstract. The Hungaria asteroid family (Named after (434) Hungaria), which consists of more than 5000 members with semi-major axes between 1.78 and 2.03 AU and have in- clinations of the order of 20◦, is regarded as one source for Near-Earth Asteroids (NEAs). They are mainly perturbed by Jupiter and Mars, and are ejected because of mean motion and secular resonances with these planets and then become Mars-crossers; later they may even cross the orbits of Earth and Venus. We are interested to analyze the close encounters and possible impacts with these planets. For 200 selected objects which are on the edge of the group we integrated their orbits over 100 million years in a simplified model of the planetary system (Mars to Saturn) subject to only gravitational forces. We picked out a sam- ple of 11 objects (each with 50 clones) with large variations in semi-major axis and some of them achieve high inclinations and eccentricities in connection with mean motion and secular resonances which then leads to relatively high velocity impacts on Venus, Earth and Mars. We report all close encounters and impacts with the terrestrial planets and statistically determine the mean life and the orbital distribution of the NEAs of these Hungarias.
    [Show full text]
  • Physical Properties of Near-Earth Asteroids
    Planet. Space Sci., Vol. 46, No. 1, pp. 47-74, 1998 Pergamon N~I1998 Elsevier Science Ltd All rights reserved. Printed in Great Britain 00324633/98 $19.00+0.00 PII: SOO32-0633(97)00132-3 Physical properties of near-Earth asteroids D. F. Lupishko’ and M. Di Martino’ ’ Astronomical Observatory of Kharkov State University, Sumskaya str. 35, Kharkov 310022, Ukraine ‘Osservatorio Astronomic0 di Torino, I-10025 Pino Torinese (TO), Italy Received 5 February 1997; accepted 20 June 1997 rather small objects, usually of the order of a few kilo- metres or less. MBAs of such sizes are generally not access- ible to ground-based observations. Therefore, when NEAs approach the Earth (at distances which can be as small as 0.01-0.02 AU and sometimes less) they give a unique chance to study objects of such small sizes. Some of them possibly represent primordial matter, which has preserved a record of the earliest stages of the Solar System evolution, while the majority are fragments coming from catastrophic collisions that occurred in the asteroid main- belt and could provide “a look” at the interior of their much larger parent bodies. Therefore, NEAs are objects of special interest for sev- eral reasons. First, from the point of view of fundamental science, the problems raised by their origin in planet- crossing orbits, their life-time, their possible genetic relations with comets and meteorites, etc. are closely connected with the solution of the major problem of “We are now on the threshold of a new era of asteroid planetary science of the origin and evolution of the Solar studies” System.
    [Show full text]
  • (50000) Quaoar, See Quaoar (90377) Sedna, See Sedna 1992 QB1 267
    Index (50000) Quaoar, see Quaoar Apollo Mission Science Reports 114 (90377) Sedna, see Sedna Apollo samples 114, 115, 122, 1992 QB1 267, 268 ap-value, 3-hour, conversion from Kp 10 1996 TL66 268 arcade, post-eruptive 24–26 1998 WW31 274 Archimedian spiral 11 2000 CR105 269 Arecibo observatory 63 2000 OO67 277 Ariel, carbon dioxide ice 256–257 2003 EL61 270, 271, 273, 274, 275, 286, astrometric detection, of extrasolar planets – mass 273 190 – satellites 273 Atlas 230, 242, 244 – water ice 273 Bartels, Julius 4, 8 2003 UB313 269, 270, 271–272, 274, 286 – methane 271–272 Becquerel, Antoine Henry 3 – orbital parameters 271 Biermann, Ludwig 5 – satellite 272 biomass, from chemolithoautotrophs, on Earth 169 – spectroscopic studies 271 –, – on Mars 169 2005 FY 269, 270, 272–273, 286 9 bombardment, late heavy 68, 70, 71, 77, 78 – atmosphere 273 Borealis basin 68, 71, 72 – methane 272–273 ‘Brown Dwarf Desert’ 181, 188 – orbital parameters 272 brown dwarfs, deuterium-burning limit 181 51 Pegasi b 179, 185 – formation 181 Alfvén, Hannes 11 Callisto 197, 198, 199, 200, 204, 205, 206, ALH84001 (martian meteorite) 160 207, 211, 213 Amalthea 198, 199, 200, 204–205, 206, 207 – accretion 206, 207 – bright crater 199 – compared with Ganymede 204, 207 – density 205 – composition 204 – discovery by Barnard 205 – geology 213 – discovery of icy nature 200 – ice thickness 204 – evidence for icy composition 205 – internal structure 197, 198, 204 – internal structure 198 – multi-ringed impact basins 205, 211 – orbit 205 – partial differentiation 200, 204, 206,
    [Show full text]
  • 1 a New Modal Analysis Method 1 to Put Constraints on the Aqueous
    1 A new modal analysis method 2 to put constraints on the aqueous alteration of CR chondrites 3 and estimate the unaltered CR composition 4 5 M. PERRONNET 1*, M. E. ZOLENSKY 1, M. GOUNELLE 2, C. S. SCHWANDT 1 6 7 1 Lyndon B. Johnson Space Center, KT, 2101 Nasa Road One, Building 31, Houston, 8 TX 77058-3696, USA 9 2 Laboratoire d’Etude de la Matière Extraterrestre, Museum National d’Histoire Naturelle, 10 CP52, 57 rue Cuvier, 75231 Paris cedex 05, France 11 *Corresponding author. E-mail: [email protected] 12 13 ABSTRACT 14 15 CR carbonaceous chondrites are of the major interest since they contain one of the most 16 primitive organic matters. However, aqueous alteration has more or less overprinted their 17 original features in a way that needed to be assessed. That was done in the present study by 18 comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered 19 CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray 20 elemental maps acquired on electron microprobe, and on IDL image treatment. 21 It allowed the collection of new data on the composition of Renazzo and confirmed the 22 classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and 23 clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the 24 distinctive matrix composition in the two chondrites suggest a wide-range of aqueous 25 alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the 26 elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the 27 matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration.
    [Show full text]
  • The Photometric and Spectral Properties of Vestoids: Preparations for the Dawn Encounter at Vesta
    42nd Lunar and Planetary Science Conference (2011) 2036.pdf The Photometric and Spectral Properties of Vestoids: Preparations for the Dawn Encounter at Vesta. M. D. Hicks1, B. J. Buratti1, V. Reddy2, K. J. Lawrence1, 1Jet Propulsion Laboratory California Inst. of Technology, 4800 Oak Grove Dr. 183-401, Pasadena, CA 91109, [email protected]. 2University of N. Dakota. Introduction: The Dawn Mission is part of surface phase functions for constructing mosaics and NASA’s Discovery Program. Launched in 2007, the for deriving accurate instrument integration times can spacecraft will begin the first detailed study of a Main be derived [1]. Belt asteroid, 4 Vesta, in August 2011 and continue its Table 1 - – Future observational circumstances for high orbital mission for nine months. The main goals of phase V-type asteroids before Dawn Vesta encounter. Dawn’s in-depth study are to understand the evolution of this protoplanet and the role of water in its history; Object a Hv Bright- Phase Nights (AU) est angles to derive Vesta’s bulk properties; to model its surface (º) composition and geologic landforms, and to under- 1998 VO33 1.25 13.1 2/6/11 25-96 52 stand its relationship with the terrestrial HED mete- 1981 Midas 1.78 15.5 2/16/11 46-75 32 2003 YT1 1.11 16.2 5/09/11 67-101 47 orites and the near-Earth vestoids, both of which are 1992 FE 0.93 16.4 5/25/11 62-97 41 believed to originate on Vesta. In preparation for the encounter in August, an observing campaign to study Observations of 4055 Magellan in 2010.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • The Vanderbilt Hustler
    www.InsideVandy.com HUSTLER THETHURSDAY, FEBRUARY VANDERBIL 2, 2012 ★ 124TH YEAR, NO. 7 ★ THE VOICE OF VANDERBILT SINCE 1888 T New kids on the block U.S. ambassador talks Egypt, Vanderbilt head coach James Arab spring KATIE KROG Franklin and the SENIOR PRODUCER coaching staff Students, faculty and guests crowded into Buttrick 101 Wednesday evening to listen to celebrated one former U.S. Ambassador to Egypt Margaret Scobey speak. of the best The event, which included a talk and a ques- tion and answer session, focused on Egypt signing classes and the Arab Spring, a series of protests and demonstrations that began in 2010. in Vanderbilt Scobey referred to the Arab Spring as “un- doubtedly the most exciting event of my ca- football history reer.” She added, “It was really just kind of on Wednesday, amazing to see a country of 82 million people rise up and say ‘enough.’ It was a very exciting welcoming 21 time, very momentous, and I think it’s going to have long term impact on a variety of is- new players to sues.” According to Scobey, a key priority for the Nashville. United States is “advancing peace, security K EVIN BARNETT/ THE VANDERBILT HUSTLER and opportunity in the Middle East, not only because of the long-term benefits to the na- signees receiving less tional order and global prosperity, but to the than a three-star rating here-and-now issues that we are confronting.” according to Rivals.com 6’5” Scobey said that these current issues in- 0 average height clude the defeat of al-Qaeda and other extrem- 285 of the six ist groups; the erasure of the spread of nuclear weight of three different signees with offensive line weapons; the promotion of Arab-Israeli peace; offensive line signees the increase of commerce; the countering of offers from other signees aggression; and furthering the spread of de- SEC programs signees who led mocracy and respect for human rights.
    [Show full text]
  • Bias-Corrected Population, Size Distribution, and Impact Hazard for the Near-Earth Objects ✩
    Icarus 170 (2004) 295–311 www.elsevier.com/locate/icarus Bias-corrected population, size distribution, and impact hazard for the near-Earth objects ✩ Joseph Scott Stuart a,∗, Richard P. Binzel b a MIT Lincoln Laboratory, S4-267, 244 Wood Street, Lexington, MA 02420-9108, USA b MIT EAPS, 54-426, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Received 20 November 2003; revised 2 March 2004 Available online 11 June 2004 Abstract Utilizing the largest available data sets for the observed taxonomic (Binzel et al., 2004, Icarus 170, 259–294) and albedo (Delbo et al., 2003, Icarus 166, 116–130) distributions of the near-Earth object population, we model the bias-corrected population. Diameter-limited fractional abundances of the taxonomic complexes are A-0.2%; C-10%, D-17%, O-0.5%, Q-14%, R-0.1%, S-22%, U-0.4%, V-1%, X-34%. In a diameter-limited sample, ∼ 30% of the NEO population has jovian Tisserand parameter less than 3, where the D-types and X-types dominate. The large contribution from the X-types is surprising and highlights the need to better understand this group with more albedo measurements. Combining the C, D, and X complexes into a “dark” group and the others into a “bright” group yields a debiased dark- to-bright ratio of ∼ 1.6. Overall, the bias-corrected mean albedo for the NEO population is 0.14 ± 0.02, for which an H magnitude of 17.8 ± 0.1 translates to a diameter of 1 km, in close agreement with Morbidelli et al. (2002, Icarus 158 (2), 329–342).
    [Show full text]
  • Voided Certificate of Employee Information Reports
    Public Contracts Equal Employment Opportunity Compliance Monitoring Program Voided Certificate of Employee Information Report Report run on: June 6, 2017 3:22 PM Name of Company Cert Street City State Zip (PC) 2 HD 37407 245 EAST 30TH NEW YORK CITY NY 10016 1515 BOARDWALK, INC 18317 121 WASHINGTON ST TOMS RIVER NJ 08753 174 NEWARK AVENUE ASSOCIATES, LP 34742 103 EISENHOWER PARKWAY ROSELAND NJ 07068 1993-N2 PROPERTIES, NO. 3 LIMITED PARTNERSHI 19621 12100 WILSHIRE BLVD LOS ANGELES CA 90025 1ST CALL PAINTING CONTRACTORS, LLC 37000 980-B DEHART PLACE ELIZABETH NJ 07202 3-2-1 QUALITY PRINTING 21779 100 JERSEY AVENUE NEW BRUNSWICK NJ 08901 3-D MFG.-DBA- AMERICAN LA-FRANCE 2831 500 S. AIRPORT ROAD SHAWANO WI 54166 4 FRONT VIDEO DESIGN INC. 22299 1500 BROADWAY #509 NEW YORK NY 10036 55 WASHINGTON STREET LLC 28132 P.O. BOX 66 CLOSTER NJ 07624 9-15 SOUTH MAIN STREET CORP. 20587 1125 ATLANTIC AVE., SUITE 617 ATLANTIC CITY NJ 08401 A & A ENGINEERING 9780 300 CORPORATE CENTER DRIVE MANALAPAN NJ 07726 A & B WIPER SUPPLY, INC. 6848 116 FOUNTAIN ST. PHILADELPHIA PA 19127 A & E CARPENTRY, INC. 8048 584 STUDIO RD. RIDGEFIELD NJ 07657 A & L UNIFORMS, L L C 37818 2605 SOUTH BROAD STREET TRENTON NJ 08610 A & P TUTORING, LLC 34701 4201 CHURCH ROAD #242 MT. LAUREL NJ 08054 A & R AUTO SUPPLY, INC. 7169 300 ATLANTIC CITY BLVD. TOMS RIVER NJ 08757 A & S FUEL OIL CO. INC. 25667 95 CALAIS ROAD PO BOX 22 IRONIA NJ 07845 A & W TECHNICAL SALES, INC. 33404 420 COMMERCE LANE, SUITE 3 WEST BERLIN NJ 08091 A AND C LABORATORIES, INC 17387 168 W.
    [Show full text]
  • Yrfthesis.Pdf
    ABSTRACT Title of Dissertation PHYSICAL PROPERTIES OF COMETARY NUCLEI Yanga Rolando Fernandez Do ctor of Philosophy Dissertation directed by Professor Michael F AHearn Department of Astronomy I present results on the physical and thermal prop erties of six cometary nuclei This is a signicant increase in the numb er of nuclei for which physical information is available I have used imaging of the thermal continuum at midinfrared and radio wavelengths and of the scattered solar continuum at optical wavelengths to study the eective radius reectivity rotation state and temp erature of these ob jects Traditionally the nucleus has b een dicult to observe owing to an obscuring coma or extreme faintness I have taken advantage of new midinfrared array detectors to observe more comets than were p ossible b efore I have also codevelop ed a technique to separate the coma and nucleus from a comet image I develop ed a simple mo del of the thermal b ehavior of a cometary nucleus to help interpret the thermal ux measurements the mo del is an extension to the Standard Thermal Mo del for aster oids We have enough nuclei now to see the rst demarcations of the cometary region on an alb edodiameter plot I make a comparison of the cometary nuclei with outer Solar System small b o dies and nearEarth asteroids All of the cometary nuclei studied in this thesis are dark with geometric alb edos b elow and have eective diameters of around to km except for comet HaleBopp C O which is in the next order of magnitude higher I give an extensive discussion of the nuclear
    [Show full text]
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations Q ⇑ F
    Icarus 221 (2012) 1130–1161 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations q ⇑ F. Marchis a,g, , J.E. Enriquez a, J.P. Emery b, M. Mueller c, M. Baek a, J. Pollock d, M. Assafin e, R. Vieira Martins f, J. Berthier g, F. Vachier g, D.P. Cruikshank h, L.F. Lim i, D.E. Reichart j, K.M. Ivarsen j, J.B. Haislip j, A.P. LaCluyze j a Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA b Earth and Planetary Sciences, University of Tennessee, 306 Earth and Planetary Sciences Building, Knoxville, TN 37996-1410, USA c SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e Observatorio do Valongo, UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f Observatório Nacional, MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, RJ, Brazil g Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h NASA, Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA j Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, USA article info abstract Article history: We collected mid-IR spectra from 5.2 to 38 lm using the Spitzer Space Telescope Infrared Spectrograph Available online 2 October 2012 of 28 asteroids representative of all established types of binary groups.
    [Show full text]